
 

 

 

 

 

 

 

 

 
 

 

 

 

Title: A self-adaptive discrete PSO algorithm with Heterogeneous parameter 
values for dynamic TSP 
 
 
Author: Łukasz Strąk, Rafał Skinderowicz, Urszula Boryczka, Arkadiusz 
Nowakowski 

 

Citation style: Strąk Łukasz, Skinderowicz Rafał, Boryczka Urszula, 
Nowakowski Arkadiusz (2019). A self-adaptive discrete PSO algorithm with 
Heterogeneous parameter values for dynamic TSP. "Entropy" (Vol. 21, iss. 8 
(2019), s. 1-21), doi 10.3390/e21080738 
 

https://doi.org/10.3390/e21080738�


entropy

Article

A Self-Adaptive Discrete PSO Algorithm with
Heterogeneous Parameter Values for Dynamic TSP
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* Correspondence: lukasz.strak@us.edu.pl

Received: 12 June 2019; Accepted: 24 July 2019; Published: 27 July 2019
����������
�������

Abstract: This paper presents a discrete particle swarm optimization (DPSO) algorithm with
heterogeneous (non-uniform) parameter values for solving the dynamic traveling salesman problem
(DTSP). The DTSP can be modeled as a sequence of static sub-problems, each of which is an instance
of the TSP. In the proposed DPSO algorithm, the information gathered while solving a sub-problem
is retained in the form of a pheromone matrix and used by the algorithm while solving the next
sub-problem. We present a method for automatically setting the values of the key DPSO parameters
(except for the parameters directly related to the computation time and size of a problem).We show
that the diversity of parameters values has a positive effect on the quality of the generated results.
Furthermore, the population in the proposed algorithm has a higher level of entropy. We compare
the performance of the proposed heterogeneous DPSO with two ant colony optimization (ACO)
algorithms. The proposed algorithm outperforms the base DPSO and is competitive with the ACO.

Keywords: dynamic traveling salesman problem; pheromone; discrete particle swarm optimization;
heterogeneous; homogeneous

1. Introduction

In recent years, considerable attention has been paid to optimization in a dynamically-changing
environment in which the problem being solved is modified periodically or even continuously [1].
This interest is related to the growing practical demand for such solutions. For example, in the problem
of task scheduling in a factory, a change to the production schedule might be required if there is
a malfunction of part of the production line. The optimization algorithms should be able to adapt
rapidly to changes so that the quality of the generated solutions remains acceptable. A problem in
which the input data are conditional upon time is called a dynamic optimization problem (DOP).
The aim of optimization in a DOP is a constant trace and an adaptation to changes, in order to allow
high-quality solutions to be found efficiently [2].

A simple example of a DOP is the dynamic traveling salesman problem (DTSP). This consists
of a sequence of static traveling salesman problem (TSP) instances (sub-problems). Each successive
sub-problem is created on the basis of the previous one. A portion of the sub-problem’s data is
transferred unchanged from the predecessor, while the remaining portion is modified. Figure 1
summarizes this concept.
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Figure 1. An example of a dynamic optimization problem (DOP), the DTSP. A change in the problem
instance may affect both the distances between the cities and the number of cities (vertices). This
figure presents an example of a DTSP that includes a primary sub-problem (I0) and three successive
sub-problems.

The aim is to find an optimal solution to every sub-problem. If all the sub-problems are solved to
optimality, then the resulting sum of the solution (route) lengths is also minimal. Our DTSP benchmark
generator includes the optimal value for every sub-problem; hence, the aim can be expressed in terms
of finding the minimal sum of the differences between the generated solutions and the optima for the
sub-problems. If the value of the sum is zero, then the optimum value is found for every sub-problem.

The particle swarm optimization (PSO) algorithm is an optimization technique created by
Kennedy and Eberhart [3] in 1995. This technique is inspired by the natural behavior of a group
of animals, e.g., a shoal of fish or a flock of birds. Every particle represents one of the possible solutions
to a problem. In the continuous optimization case, the solution is a point in a real-valued space.
The movement of the swarm can be interpreted as searching in the solution space. At the beginning of
execution of the algorithm, the position of each particle is chosen randomly. Then, in each iteration of
the algorithm, the velocities of the particles are calculated (direction of searching) and their positions
updated. This results in a new solution to the problem. The velocity of the particle is influenced by
the best-so-far solution (position) of the swarm and the best-so-far (previous) position of the particle.
This process allows the swarm of particles to learn and move towards the areas of the problem solution
space that contain higher quality solutions. The movement of the swarm in the solution space is
described by the following equations:

~vk+1
i ← ω ·~vk

i

+ ~U(0, φ1)⊗ (
−−−→
pBesti −~xk

i )

+ ~U(0, φ2)⊗ (
−−−→
gBest−~xk

i ) , (1)

~xk+1
i ← ~xk

i +~vk+1
i , (2)

~v, ~x,
−−−→
gBest,

−−−→
pBesti ∈ Rn ,

where i indexes the particles, k is the current iteration, ~vk
i is the velocity of the i-th particle in the k-th

iteration, ~xk
i is the position of the particle equal to one of the solutions of the problem, the function

U(0, φ) takes a uniform random value in the range [0, φ], and ω is an inertia parameter. The variables−−−→
pBesti and

