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ABSTRACT

The time-irreversible cell enlargement of plant cells at a constant temperature results from two independent 

physical processes, e.g. water absorption and cell wall yielding. In such a model cell growth starts with reduction 

in wall stress because of irreversible extension of the wall. The water absorption and physical expansion are spo­

ntaneous consequences of this initial modification of the cell wall (the juvenile cell vacuolate, takes up water and 

expands). In this model the irreversible aspect of growth arises from the extension of the cell wall. Such theory 

expressed quantitatively by time-dependent growth equation was elaborated by Lockhart in the 60's.The growth 

equation omit however a very important factor, namely the environmental temperature at which the plant cells 

grow. In this paper we put forward a simple phenomenological model which introduces into the growth equation 

the notion of temperature. Moreover, we introduce into the modified growth equation the possible influence of 

external growth stimulator or inhibitor (phytohormones or abiotic factors). In the presence of such external pertur­

bations two possible theoretical solutions have been found: the linear reaction to the application of growth hormo- 

nes/abiotic factors and the non-linear one. Both solutions reflect and predict two different experimental condi­

tions, respectively (growth at constant or increasing concentration of stimulator/inhibitor). The non-linear solution 

reflects a common situation interesting from an environmental pollution point of view e.g. the influence of increa­

sing (with time) concentration of toxins on plant growth. Having obtained temperature modified growth equations 

we can draw further qualitative and, especially, quantitative conclusions about the mechanical properties of the 

cell wall itself. This also concerns anew and interesting result obtained in our model: We have calculated the ma­

gnitude of the cell wall yielding coefficient F(T) [m3 J-1-s-1] in function of temperature which has acquired reaso­

nable numerical value throughout.

KEY WORDS: cell wall yielding, growth stimulators/inhibitors, modified growth equations.

INTRODUCTION

One of the most complex physiological processes in 
plants is growth (Fogg 1975; Kutschera 2000 and papers 
cited therein, see for a review). This process is based on ir­
reversible extension of the whole organism due to the in­
crease of the quantity and size of cells, the mass of proto­
plast and the cell walls. In the growth of arbitrary organ 
one can differentiate three basic phases: the initial phase of 
slow growth, the intense growth phase and, eventually, the 
final phase of slow growth. Such regularity which can be 
represented by sigmoid curve is known as the law of great 
growth (“S”-shaped curve). The sigmoid curve characteri­
zes the course of individual cell growth, plant organs and 
the growth of plant as a whole. The dominating length in­
crements in the time unit are observed approximately at the 
mid-time of growth. The period of intense growth lasts fai­
ry short and depends on plant species.

The plant growth is influenced by physical and biotic 
factors of environment (Wright 1966; Trewavas 1991; 
Edelmann 1995). The external factors which fundamental­
ly influence on plant growth are: temperature, light, water 
and soil factors, and atmosphere composition. The depen­
dence of growth on temperature, which is similar to the 
another physiological processes, is described by van't Hoff 
law. One can distinguish the minimum temperature (below 
which the growth is inhibited), the optimal temperature 
(the most intense growing rate) and the maximum tempera­
ture (the growth is no more possible). In the limits of tem­
perature minimum or optimum when the only factor limi­
ting physiological process (e.g. growth) is temperature 
then, according to the van't Hoff law, the intensity of such 
process is doubled at temperature increase by 10 degrees 
Celsius (logarithmic dependence).

The growth dependence on temperature indicates the fact 
that with the temperature elevation the intensity of the 
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growth process gradually increases (which is also due to 
the acceleration of chemical reactions by raising tempera­
ture). However, after exceeding the optimum temperature 
the rapid decrease of the intensity of plant growth starts. 
The experimental relations between temperature, turgor 
pressure and the growth of plant cells were thoroughly in­
vestigated in paper by Proseus et al. (2000).

On the other hand, regarding different heat requirements 
one can divide plants on criophyties (growth optimum pha­
se beneath 20°C), mesophyties (optimum growth rate at 
20-40°C) and thermophyties which grow most intensely 
above 40°C. In the above context another division line is 
connected with plant species and organs, growth phase and 
with the age of individual plant.

