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ABSTRACT
In this contribution we deal with a new mathematical description of the response of short-term coleoptile/hy- 

pocotyl expansion growth to temperature. Although the interest of both the bio-mechanical basis of elongation 
growth and temperature responses has been studied in plant biology and biophysics for a long time, yet the que
stion of the mode of actions of temperature is very relevant and still open. Here we introduce a simple idea that 
the normal distribution, due to the central limit theorem (CLT), is able to report on temperature-dependent elon
gation growth. The numerical fittings for temperature affected growth are in good agreement with empirical data. 
We suggest that the observation concerning a crossover effect occurring in temperature driven elongation together 
with CLT leads to the formulation of a hypothesis about the possible universal character of such a description, 
supposedly for many plant species and families. We conclude with the statement that properly constructed equa
tions of temperature affected growth, should possibly include a specific term proportional to exp[-((T-T0)/T0)2] 
with T0 corresponding to the temperature of the optimum growth.

KEY WORDS: central limit theorem, coleoptile/hypocotyl, elongation, temperature.

INTRODUCTION

It has been a long search for an adequate description of 
the response of the short-term cell expansion growth to 
temperature and numerous mathematical models have been 
developed. Some of them concerned different issues like 
crop development, prediction of maize phenology, flowe
ring dates and leaf appearance as dependent on temperatu
re, also in the context of thermal time (heat accumulation 
over calendar time). Accordingly, some efforts have been 
made to establish corresponding mathematical models ac
counting for the observed phenomena (Cross and Zuber 
1972; Coelho and Dale 1980; Summerfield and Roberts 
1987; Olsen et al. 1993; Hunt and Pararajasingham 1995; 
Yan and Wallace 1996; 1998; Craufurd 1998; Yan and 
Hunt 1999).

The linear model was proposed by Summerfield and Ro
berts (1987). Nevertheless, this model is only effective 
when the temperature does not approach the optimum whe
reas the conditions frequently exceed the optimum tempe
rature and such linear description fails to account for the 
suppressed growth and development at high temperatures. 
To resolve this contradiction Olsen et al. (1993) adopted 
a bilinear approach. Two different linear equations were 
used to describe growth responses to sub-optimum and su

pra-optimum temperatures, separately. However, the deri
vations of cardinal temperatures were not always meaning
ful (Craufurd 1998). A multi-linear model (Coelho and Dale 
1980) as less rigid than the bilinear model used for crop 
system simulation packages (Hunt and Pararajasingham 
1995) required, in turn, five or more parameters to describe 
the temperature response. As we expect that the growth - 
temperature relationship should be a smooth curve rather 
than a rigid combination of linear equations, Cross and Zu
ber (1972) favoured exponential and polynomial models. 
While the exponential model can be effective in the model
ling at alow to intermediate temperature range, the quadra
tic equation proposed by Yan and Wallace (1996, 1998), 
which is a symmetric parabola, can be inaccurate at extre
me (high and low) temperatures. More recent attempts were 
presented by Yan and Hunt (1999) where the temperature 
response of plant growth and development has been mo
delled by b-distribution. Even though the authors stressed 
that the description employed only three cardinal numbers, 
no further link to biochemical basis has been given.

In this paper a concept of “normal growth” at ambient 
temperatures is introduced, due to CLT. In other words, the 
Gaussian character of elongation in function of temperatu
re in a restricted interval of about 10-40°C is utilized. De
spite that in our approach we are confined to two parame
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ters only (T0 and s) we are able to anticipate almost the 
whole plot for the growth - temperature relationship. Mo
reover, it is founded on inherent properties of normal di
stribution that are associated with many processes taking 
place in a growing plant.

The central limit theorem expresses the fact that any sum 
of many independent random variables will tend to be di
stributed according to a particular “attractor distribution”. 
It states that if the sum of the variables has a finite varian
ce, then it will be approximately normally distributed (i.e. 
following a normal distribution). Since many real proces
ses yield distributions with finite variance, this explains the 
ubiquity of the normal distribution. This may also apply to 
many different phenomena taking place in plant growth. 
However, the extreme temperatures disturb this behavior 
and processes contributing to growth cannot be considered 
as weakly coupled or “independent”. In such case the abo
ve reasoning fails and Gaussian distribution is no more ap
plicable.

Therefore, we put forward a new model based on Gaus
sian distribution. The important arguments for such a choi
ce are twofold. (1) By assuming the normal distribution, 
we incorporate a number of fundamental chemical and bio
chemical processes that accelerate or decelerate growth in 
function of temperature (e.g. kinetics of chemical reac
tions, metabolism, photosynthesis - biomass production, 
protein denaturing, etc.). With temperature elevation, both 
type of these processes act simultaneously, however, with 
distinct intensity at different temperature ranges - a crosso
ver from one type of behavior to the other should be expec
ted. Thus, a delicate balance must exist among all contribu
ting factors and consequently a specific, well-defined criti
cal temperature T0 for which the growth is optimal should 
appear. The outlined system (a plant cell/organ immersed 
in temperature reservoir) behaves similar to most systems 
described by a differential equation where dissipative and 
extortive forces are both present. In such systems there al
ways exist a variable which is optimal at certain condi
tions. In the case of plant cells the external dominant factor 
enforcing a crossover from accelerating to decelerating 
growth is temperature T. Therefore, there must also exist 
an optimal temperature T0 of such acrossover (and the cor
responding optimal energy). This is in accordance with the 
fact that the optimal temperature of growth T0 corresponds 
to the maximum energy absorption at kBT0 due to extreme 
activation of internal biochemical processes (kB - the Bolt- 
zman constant), compare to Pietruszka et al. (2007). Such 
crossover is obviously present at T=T0 for the peak value 
of the Gaussian. (2) From the central limit theorem we le
arn that even though the mechanisms underlying growth 
phenomena are often unknown, the use of the normal mo
del can be theoretically justified by assuming that many 
small (or even negligible) independent effects additively 
contribute to each temperature-response. Indeed, in a wide 
range of temperature, the chemical reactions such as meta
bolic processes, enzyme activity, photosynthesis, biomass 
production, protein denaturing and many others, contribute 
at each temperature to the elongation growth resulting in 
Gaussian - like shape. Even though different enzymes 
from biophysical processes have different temperature co
efficient Q10, their values change only slightly, hence they 
also can be treated as normally distributed. At very low or 
high temperatures the departure from this scenario is noti