−−−→
gBest denote the best-so-far solutions found by the particle and by the swarm, respectively,

and φ1 and φ2 are cognitive and social parameters, respectively, that scale the influence of
−−−→
pBesti and−−−→

gBest on the position of the next particle.
Initially, the algorithm was created for optimization in a continuous space, but was later adapted

to discrete optimization. In 1997, Kennedy and Eberhart [4] presented the first discrete PSO (DPSO)
algorithm, in which the particle position was a binary vector and the velocity (direction of movement
through the solution space) was the probability of a binary negation of the bits of the particle position.
In 2004, Clerc [5] proposed a new DPSO algorithm and applied it to solve the TSP. In this algorithm,
the particle position was a vector of vertices, while the velocity comprised a list of pairs of vertices,
which changed in the next solution. In 2007, Shi et al. [6] presented an improved DPSO algorithm,
which they used to solve the following TSP instances: eil51, berlin52, st70, eil76, and pr70. In their
algorithm, the particle position is a permutation, and its modification resembles the well-known
crossover found in genetic algorithms. Shi et al. showed that the proposed algorithm is capable
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of solving the generalized TSP, in which the edge lengths do not satisfy the triangle inequality.
The homogeneous and heterogeneous versions of the DPSO algorithm described in the present paper
are based on work by Zhong et al. [7] and on our previous DTSP variant [8]. In the implementation
presented here, the particle position comprises a set of edges connecting TSP cities (nodes) and the
corresponding probabilities of selecting the edges to the next solution (the next position of the particle).
As far as we know, our previous work on applying the DPSO to solving the DTSP was the first
publication on this topic in the literature.

The original PSO algorithm and its discrete versions are homogeneous, i.e., all particles have
the same values of the parameters and hence share the same pattern of moving through a solution
space [4]. However, heterogeneous populations are common in a natural environment [9]. One of the
most important problems with the PSO concerns the balance between exploration and exploitation.
A heterogeneous population allows particles to have various patterns of moving through the solution
space and thus to exhibit different levels of emphasis on the exploitation and exploration of the solution
space. It is possible that some of the parameter values might turn out to be useful at the beginning of
the algorithm runtime, and others in the later stages. In this way, the balance between exploration and
exploitation can be influenced [10,11].

1.1. Self-Adaptivity

To solve hard problems, algorithms like bio-inspired algorithms use different models,
which change their behavior and allow performing specific tasks, like keeping a population diversity,
increasing a search range, etc. Switching a model in order to solve a problem in a changing environment
is called adaptation. Self-adaptivity can, therefore, be defined as the capability of a system to
achieve its goals in a changing environment, by autonomously executing and switching between
models [12]. Adaptivity has been widely studied since the mid-1960s, and several application areas
relating to self-adaptivity have assumed greater importance. Thereafter, the scientific literature on
self-adaptivity has been extensive, mainly over the past 16 years [13]. Self-adaptivity has been studied
from the perspectives of software engineering, systems theory, artificial intelligence, and computer
science, providing theoretical foundations and application fields such as: control engineering, mobile
and autonomous robots, multi-agent systems, fault-tolerant computing, dependable computing,
distributed systems, autonomous computing, self-managing systems, autonomous communications,
adaptable user interfaces, machine learning, economic and financial systems, business and
military strategic planning, sensor networks, pervasive and ubiquitous computing, etc. [13].
Another application is the self-adaptivity of bio-inspired algorithms like:

• evolution algorithms [14],
• differential evolution [15],
• particle swarm optimization [16].

Self-adaptivity from the perspectives of bio-inspired algorithms indicates automatic adjustment of
an algorithm’s control parameters. Control parameters can be of various forms, for example: mutation
rates, recombination probabilities, population size, or selection operators. We have combined particle
swarm optimization with self-adaptation through the implementation of the characteristic sets of
parameter values’ switching mechanism, as described in the Section 5.

1.2. Contributions

Our previous work focused mainly on DPSO with homogeneous (uniform) parameter values [8].
In this paper, we extend our initial work on DPSO in which individual particles may have non-uniform
(varying) values of the parameters [17]. Specifically, our contributions are as follows:

• We propose a method for automatically setting the values of four crucial DPSO parameters.
This method is based on discrete probability distributions defined to diversify the behaviors
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of the particles in the heterogeneous DPSO. The aim of this diversification is to improve the
convergence of the algorithm.

• We perform an analysis of the convergence of the proposed algorithm based on computational
experiments conducted on a set of DTSP instances of varying sizes. We discuss the relationships
between the values of the DPSO parameters and their effect on particle movement through the
problem’s solution search space.

• We study the diversity of the population of particles in the proposed heterogeneous DPSO and
the original approach based on the information entropy calculated in two ways. The former
method considers the edges, which are building blocks of the solutions to the TSP and DTSP.
The latter focuses only on the quality of the solutions

• We compare the efficiency of the proposed heterogeneous DPSO with that of the base DPSO and
two algorithms based on ant colony optimization (ACO). The results show that the proposed
algorithm outperforms the base DPSO and is competitive with the ACO-based algorithms.

The structure of this paper is as follows. Section 2 presents a review of the literature concerning the
DTSP. Section 3 describes the heterogeneous version of PSO. Section 4 gives a brief description of DPSO
with pheromone. Section 5 describes the heterogeneous swarm. Section 6 presents our experimental
results. Finally, Section 7 presents a summary and conclusions.