In spite of external factors one should also mention that 
growth, as being complex, depends on many physiological 
processes (internal factors) like respiration and photosyn­
thesis as well as on enzymes activity, including H+ ATPase 
localized in plasmalemma.

The tale of Jack and the Beanstalk includes an episode in 
which bean seedlings grow up high through the clouds in 
a single night. Such event rises questions. What limits the 
growth rate? What is the role of temperature in the growth 
rate of real plants? The first question is broadly discussed 
in the review article (Cosgrove 1986) where the prevailing 
concept of the plant cell growth results from turgor-driven 
yielding of the cell wall which is a physical description of 
how plant cells increase in size during growth and morpho­
genesis. In this context two questions are raised (a) about 
the characteristics which enable the cell wall to extend, and 
(b) how is water transported to and absorbed by growing 
cells to maintain turgor pressure while prolonged extension 
of the cell wall. The above questions raised by Cosgrove 
(1986) in his review put emphasis on the most recent pa­
pers on physical constraints which limit plant growth. Due 
to the author's opinion the irreversible enlargement of 
plant cells results from two independent physical proces­
ses. The first one is water absorption which increases the 
volume of growing cells consisted mainly of 85-95% of 
water. The second is the wall extension which generates 
the driving force for the water uptake.

Besides the factors of external nature the growth regula­
tors are of the fundamental importance in growth and deve­
lopment, see also Cleland (1986). These substances stimu­
late or inhibit the processes of growth. The regulators of 
growth, applied in physiological concentrations, which sti­
mulate the plant growth are called plant growth stimulators 
and, in the contrary, the substances, adapted also in such 
physiological concentrations, which inhibit growth are de­
fined as plant growth inhibitors. The natural growth regula­
tors (plant phytohormones) include auxins, giberellins, cy­
tokinins, the abscisin acid and ethylene.

The goal of the present paper is to introduce, after reaso­
nable precautions and discussion, the notion of temperature 
to the growth equations via the state equation1. This enable 
us to create anew phenomenological (thermodynamic) mo­
del of the temperature influenced growth. After receiving 
appropriate equations we adjust these to the experimental 

1 Despite some obvious, however fully justified, assumptions and sim­

plifications the authors' intention was to obtain analytic solutions which 

yield clear interpretations. Any other approach would result in numerical 

calculations.

data and find quantitative description of the elongation of 
maize versus time, parameterized by temperature. Two ma­
jor solutions of these equations are found: (a) the linear so­
lution for unperturbed growth, (b) linear and non-linear so­
lutions of growth influenced by external perturbation 
(growth hormones or abiotic factors), which in fact both re­
flect different conditions of experiment. Moreover, we no­
tice that the foregoing major consequence of our model is 
the new possibility to provide a good working mathemati­
cal description of the most essential features of physical 
properties of the cell wall (regarding wall yielding in func­
tion both on time and temperature). Despite the fact that 
our paper makes intense use of mathematics an effort is 
made to make our article intelligible to all experimental 
biologists, especially plant physiologists (for this purpose 
the main body of our paper does not contain punctilious 
derivations, however we move the detailed step by step 
calculations into the Appendix A). We also expect that our 
theory will give reproducible results regarding different 
plant species (in comparative studies) and give direct, sim­
ple and comprehensive method for quantitative predictions 
(calculations) for plant physiologists who can draw further 
conclusions about all these properties which like the wall 
yielding depend on temperature.

After the above outlined general Introduction into the pro­
blems of plant growth in the context of temperature, in the 
following Section we comment details of the authors' expe­
riment. In the next Section, which is the central part of our 
paper, we briefly introduce the physical model of temperatu­
re affected plant cell growth which next we discuss in the 
following Subsection in both cases of unperturbed and per­
turbed growth. In the light of equations of our model the 
experimental results are briefly outlined. Also the main theo­
retical outcome is discussed: the extensibility of the cell wall 
in function of temperature. In the last Section we present the 
final remarks. Step by step derivations of our equations in 
the above mentioned three different cases are presented in 
the Appendix A. Detailed discussion about the foundations 
of our model is presented in the Appendix B.