ceable and CLT cannot be applied then. This is mainly 
expressed by asymmetric data distribution within the who
le temperature range. However, since we assumed we are 
confined to ~10-40°C interval, the acceptance of the sym
metric Gaussian seems to be justified.

MATERIAL AND METHODS

Aiming to validate the outlined above scenario we have 
performed a series of experiments with different species in 
a broad temperature range. The experiments were carried 
out with four-day-old maize (Zea mays L.), barley (Hor- 
deum vulgare L.) wheat (Triticum vulgare Vill.), millet 
(Panicum miliaceum L.) and bean (Phaseolus vulgaris L.), 
and five-day-old pumpkin (Cucurbita pepo L.). Seedlings 
were grown in tap water at 27°C. Seeds of all species were 
germinated in darkness. Five seedlings of every sample 
were chosen. In every case the equal length of the coleopti
le was the decisive criterion; 1 cm for maize and millet, 3 
cm for barley and wheat coleoptiles (initial measurement), 
respectively. Likewise, for bean and pumpkin the initial 
length of hypocotyls was 2 and 3 cm, respectively. Indivi
dual seedlings (in groups of five) were transferred to an ae
rated solution containing standard micro- and macro-ele
ments. Then, they were immersed in a bath at constant 
temperatures: 5, 8, 16, 22, 27, 32, 37, 42 and 48°C for mo- 
nocotyledones and 5, 10, 18, 22, 24, 27, 38 and 45°C for 
dicotyledones. Length of the coleoptiles of the Graminae 
seedlings was measured - 3 hours, length of the bean hy
pocotyls - 2 hours while length of the pumpkin hypocotyls 
- 4 hours after the preceding measurement. Manipulations 
on plants (elongation measurements and transfer to test so
lutions) were carried out in green light (sunlight transmit
ted through a green filter). The relative error has been esti
mated with the help of the logarithm method and indicated 
by error-bars in the plots. The fitting procedure was perfor
med with the use of the non-linear Levenberg-Marquardt 
interpolation algorithm, and applied to the calculated relati
ve elongation, (Ln-L0)/L0, where L0 - the initial length, Ln - 
the length of coleoptiles/hypocotyls for the nth measurement.

The empirical data have been presented together with the 
continuous theoretical curve (dotted line) in Figure 1, whe
re the relative elongation of monocotyledones' coleoptiles 
and dicotyledones' hypocotyls is plotted against temperatu
re. The interpolation curve has been fitted convincingly by 
the use of the nonlinear regression method with high squa
red determination coefficients R2. The optimum temperatu
re T0 was calculated for every species individually with the 
help of Levenberg-Marquardt algorithm. The original data 
together with the adjusted model curves are visualized in 
Figure 1 where the results for mono- and dicotyledones are 
presented, respectively. The calculated optimum tempera
ture is depicted for every plot, also determination coeffi
cients are indicated in the Legends.

DISCUSSION

Many papers have been written on the short-term growth 
response to temperature. Even though they touched the very 
essence of the problem from the biological (biochemical, 
biomechanical, genetic, etc.) point of view they still need



Vol. 77, No. 4: 289-292, 2008 ACTA SOCIETATIS BOTANICORUM POLONIAE 291

Fig. 1. Relative elongation of maize (Zea 
mays L.), barley (Hordeum vulgare L.), whe
at (Triticulm vulgare Vill.) and millet (Pani- 
cum miliaceum L.) coleoptiles, bean (Phase- 
olus vulgaris L.) and pumpkin (Cucurbita pe
po L.) hypocotyls in function of temperature. 
The model parameters and corresponding de
termination coefficients are indicated in the 
figures.

a strict thermodynamic model which would be able, in 
a quantitative way, to describe the observed phenomena. 
Lockhart (1965), Ortega (1985), Lewicka (2006) and oth
ers put forward phenomenological equations and suggested 
solutions of short- and large-scale time dependent plant 
growth. However, almost all attempts of theoretical de
scription treated the growth as independent of temperature. 
Only a few papers have theoretically challenged the pro
blem of temperature induced growth (e.g. Proseus et al. 
1999, 2000; Lewicka and Pietruszka 2006; Pietruszka et al. 
2007). Even though a progress has been made in phenome
nological description of growth related issues, the lack of 
time- and temperature-dependent differential equation de
scribing plant cell growth, free of the abundance of essen
tial assumptions, has been noticed. It looks as if the simple 
proposal presented in this paper, expressed by the imple
mentation of central limit theorem to the description of 

temperature affected growth, may be accepted as a first 
step. Notwithstanding, the normal distribution may be re
cognized as a good candidate to report on acore portion of 
temperature response.

CONCLUSIONS

Based on our considerations, it looks as though a term 
proportional to exp[-((T-T0)/T0)2] should be present in the 
properly constructed thermodynamical equation of growth. 
Such thermodynamic equation, likely to represent changes 
of volumetric growth in various external conditions (e.g. 
pH, water and soil factors or light) will be subjected to fur
ther studies. We believe that this contribution will help 
explaining the phenomenon of temperature affected 
growth, despite the fact that many questions remain open.
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