2. Dynamic Traveling Salesman Problem

The dynamic nature of the DTSP can entail changes in the distances between cities (nodes) and in
the number of cities to be visited [18,19]. Every data transformation can trigger changes in local and
global optima. The distance matrix can be defined as:

D(t) = {dij(t)}n(t)×n(t) , (3)

where t is time, i and j denote vertices, and n is the number of vertices. Most often, it is assumed that
the time is discrete, and hence, the DTSP can be viewed as a series of static TSP instances (Figure 1).
Each sub-problem can be more or less similar to the previous one, depending on the number of changes
and their magnitude. In this paper, we assume that only the distances between the cities are subject to
change, while the number of nodes (vertices) remains constant.

Obviously, each of the DTSP sub-problems can be solved separately using one of the methods
developed for the TSP [20]. Nevertheless, if the differences between consecutive DTSP sub-problems
are small, it is possible that the optimal solutions differ only slightly. In such a case, it is possible to use
the knowledge gathered while solving the previous sub-problem to speed up solving the current one.
A summary of recent research on solving the DTSP that has been presented in the literature is given in
Table 1.

Table 1. Summary of recent papers on solving the DTSP with computational intelligence methods.

Year Authors Algorithm DTSP Variant

2001
Guntsch and
Middendorf [21]

ACO with local and global
reset of the pheromone Addition/removal of vertices

2002 Eyckelhof and Snoek [22]
ACO with various variants of
pheromone matrix update to
maintain diversity

Changes in edge lengths with
time (simulated traffic jam
on a road)

2006 Li et al. [19]
GSInver-over and gene pool
with the α-measure [23]

CHN145 + 1: 145 cities and
one satellite

2010
Mavrovouniotis and
Yang [24]

ACO with immigrants
scheme to increase
population diversity

Coefficients: frequency and
size of changes
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Table 1. Cont.

Year Authors Algorithm DTSP Variant

2011 Simões and Costa [25] CHCalgorithm

A test involving the addition of
changes and their
subsequent withdrawal [26].
In that way, the optima at
the beginning and the end
are the same.

2014 Tinós et al. [27] EA algorithm Random changes in the problem

2014 Zhang and Zhao [28] Hopfield neural network
Simulation of various types of
real random events in a street

2016 Eaton et al. [29] ACO with immigrants scheme
Changes in edge lengths.
Simulated delays of trains.

2016
Mavrovouniotis and
Yang [30] MMAS

Encoding of the problem is
changed, but the optimal solution
remains the same

2017 Mavrovouniotis et al. [31] ACO
Distances between cities are
changed. The problem can be
transformed to an asymmetric one.

2018 Chowdhury et al. [32] ACO

Random DTSP, dynamic changes
occur randomly. Cyclic DTSP,
dynamic changes occur with
a cyclic pattern.

2018 Schmitt et al. [33] MMAS
Acyclic DTSP with changes in
edge lengths with time

2018 Yirui Wang et al. [34] ACO

2018 Yan-Wei Huang et al. [35] MCTS Addition/removal of vertices

3. Heterogeneity

Heterogeneity can be defined as the absence of uniformity (diversity). In computational
intelligence algorithms, it can appear in many ways. A taxonomy of the various levels of heterogeneity
that are possible in the PSO algorithm was given by Montes de Oca et al. [11], who divided
heterogeneity into the following four categories:

1. Neighborhood heterogeneity: This concerns cases in which the size of the neighborhood is different
for every particle, and hence, the virtual topology of connections between particles is not regular.
Some particles can have a wider influence than others on the movement of the swarm.

2. Best-particle heterogeneity: Here, there can be variations in the method of selecting the best
particle, i.e., the particle whose position is used when updating the current velocity and
position. For instance, one particle might update its position following the best particle in
its (small) neighborhood, while the second particle might be fully informed and follow the global
best particle.

3. Heterogeneity of the position update strategy: Here, the particles differ in their patterns of movement
(searching) through the solution space. For example, one group of particles might explore the
solution space, while the other group might conduct a local search by restricting their velocities
or even positions to a certain range. This type of heterogeneity diversifies the population to the
greatest extent, since it provides the greatest flexibility in diversifying particle movement.

4. Heterogeneity of parameter values: Here, each particle or group of particles in the swarm can have
different values of the parameters. For example, some particles might have a large inertia ω and
explore the solution space, whereas other particles might have a small value of ω and perform
the search locally (around the best position found). Although this type of heterogeneity is not as
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flexible as the heterogeneity of the position update strategy, it requires relatively few changes
to the PSO, since only the values of the particle parameters need be set individually. It is this
strategy that we apply in the proposed heterogeneous DPSO algorithm.

Although there is a lack of information in the literature with regard to heterogeneity in the case of
the DPSO algorithm, it is possible to adapt the solutions proposed for standard PSO.

There are several methods of measuring population diversity in the population-based
optimization algorithms. One of them is entropy, which is a formal method often found in the literature.
Essentially, entropy is a measure of disorder or uncertainty. In information theory, it determines the
amount of information within data and is frequently used for analytical purposes. It can also be used
to control the behavior of an algorithm, e.g., as a stopping criterion [36,37] or a signal for resetting
the population if the entropy drops below a threshold value [38]. It can be applied as a criterion for
achieving a specified diversity of the initial population, as well. For example, new solutions can be
created until the entropy exceeds a specific limit, which allows improving the convergence to the
optimal solution [39,40].