MATERIAL AND METHODS

The experiments were carried out with four day old mai­
ze plants (Zea mays L.) grown on Hoagland's medium 
(Hoagland and Arnon 1950) at 27°C. Seeds of maize were 
cultivated in darkness. Then individual segments were 
transferred to an aerated solution containing standard mi­
cro- and macro-elements. Two kinds of experiment were 
performed.

(a) Unperturbed experiment: The coleoptile segments 
were divided into eight groups growing at different tempe­
ratures from 5°C, increased by 5°C up to 40°C. Each group 
was represented by 10 segments. The experiment was car­
ried out within 7 hours. The measurements were taken at 
every 1 hour. The individual values presented in Figure 1 
are the averages obtained from 10 measurements.

(b) Perturbation present: The coleoptile segments were 
divided into three groups growing at temperatures 25, 30 
and 35°C, respectively. The experiment was carried out wi­
thin 8 hours, and the measurements were taken at every 1 
hour. (i) Linear response case: As a stimulator the auxin in 
physiological concentration 10-5 mole was applied after 4
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Fig. 1. Experimental results: Nonperturbed elongation of maize (Zea mays 

L.) coleoptile segments versus time at eight different temperatures. Linear 

behaviour is clearly visible.

hours of unperturbed growth; as an inhibitor we introduced 
CdCl2 (10-5 mole) also after 4 hours (see Fig. 2). (ii) Non­
linear response case: As a stimulator the auxin was applied 
after 4 hours (1.25-10-6 mole) of unperturbed growth, then 
after 5 hours (2.5-10-6 mole), after 6 hours (5-10-6 mole) 
and after 7 hours (10-5 mole); as an inhibitor CdCl2 was ap­
plied after 4 hours (1.25-10-6 mole) of unperturbed growth, 
then successively after 5 hours (2.5-10-6 mole), 6 hours 
(5-10-6 mole) and after 7 hours (10-5 mole), see Figure 3.

The individual values presented in Figures 2 and 3 are 
the averages obtained from 5 measurements. In all experi­
mental cases the control measurement was performed. In 
all experiments the elongation was measured by microsco­
pe. The relative error was of about 5%.

TEMPERATURE MODIFIED GROWTH EQUATIONS

In the model of plant cell growth the cell turgor pressure 
remains in dynamic balance between wall extension which 
tends to dissipate turgor pressure and water uptake acting 
to restore it (Cosgrove 1986). Lockhart (1965) proposed 
asimple (time-dependent) differential equation

1dV = F(P - Y) CD
V dt

which states that the relative growth rate (cell volume - V) 
depends linearly on hydrostatic pressure (P) in excess of 
a critical turgor (Y) linked by wall extensibility coefficient 
(F). In this model of growth, turgor pressure coordinates 
water uptake with cell wall extension. However, plants do 
not grow in a space which is disconnected to the real 
world. They usually grow in some special conditions whe­
re one of the most important growth factors is temperature. 
In order to solve the problem in our approach we part, as 
usual in thermodynamics, the whole system into the inve­
stigated sample (here: plant cell) and ‘the rest of the world' 
- thermostat (the environment) which remains at a constant 
temperature T (see Fig. 4). Aiming to bring in temperature 
into the above equation we utilize the state equation2

2 Here, in order to justify and give foundations to our approach, we 

provide the following comment (for full discussion see also the Appendix
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Fig. 2. Experimental results: Perturbed elongation (the linear response) of 

maize (Zea mays L.) coleoptile segments versus time at three different 

temperatures for both stimulator and inhibitor applied after 4 hours. The 

values of control growth have been subtracted.

B). In thermodynamics, an equation of state is a constitutive equation de­

scribing the state of matter under a given set of physical conditions. Espe­

cially, it delivers a mathematical relationship between two or more state 

functions associated with the matter, such as its temperature, pressure, vo­

lume, or internal energy. The most prominent use is to predict the state of 

matter (e.g. ideal gas law, van der Waals equation). One of the simplest 

equations of state for our purpose is the ideal gas law (roughly accurate 

for gases at low pressures and high temperatures) which should obviously 

be treated heuristically (not literally) in this case. However, the use of this 

equation, is fully justified in the 1st approximation if one begins with the 

virial theorem and restrict only to the first term of expansion. Moreover, 

equivalently the same result we acquire, when we assume the properties 

of water (very weak compressibility) and expand the resulting exponent 

to the linear term in temperature T. However, if appropriate assumptions 

are made about the mathematical form of intermolecular forces in the wa­

ter solution filling up the plant cell interior, higher coefficients in the vi- 

rial expansion should be included. For the sake of clarity of the presented 

theory we restrict ourselves to the term linear in T.
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Fig. 4. Scheme of the ‘Gedanken experiment' set-up: The movement of 