The solution proposed in the article uses the last category of heterogeneity of the above
classification: a variety of parameter values.

4. DPSO with Pheromone

A (homogeneous) DPSO algorithm with pheromone was proposed in our previous work [8],
and this section contains only a brief description. Adaptation to a discrete space forces some changes
to the original PSO algorithm designed for solving continuous optimization problems. All variables
(i.e., X and V) become sets of edges instead of real-valued vectors. An edge is represented by a tuple:
〈p, {a, b}〉, where a and b are endpoints and p is the probability of selecting the edge (a, b) to become
part of the constructed solution. The solution to the TSP problem is the set of edges that form the
Hamilton cycle. The equations governing the movement of the particles become:

Vk+1
i = c2 ·U(0, 1) · (gBest \ Xk

i )

∪ c1 ·U(0, 1) · (pBesti \ Xk
i )

∪ω ·Vk
i , (4)

Xk+1
i = ∆τk(Vk+1

i )⊕ c3 ·U(0, 1) · Xk
i , (5)

where i is the particle index, k is the iteration, and U(0, 1) is a uniform random number from the range
[0, 1]. The operators ∪ and \ denote the classical operations on sets, while the multiplication of a set
by a scalar (i.e., c2 ·U(0, 1) · (gBest \ Xk

i )) represents multiplication of the p value of each edge by the
scalar. The ⊕ operator does not exist in classical PSO; its purpose in DPSO is to complete the solution
with missing edges so that it forms a Hamiltonian cycle. After the velocity is calculated, the result
set may not create a Hamiltonian cycle. To create a feasible solution, the algorithm will be adding
edges from nearest neighbor heuristics until a feasible solution is created. The ∆τ function changes the
probability p of the edge using the pheromone matrix familiar from ACO. The pheromone has two
main functions in the algorithm:

1. It alters the probability of edge selection during the solution construction process; i.e., the higher
the value of the pheromone, the greater is the probability of selecting the corresponding edge.
In other words, the pheromone serves as an additional memory of the swarm, allowing it to learn
the structure of high-quality solutions and, potentially, improve the convergence of the algorithm.

2. The pheromone matrix created while solving the current DTSP sub-problem is retained and used
when solving the next sub-problem. This allows knowledge about the previous solution search
space to be transferred with the aim of helping the construction of high-quality solutions to the
current sub-problem. This implicitly assumes that the changes between consecutive sub-problems
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are not very great, so that the high-quality solutions to the current sub-problem share most of
their structure with the high-quality solutions to the previous one.

For example, let Gu be the undirected graph defined as follows:

Vu = {1, 2, 3, 4, 5, 6} , |Eu| =
(

n
2

)
(all two-pair combinations of the set Gu). Let the first particle in the first iteration represent the solution:

X1
0 = {〈1, {1, 4}〉, 〈1, {4, 2}〉, 〈1, {2, 5}〉, 〈1, {5, 3}〉, 〈1, {3, 6}〉, 〈1, {6, 1}〉} ,

V1
0 = {〈1, {2, 5}〉},

gBest = {〈1, {1, 2}〉, 〈1, {2, 3}〉, 〈1, {3, 4}〉, 〈1, {4, 5}〉, 〈1, {5, 6}〉, 〈1, {6, 1}〉} ,

pBest0 = {〈1, {1, 2}〉, 〈1, {2, 3}〉, 〈1, {3, 5}〉, 〈1, {5, 4}〉, 〈1, {4, 6}〉, 〈1, {6, 1}〉} .

The result of applying Equation (4) is:

gBest \ X1
0 = {〈1, {1, 2}〉, 〈1, {2, 3}〉, 〈1, {3, 4}〉, 〈1, {4, 5}〉, 〈1, {5, 6}〉} ,

pBest0 \ X1
0 = {〈1, {1, 2}〉, 〈1, {2, 3}〉, 〈1, {5, 4}〉, 〈1, {4, 6}〉} .

The next velocity of the particle V2
0 after the operation of multiplication by c1 · rand(), c2 · rand(),

or ω · rand() is:

(gBest \ X1
0) ∪ (pBesti \ X1

0) ∪V1
0 = {〈0.3, {1, 2}〉, 〈0.1, {2, 3}〉, 〈0.5, {3, 4}〉, 〈0.6, {4, 5}〉, 〈0.1, {5, 6}〉,

〈0.2, {1, 2}〉, 〈0.9, {2, 3}〉, 〈0.7, {5, 4}〉, 〈0.4, {4, 6}〉} .

The edge from the previous velocity is not added to the sum, because of the rule forbidding
any vertex (node) from occurring more than four times (deg(2) = 5) [7]. Let us assume that
pheromone reinforcement is equal to zero (no influence) and that the random function returns the
values 0.1, 0.7, 0.49, 0.5, 0.9, 0.3, 0.6, 0.55, 0.39. Then, after the filtration stage, the (incomplete) particle
position set is:

X2
0 = {〈0.3, {1, 2}〉, 〈0.5, {3, 4}〉, 〈0.6, {4, 5}〉, 〈0.9, {2, 3}〉, 〈0.7, {5, 4}〉, 〈0.4, {4, 6}〉} .

The next stage is more restrictive. Any edge that creates an incorrect tour is removed from the set.
The edge 〈0.4, {4, 6}〉 is rejected, because deg(4) = 3. The edge 〈0.7, {5, 4}〉 is also rejected, because the
edge with {4, 5} endpoints already exists in the next position. The next incomplete particle position is:

X2
0 = {〈0.3, {1, 2}〉, 〈0.5, {3, 4}〉, 〈0.6, {4, 5}〉, 〈0.9, {2, 3}〉} .

At this stage, the first part of Equation (5) is completed. The operation ⊕ adds to the result the
edge (X2

0) 〈1, {6, 1}〉 chosen from the previous particle position set. To complete the set to form the
Hamiltonian cycle, the nearest-neighbor heuristic is used, and the edge 〈1, {5, 6}〉 is selected. The final
particle position is:

X2
0 = {〈1, {1, 2}〉, 〈1, {2, 3}〉, 〈1, {3, 4}〉, 〈1, {4, 5}〉, 〈1, {5, 6}〉, 〈1, {6, 1}〉} .

Figure 2 presents a visualization of all the primary operations, i.e., the edges from the particle’s
previous position Xk−1

i before the filtration (a), after the filtration (b), and the final particle position (c).
The dashed line marks the edge from Equation (5) and the dotted line the edge from the completion
process (c).
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Figure 2. Example of the calculation of a new particle position in the DPSO, (a) before the filtration, (b)
after the filtration, and (c) the final particle position.

5. Heterogeneous Swarm

The DPSO has four main parameters that influence particle movement through the solution
search space: c1, c2, c3, and ω. To better understand how the parameter values are set in the
proposed heterogeneous DPSO, it is helpful to focus on how the parameters govern the swarm behavior.
Zhong et al. [7] suggested the following ranges of values for the parameters: c1 ∈ [0, 1.5], c2, c3 ∈ [0, 2],
ω ∈ [0, 0.6]. Setting the parameters to small values, i.e., close to the start of the range, forces the
particles to change their positions (edges) frequently, since the probability of selecting the edges
from the current best positions (local and global) is relatively small. Furthermore, in the initial
stage of execution of the algorithm, the pheromone values cannot guide the construction process,
since they are also small. On the other hand, setting the parameters to higher values forces the
solution construction process to become more exploitative, since the constructed solutions resemble
the previously-obtained high-quality solutions. Based on the expertise gathered during our earlier
studies of the DPSO algorithm, we have selected the characteristic sets of the parameter values, which
are shown in Table 2. For each set, we provide a brief description of the corresponding DPSO particle
behavior. Below, we present a more detailed description of the sets, supported by some experimental
data analysis.

Table 2. Characteristic sets of particle parameter values for the DPSO algorithm along with their
influence on particle movement.

No. c1 c2 c3 ω Description

1 0.1 0.1 0.1 0.1 Favors quick changes of position
2 2.0 0.1 0.1 0.1 Emphasis on the information from pBest
3 0.1 2.0 0.1 0.1 Emphasis on the information from gBest
4 0.1 0.1 2.0 0.5 Very slow changes of position
5 0.75 1.0 1.0 0.25 Weak pBest, gBest influence
6 1.25 1.5 1.5 0.5 Stronger pBest, gBest influence
7 1.5 2.0 2.0 0.5 Strong pBest, gBest influence
8 1.75 2.0 2.0 0.75 Very strong pBest, gBest influence

Figure 3 presents the numbers of new edges for Xk−1 and Xk (the previous and current positions).
The blue line indicates the particle parameter values, which often change edges (Setting 1), and the red
line is for more stable particles, with less frequent changes (Setting 4).

The first and fourth sets of parameter values from Table 2 differ in terms of the dynamics of
changes in the number of common edges between the current and previous positions of the particle.
For the small parameter values taken from the first set, the probability of edge selection to the next
position (p) is very small and can only be increased if the corresponding pheromone has a high value.
On the other hand, in the fourth set of parameters, c3 has the highest value from the range. As a result,
the edges from the previous position will be added to the next position of the particle with high
probability. Both characteristics can be clearly seen in Figure 3. The blue line is below the red one,
which means that the position of the particle from the first set has more changed edges.
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Figure 3. Numbers of new (different) edges between Xk−1 and Xk (the previous and current positions)
in the DPSO solving the static kroA200 TSP instance (200 cities). The blue line indicates the particles
with the first set of values from Table 2 (Setting 1), and the red line is for the more “stable” particles for
which the fourth set (Setting 4) of parameter values was used. The remaining parameters were taken
from Table 3. The values were averaged over 30 runs of the algorithm.

Table 3. Values of DPSO-related parameters.

Problem c1 c2 c3 ω SwarmSize Neighborhood

berlin52 0.5 0.5 0.5 0.2 32 7
kroA100 0.5 0.5 0.5 0.5 64 7
kroA200 0.5 0.5 0.5 0.5 80 7

gr202 0.5 0.5 0.5 0.5 101 10
pcb442 0.5 1.5 0.5 0.5 104 15
gr666 0.5 1.0 1.5 0.6 112 30

An analogous comparison can be made for the second and third sets of values shown in Table 2.
Figure 4 shows the average numbers of common edges between the current position of a particle,
Xk, and the best positions, i.e., the particle’s local best pBest and the swarm’s best gBest. For the second
set of parameter values, the number of edges shared with pBest was higher than for the third set.
This was caused by the high c1 value, equal to two, which affected in particular the initial iterations of
the algorithm. After the first 100 iterations, the number began to change as pBest and gBest became
more similar. This is an effect of the high value of the c2 parameter in the third set of parameter values.
The bottom plot in Figure 4 shows the average number of common edges for the sets Xk and gBest.
We can see a growing similarity of the current position Xk to the current best position pBest. This effect
can be observed for both sets of parameter values. The number of common edges was higher for the
third set, since it had the highest possible value of c1.