the piston in the cylinder (plant cell) reflects the extensibility properties 

of cell wall. The additional container with pressure p1 and the valve is bo­

und with action of a stimulator or an inhibitor which can be opened at 

a time t0<t = t1 to release pressure p1. The whole system is immersed into 

thermostat (environment) at temperature T.

Fig. 3. Experimental results: Perturbed elongation (the non-linear respon­

se) of maize (Zea mays L.) coleoptile segments versus time at three diffe­

rent temperatures. The “continuous” concentration change starts after 4 

hours from the beginning of the experiment. The values of control growth 

have been subtracted.

1 dV
dV = F(T)(P(T, V) - Y(T, V)) (2)

V dt
which after inserting Y = aT/V, a>0 (this assumption seems 
to be fully justified since Y has the same character as P), 
can be rewritten as

1 dV
V dt

= F(T )^ nRv - aT
V )

(3)

where in contrary to Eq. (1) the coefficient F = F(T) (see for 
discussion the Appendix B). By substituting g = nR-a we 
get the following equation

£ dV
V dt

= F(T)(nR - a) = F(T)g V■ (4)

P(T,V) = nRT/V where T is the absolute temperature (in 
Kelvin scale), and V is proportional to the amount of water 
in the cell (~V); n is the number of water moles, R - the 
universal constant (in our phenomenological model the 
movement of the piston reflects the extensibility properties 
of the cell wall, see Figure 4)3. Accordingly, we wish to so­
lve the following equation

A simple calculus (see Appendix A, Case 0 for details) 
yields a general equation for the volume V we have been 
looking for

(5)(5) 
slope

3 By introducing our physical model we are far beyond the simplified 

picture where we interpret the movement of a piston as only reflecting the 

compressibility/extensibility properties of the water solution inside the 

plant cell. In contrary, in such a way we incorporate rather a number of 

basic chemical and biochemical processes which accelerate or inhibit the 

growth in function of temperature (kinetics of chemical reactions, meta­

bolism, photosynthesis (biomass production), protein denaturing, etc.). 

Because both type of processes act simultaneously, however with diffe­

rent intensity at distinct temperature ranges, one should expect a crosso-

which is linear in time t(V0 = V(t= t0) stands for the initial 
volume of the cell). From the experimentalist' point of 
view the most interesting part is the slope which, as a who­
le, depends on temperature and can be acquired from the fit 
to the experimental data. However, what we measure in 
experiment is the elongation and the above equation holds

ver from one type of behavior to the other. Thus, there should always 

exist a specific, well defined critical temperature (t* - in Celsius scale) 

for which the growth rate is optimal. Considering temperatures in Kelvin 

scale and multiplying T* by the Boltzmann constant (kBT*) we gain also 

clear energetical interpretation bound with the peak energy absorption ne­

cessary for biological processes for the optimum growth.
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V -V
Elong(i) » ——

'0
^(T)YTt = + 273.15)i
J_0___________ t *o

slope

(6)

By having determined the values of the directional coef­
ficient (slope) one can calculate the temperature dependen­
ce of F(t) and, consequently, draw conclusions about the 
behavior of the cell wall itself (see Fig. 5). Based on the li­
near fits (absolutely justified for evidently co-linear plots 
in Figure 1) to the unperturbed growth data we receive the 
set of 8 directional coefficients which in turn (through Eq. 
(6)) deliver the set of 8 values of F(t) for originally pre-set 
temperatures in the experiment. All these such calculated 
values are depicted in Figure 5. The dotted curve is obtai­
ned by the fit to the Lorentz-like distribution4

4 Let us justify the choice of such a function: The outlined system 

(plant cell) behaves similarly to the most systems described by a differen­

tial equation where both dissipative and extortive forces are present. In 

such systems there always exist a variable which is optimal at certain 

conditions (like resonance frequency w = w* for the harmonic oscillator). 