An analogous comparison, this time for Sets 5–8 from Table 2, is presented in Figure 5. The largest
differences can be observed for the fifth and the sixth sets, and the smallest for the seventh and eighth.
This is due mainly to the small differences between the parameter values, namely ∆c1 = 0.25 and
∆ω = 0.25 (the remaining parameters c2 and c3 have the same value).

Based on the number of times each value of a parameter appears in Table 2, an independent
discrete probability distribution for the parameters can be defined:

1. c1: P(0.1) = 0.4, P(0.75) = 0.15, P(1.5) = 0.3, P(1.75) = 0.15;
2. c2 and c3: P(0.1) = 0.4, P(1) = 0.15, P(1.5) = 0.15, P(2) = 0.3;
3. ω: P(0.1) = 0.4, P(0.25) = 0.2, P(0.5) = 0.4.

This allows the values of the DPSO parameters to be controlled, while also allowing them to be
mixed together; i.e., any combination of the listed values is possible. As a result, we can expect that
both the exploration- and exploitation-oriented behaviors of the particles will be present in a swarm,
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hence increasing the chances of finding high-quality solutions regardless of the “landscape” of the
solution space. This also has the advantage of being more computationally efficient compared with
a completely-random setting (e.g., with uniform probability), since, in the latter case, one would need
a larger number of particles to observe a similar mix of characteristic particle behaviors.
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Figure 4. Numbers of common edges between Xk and pBest (top) and Xk and gBest (bottom) for the
second and third sets of characteristic parameter values (Table 2). The DPSO algorithm was run for the
static kroA200 TSP instance (200 cities). The remaining parameters were taken from Table 3. The values
were averaged over 30 runs of the algorithm.

0
20
40
60
80

100
120
140
160
180
200

0 100 200 300 400 500 600

C
om

m
on

ed
ge

s

Iterations

Settings set 5
Settings set 6
Settings set 7
Settings set 8

Figure 5. Total numbers of common edges between the current position of the particle, Xk, and pBest,
and between Xk and gBest for the DPSO solving the kroA200 TSP instance (200 cities) with the
parameters given by Sets 5–8 in Table 2. The remaining parameters were taken from Table 3. The values
were averaged over 30 runs of the algorithm.
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6. Experimental Results

This section is divided into three parts. In the first, we focus on the effect of the parameter values
on the performance of individual particles in the heterogeneous DPSO algorithm. In the second,
we conduct a comparison between the homogeneous DPSO, the proposed heterogeneous DPSO,
and two well-known ACO algorithms, namely the ant colony system (ACS) and population-based
ACO (PACO). The third part presents a study of the population entropy and its influence on the
algorithm convergence.

6.1. Convergence Analysis for Various Sets of Parameters

To assess the performance of individual particles in a swarm of the heterogeneous DPSO,
we counted the number of times the particle improved the current global best solution gBest.
The parameter values were set randomly according to the discrete probability distribution described
in Section 5, independently of the other parameters values. The gr666 TSP instance (666 cities) was
used as a test bed.

Table 4 shows the sets of parameter values for which the particles were able to improve the
global best solution most frequently. As can be seen, the top two are the sets in which the parameters
c1, c2, c3, and ω are relatively small. These values favor exploratory behavior of the DPSO particles,
and hence, the particles are more likely to find an improved solution, especially in the initial phases
of algorithm execution. The set for which the behavior should be more stable and less exploratory,
i.e., with c2 = 2, turned up as third in the ranking. The relatively large difference of 53 between the
second and third positions is also noteworthy. The lower rankings of the particles exhibiting more
exploitative behavior confirmed that they could be more important in the later stages of algorithm
execution, in which smaller changes to the solution structure are preferred.

Table 4. Ranking of parameter values after 6144 iterations for which the particles in the heterogeneous
DPSO were able to improve the global best solution the greatest number of times. The results are
accumulated over 30 executions for the gr666 TSP instance.

Rank Parameters Number of gBest Improvements
c1 c2 c3 ω

1 0.1 0.1 0.1 0.5 113
2 0.1 0.1 0.1 0.1 102
3 0.1 2 0.1 0.1 49
4 0.1 2 2 0.5 46
5 0.1 2 2 0.1 42
6 0.1 1.5 0.1 0.5 39
7 0.1 1 0.1 0.1 38
8 0.1 1 0.1 0.25 34
9 0.75 2 2 0.25 27

10 0.1 1 2 0.1 26
11 0.1 2 0.1 0.25 24
12 0.75 2 2 0.1 22
13 1.5 1.5 2 0.5 21
14 1.5 2 0.1 0.1 21
15 1.5 2 0.1 0.25 20

To clarify this distinction, we analyzed which values of the parameters proved to be working
best during subsequent phases of algorithm execution. The phases were defined by dividing the
total number of iterations into equal parts (intervals). For each interval, we ranked the sets of
parameter values based on the number of times they led to a new global best solution within the
respective interval. Table 5 presents the results, while Figure 6 shows the speed of convergence towards
an optimum in each phase. As can be seen, different sets of parameter values dominate subsequent
phases (intervals) of the computations. In the first interval (0–1250), the sets with small parameter
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values are predominant, which indicates that rapid changes in the particle solutions are beneficial.
In the third interval (2500–3750), the sets of parameter values are mixed, i.e., they contain both small
and high values. This can be interpreted as a sign that the exploration of the solution space slows
down and, more importantly, becomes exploitation. In the last interval (5000–6144), the best particles
have relatively high parameter values, which, combined with stronger pheromone reinforcement,
causes mainly small changes to the particle positions.