In our case the factor enforcing the crossover from accelerating to decele­

rating growth is temperature t. Analogically to the example with the har­

monic oscillator, also in our case there must exist a critical (“resonance”) 

temperature t = t*. Consequently, the system should be described by are- 

sonance curve - the Lorentz distribution function - in our case, however,

f0t 

yja2 + (t -t*)2

where f0 and a stand for the height and the width of the 
Lorentz curve, respectively; t* denotes the calculated opti­
mum (critical) temperature of growth, t is a measured tem­
perature (in Celsius scale) and T = t + 273.15°C. An ama­
zingly high determination coefficient occurs (see the le­
gend in Fig. 5). Here, we stress that we have presented not 
only the qualitative picture of wall extension coefficient 
but the quantitative values of F are also calculated.

Fig. 5. The Lorentz-like fit to the calculated results for the unperturbed 

elongation of maize (Zea mays L.): theoretically predicted cell wall exten­

sibility F(t)[m3 J-1-s-1 = m2 N-1-s-1] versus temperature. t* points to the 

critical (optimal) temperature of the cell wall yielding

where q(t - tj) is the Heaviside theta step function acting as 
a trigger, and opening the valve of the container with pres­
sure pj at time tj; pj = bj/V, and bj = const.

EXTERNAL STIMULATIONS

Moreover, as we have noticed in the introductory part of 
this paper, the plant growth can be stimulated or inhibited 
by phytohormones or abiotic factors, respectively. The lat­
ter, however, can be also applied in a certain period of time 
after incubation, say at a time t = tj (the experiment starts 
at t0). From the mathematical point of view it means (see 
also Fig. 4) that we perform the following transformation:

P(T,V) P(T,V) + pjq(t - tj) (7)

where the action of pressure pj<0 can be interpreted as 
plant growth inhibitor, and of pressure pj>0 as stimulator. 
Such assumption will modify the central equation of our 
model (Eq. 2) in the following way (see also the Appendix 
A, Case j):

Vt f,tat+q( -'■>) <81

At this point we, again, face the problem of solving the 
differential equation (Eq. 8). After a simple calculus (we 
omit these steps here for brevity; see Appendix A, Case j 
for details) we arrive at

( V0 + FgTt t < t.
V (t) d 0 1 (9)

lV0 +FgT + b1(t - t1))t t > t1

and V0 = V(t = t0), see also Appendix A, Eq. (j4). In the 
above scenario, from the biological experiment point of 
view, we add only once at atime instant tj a droplet of agi- 
ven growth stimulator or inhibitor (or equivalently we put 
our coleoptile segment into a solution containing growth 
stimulator/inhibitor at a given concentration after period tj 
- t0). However, another possible outline can be thought of. 
Say, when we assume pj = const., then we obtain inhomo-

modified by factor t. The latter modification is due to the fact that at t = 

0°C the growth must cease altogether.
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geneous differential equation which can be solved by me­
ans of constant variation (such procedure is briefly outlined 
in the Appendix A, Case 2). This scenario reflects the 
experimental situation when we constantly add into the 
environment the solution of a given growth stimulator or 
inhibitor after the initial time t1 (or equivalently, when we 
constantly change concentration). Starting from Eq. (8) 
(see also the Appendix A, Case 2) we eventually end up 
with the non-linear solution:

APPENDIX A
TEMPERATURE DEPENDENT LOCKHART 

EQUATION - DETAILED DERIVATION

NO EXTERNAL INFLUENCE. 

UNPERTURBED GROWTH - CASE 0

We consider the Lockhart equation (in the non-elastic re­
gime)

V (t ) = 1 V0+FgTt ' < '■

[V0eFpi'(t-t1) +FgT'1 ' > t1.
(10)

Our model and derivated expressions anticipated two 
kinds of solutions, namely linear and non-linear ones. Inde­
ed, the same sorts of behavior occurred in authors' perfor­
med experiments. These empirical results fully verified and 
confirmed the theoretical approach, see Figures 2 and 3. In 
Figure 2 we see the linear response of elongation to the 
external perturbation (stimulator/inhibitor applied once at 
t= t1= 4 h) according to the Eq. (9), with the control sub­
tracted. Similarly, in Figure 3 we see the non-linear re­
sponse of elongation to the external perturbation (stimula- 
tor/inhibitor applied first at t= t1= 4 h, and successively 
increased at subsequent hours) according to the Eq. (10), 
with the control subtracted, as in the above case.