Table 5. Ranking of parameter values for which the particles in the heterogeneous DPSO were able to
improve the global best solution the greatest number of times within five designed subsequent phases
of the computations. The results are accumulated over 30 executions for the gr666 TSP instance.

Iterations Parameters Number of gBest Improvements
c1 c2 c3 ω

0–1250

0.1 0.1 0.1 0.1 94
0.1 0.1 0.1 0.5 93
0.1 2 2 0.5 38
0.1 2 0.1 0.1 38
0.1 2 2 0.1 32

1250–2500

0.75 2 2 0.25 12
1.5 2 0.1 0.1 10
0.1 2 0.1 0.1 10
0.1 1.5 0.1 0.5 9
0.1 1 2 0.1 8

2500–3750

0.1 0.1 0.1 0.5 10
1.5 1.5 2 0.5 4
1.5 2 0.1 0.25 4

0.75 2 2 0.25 3
0.1 1 2 0.1 3

3750–5000

0.1 1 0.1 0.1 2
0.1 1 2 0.1 2

0.75 0.1 2 0.5 2
1.5 0.1 2 0.1 2
1.5 2 1.5 0.1 2

5000–6144

1.75 2 1 0.5 3
1.5 2 1.5 0.1 2

1.75 0.1 2 0.5 2
0.1 1.5 0.1 0.5 2
1.5 1 1 0.1 1

3.1
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Figure 6. Chart showing convergence with the optimum of the heterogeneous version of the algorithm
for the gr666 problem.
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6.2. Comparative Study

To evaluate the performance of the proposed DPSO algorithm, we compared it with the
homogeneous version of the DPSO and with ACS and PACO, which are among the best-performing
metaheuristics for the TSP and DTSP problems. The DTSP test instances were generated based on the
static TSP instances from the well-known TSPLIB repository. The test data can be found in a public
repository (https://github.com/lukaszstrak/DTSP-repository). Algorithm 1 presents an outline of the
general test procedure used to solve the DPSO with the algorithms mentioned.

Algorithm 1 Outline of the procedure for solving the DTSP.
Load the static TSP instance . The original TSP instance becomes the first DTSP sub-problem
Initialize the algorithm-related data
while Stop criterion is not met do

sub-problem-related initialization . Create swarm, neighborhood, etc.
Solve the current sub-problem . Solve with DPSO, ACO, etc.
Modify the current sub-problem to obtain the next one

end while

To make the comparison fair, all algorithms were solving the same DTSP instances,
i.e., starting from the same static TSP and including the same DTSP-related changes to the positions of
the cities. Each DTSP instance comprised 11 static TSP sub-problems, namely the original problem from
TSPLIB and ten sub-problems resulting from random changes to the position of the cities. The gr666
problem was an exception, since it included only one sub-problem (the original TSPLIB problem).
Figure 7 shows an example of a DTSP instance consisting of two static TSP sub-problems. The optimum
solutions for each of the DTSP sub-problems were obtained using the well-known Concorde solver by
Applegate et al. [41]. The number of changes in the city position between successive sub-problems was
set to 3% in all DTSP cases.

Figure 7. Visualization of the optimum routes for the static kroA100 TSP instance (left side) and the
DTSP instance after a random relocation of some cities (right side). The edges differentiating the new
optimum from the previous are marked in red.

Table 6 shows the parameter values of the two DPSO variants. The numbers of iterations used are
shown alongside the results in Table 7. The size of the swarm and the size of the particle neighborhood
were determined from preliminary computations, keeping in mind that both parameters strongly
influence the computation time and the quality of the solutions. A smaller neighborhood limits the
solution space and speeds up computation. However, too low a value could hamper finding the
optimum. The parameters (c1,c2, c3, ω, SwarmSize, and neighborhood) for the homogeneous version of
the DPSO were chosen based on preliminary computations and our previous work on DPSO.

The ACS and PACO parameters were set as follows: number of ants = 10;
number of iterations = b0.1 · pevc; β = 3; local and global pheromone evaporation coefficients

https://github.com/lukaszstrak/DTSP-repository
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α = 0.1 and ρ = 0.1, respectively; and q0 = (n− 10)/n, where n is the size of the problem. For the
PACO algorithm, q0 = 0.8 was used, and the age-based strategy for updating the solution archive (of
size five) was used. The values of the parameters were set based on preliminary computations and the
suggestions by Cáceres el al. [42], in which the ACO was tested with a small computation budget.

All the considered algorithms, including DPSO and ACO, were allowed to construct and evaluate
exactly the same number of solutions (pev) to a problem. For example, the DPSO algorithm with
104 iterations and a swarm of size 32 constructed a total of pev = 104 · 32 = 3328 solutions.
All algorithms were implemented in the C# language and run on a computer with an Intel i7 3.2-GHz
CPU. All computations were repeated 30 times, and the results were averaged.