FINAL 
REMARKS

Accepting as a starting point the time-dependent diffe­
rential Lockhart growth equation we have introduced the 
important notion (magnitude) of environmental temperatu­
re into it. Such temperature-modified growth equation not 
only satisfactorily describes the existing growth data but 
through the exactness of obtained results (which occur via 
very high determination coefficients) it seems to be a pro­
per candidate for general equation describing phenomena 
connected with the problem of plant cell growth. Moreo­
ver, by taking into account the temperature dependent 
growth experiments, which also include growth stimula- 
tors/inhibitors, we perform further investigations and pro­
pose the linear/non-linear response theory which incorpo­
rate growth data and give a reasonable theoretical descrip­
tion of the action of plant phytohormones or abiotic factors 
on the plant growth rate. One of the most interesting fin­
dings of our model is that based on the simple analytic pre­
dictions we are able to draw qualitative and, especially, qu­
antitative conclusions about the cell wall extensibility F(t) 
itself at least at high-temperature region of non-elastic 
expansion where the Lockhart equation holds. We stress 
that the authors' performed experiments confirmed, with 
a high degree of accuracy, the anticipated theoretically 
phenomenological solutions. Further detailed study of par­
ticular experiments in the light of our theory is presently 
under investigation.

1 dV
— — = F(P - Y) (11)
V dt

where we put F = F(T) = const(t), Y = Y(T,V) Y = aT/V,
a>0 and P= P(T,V) = nRT/V, n>0.

The turgor pressure Y (as we assume in this model) is re­
ciprocal to the volume V, and in our approach we consider 
the hydrostatic pressure P dependence on T and V from the 
state equation. The expansion coefficient of the cell wall 
F(T) we assume as constant in time and dependent only on 
temperature (for further discussion cf. Appendix B). After 
substituting thus defined F, Yand Pinto Eq. (11) we recei­
ve after multipyling by Vand integrating

Kr(f) = K0+G(T)yn (12)
slope

where we have substituted g = nR-a. The g value can be 
estimated numerically from the condition that the differen­
ce P - Y is of the order of 0.1 MPa.The slope in Eq. (12) is 
a time-independent directional coefficient easy to fit from 
the experiment. The volume VT(t) parametrized by tempe­
rature T demonstrates the linear character which stays in 
a good agreement with empirical data within accepted mo­
del assumptions. Furthermore, the experimental data (the 
growth in normal conditions) lead us to the additional 
conclusion: g>0.

PERTURBATION PRESENT.

LINEAR RESPONSE - CASE 1

The plant growth stimulator and inhibitor we can repre­
sent as additional pressure “switched on” at an instant t1

(13)

Here we consider the case p1 = b1/V and b1 = const. Then

1 dV
V dt

(14)

V =V0 + F(T )(gTt + b1J(t -t1))

where J(t - t1) is the primary function (in the weaker sen­
se) of the Heaviside theta function (we assume c = 0, 
according to the continuity condition at t= t1for the volu­
me V)

J(t - t1)
c
t1 + c

t < t 1 

' > 'j.
(15)
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PERTURBATION PRESENT.

NONLINEAR RESPONSE - CASE 2

However, if we yet assume, as in formula (8) p1 = const., 
then we obtain inhomogeneous differential equation which 
we can solve by means of the constant variation

1 dV ( T
------- = Fl g—+ p1q(t -1.) 
V dt------V V 1 1

V (16)
dV =F(gT+ p1Vq(t-t1)).
dt

First we solve the homogeneous equation

dV
dt

= Fp1Vq(t - t1 )

u (17)

V =V0
, e Fpi^o-ti)

where V0 = V(t = t0) and t0 is the start of the experiment.
Next, we perform variation of the constant V0:

dV
dt

V (t ) = V0(t ) ■ e FpJ‘-t1) (18)

U
dV"( 7 ’ eWH) + v0 (t) ■ Op10(t - t.) ■ eFpJ(t-t1).dt 0 1 1

By comparing equations (16) and (18) we receive the follo­
wing solution for V0

vo (t) - vo (t0) = dt. (19)

Now, if we want to find the primary function for exp(-
Fp1J(t - t1)) we need the explicit form of this exponent

exp(-OP1.9(i -*,)) = 2o

We notice that this function is continuous. Consequently 
its primary function exists (in the common sense) which is 
also continuous:

Also in this case the volume V(T,t) is continuous.

APPENDIX B

While constructing the model, especially by introducing 
simplifications, the following two questions arise: (a) Whe­
ther the assumption g(t) = const. is valid, and (b) If the pre­
mise about the independence on time of the call wall exten­
sibility coefficient F(t,T) = F(T) is acceptable.

The first question raised can be answered twofold. Fir­
stly, as we notice from the experiment (see Fig. 1) the vo­
lume V increases of the order of about 10% of its initial va­
lue (V0 = 12.5 mm3). It means that the number of water 
(solution) moles filling up the plant cell will also be greater 
proportionally to (approximately) the same magnitude. The 
assumption g(t) = Rn(t)-a(t) = const(t), even though it is 
not exact, holds, especially because the maximum of 10% 
growth occurs only for the optimum temperature. In all re­
maining cases (non-optimal temperatures) this value is 
only of about 5% which is within the very often accepted 
limits of experimental error (5%). Accordingly, the as­
sumption that g(t) = const. is valid (this is also the way we 
put in the role of osmosis into our model) and gives simple 
and intuitive analytical solutions which is also important 
from the applicational point of view. This is, however, the 
main advantage of our model. The simplicity and aesthetics 
of our solutions, especially in case of external perturba­
tions (action of growth regulators: stimulators/inhibitors), 
is in agreement with intuition and reflects the reaction of 
plant cell on external factors.

Whether g(t) = const. is a good approximation one can 
also think of in a different way. Namely, let us admit the ti­
me dependence of water moles in equation P= n(t)RT/V(t). 
Simultaneously we notice that water is almost ideally in­
compressible what means that its density is constant 
n(t)/V(t) = const(t) = n0/V0 (where n0 and V0 denote the ini­
tial values of the number of water moles and of the volume 
of plant cell, respectively). Thus we receive the following 
approximated state equation for water

V0

Since Y is of the same character as P then Y= a0T, a0(t) = 
const. Then we insert the latter expressions into the Loc­
khart equation (1):

j - t.yydt = •
t

J_e-®A(«>) +C
t<t1

t>t..
(21)

1 dV

V dt
= <S Uo a0T

7
(24)

From the continuity condition we receive C = t1 + 1/Fp1. 
Eventually we get the “constant” V0 which we insert into 
Eq. (17) and finally obtain the following result

f V0 + FgTt t < t.

V(t) = [V0e <FpA,-‘1 + FgTt. t > t.. (22)

where we have denoted g0 = n0 R/V0 - a0. Solution for Eq. 
(24) reads

V= V0 exp(F(T)g0Tt) (25)

and is the exponent both in time and temperature; V0 stands 
for the initial cell volume. The exponential function can be 
expanded into the Taylor series which for sufficiently 
small argument yields e1 « 1 + x. Such approximation is
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valid since the experimental evidence support linear depen­
dence of elongation in time (see Fig. 1). Hence one can 
write

exp(F(T)goTt) « 1 + F(T)goTt (26)

to end up with

V= V0(1 + F(T)g0Tt) (27)

Having noticed that a0 = a/V0 and g0 = g/V0 we finally rece­
ive

V= V0 + F(T)gTt (28)

which is, as we see, the result for the model where the 
number of moles is approximately constant in time (and 
consequently the g coefficient). It seems that the above pre­
sented twofold derivation of the assumption g(t) = const. is 
fully justified.

Trying to answer the second question raised at the begin­
ning of the Appendix let us draw our attention to the fact 
that F(T) can not be (in a broad time range) constant in ti­
me since the plant cell do not expand infinitely. In order to 
retain the dynamic equilibrium its elongation must be inhi­
bited and the growth must cease altogether. Thus F(T) 
must eventually diminish in time (damping).
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