Table 6. Values of DPSO-related parameters.

Homogeneous DPSO Heterogeneous DPSO Common Parameters

Problem c1 c2 c3 ω Problem c1 c2 c3 ω SwarmSize Neighborhood

berlin52 0.5 0.5 0.5 0.2 berlin52
kroA100
kroA200

gr202
pcb442,
gr666

Chosen randomly
as described in Section 5

32 7
kroA100 0.5 0.5 0.5 0.5 64 7
kroA200 0.5 0.5 0.5 0.5 80 7

gr202 0.5 0.5 0.5 0.5 101 10
pcb442 0.5 1.5 0.5 0.5 104 15
gr666 0.5 1.0 1.5 0.6 112 30

Table 7. Comparison of results for the homo and heterogeneous DPSO variants and the ACO algorithms
obtained for four DTSP (berlin52, . . ., pcb442) and one TSP (gr666) instances. “G” denotes the distance
to the optimum and “D” the average standard deviation of this distance. The numbers of iterations
are given per sub-problem. The best solutions found by the DPSO algorithms are marked in boldface.
All computations were repeated 30 times. PACO, population-based ACO.

Problem Iterations

DPSO Algorithms Counterparts

Homogeneous Heterogeneous ACS PACO

T (s) G (%) D (%) T (s) G (%) D (%) G (%) G (%)

berlin52 104 0.13 0.15 0.32 0.13 0.13 0.15 0.96 0.96
berlin52 416 0.3 0.01 0.04 0.28 0.01 0.05 0.5 0.5
berlin52 1664 0.98 0 0 0.89 0.01 0.05 0.46 0.46

kroA100 100 1.03 5.44 2.47 0.86 2.68 1.4 1.8 2.97
kroA100 400 1.63 1.28 1.02 1.27 1.05 0.81 1.31 2.13
kroA100 1600 4.11 0.64 0.69 3.38 0.78 0.77 0.82 1.36

kroA200 160 2.49 15.63 2.77 2.18 5.14 1.84 2.41 3.33
kroA200 640 5.13 4.45 1.62 4.46 2.89 1.09 1.62 2.71
kroA200 2560 15.6 1.62 0.81 13.18 2.02 0.8 1.47 2.28

gr202 128 8.82 13.75 2.06 8.17 4.19 1.2 6.26 4.91
gr202 512 11.54 6.81 2.11 10.88 1.97 0.66 4.88 3.9
gr202 2048 23.01 1.52 0.6 21.98 1.53 0.55 3.93 3.34

pcb442 272 11.22 29.31 5.33 11.16 6.73 1.68 6.18 4.44
pcb442 1088 28.52 13.41 5 30.69 2.87 0.89 4.87 3.56
pcb442 4352 102.78 3.13 1.52 108.25 1.92 0.79 3.91 3.3

gr666 384 85.19 10.84 1.52 91.83 9.58 0.86 9.18 5.89
gr666 768 98.36 7.37 1.0 115.19 6.88 0.78 7.46 4.77
gr666 1536 124.84 5.62 0.84 163.48 5.33 0.57 6.09 4.51
gr666 3072 180.66 4.88 0.63 259 4.52 0.88 5.67 4.14
gr666 6144 296.83 3.99 0.77 453.83 3.8 0.78 4.92 4.21
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For the smallest DTSP instance (berlin52), both DPSO versions generated results that were of
similar quality and, at the same time, better than those of the ACO algorithms. For the larger instances,
the heterogeneous DPSO showed a clear advantage over the homogeneous DPSO. The biggest
differences were observed for the pcb442 and gr202 instances, for which the heterogeneous version
generated higher quality solutions, especially if the number of iterations was low. This confirms that
the heterogeneity of the parameter values resulted in a broader exploration of the solution search space.
At the same time, the heterogeneous DPSO was also more consistent in finding high-quality solutions,
which was manifested in the smaller average standard deviation compared with the homogeneous
version. When the number of iterations grew, the advantage of the heterogeneous DPSO became
less, confirming that, in the later stages of the computations, the exploitative nature of the algorithm
became more important. Generally, both DPSO versions benefited from a larger number of iterations.
Compared with the ACO algorithms, the results of the DPSO were worse in four out of six cases for
the lowest number of iterations. However, for the largest number of iterations allowed, the DPSO lost
only once (for the kroA200 DTSP instance) even though the ACO algorithms also benefited from the
larger computation time. This suggests that, compared with the ACO algorithms, the DPSO variants
converged more rapidly, although their search through the solution space was more explorative at the
beginning. Increasing the number of iterations past a certain point allowed DPSO to outperform ACS
and PACO in almost all cases.

6.3. Entropy Study

Maintaining a diversified population during the execution of the DPSO algorithm is a desired
feature that may reduce the chance of getting stuck in local minima. In this section, we study
the diversity of the population in the proposed self-adaptive DPSO and the original DPSO
approach. In order to estimate the diversification, we used the entropy, which is measured in
two ways. In the first way, the measurement concerns the edges comprising the solutions from
the population (particles). Specifically, we defined a discrete probability distribution by counting
edges’ occurrences in the population. For example, in the two following solutions (particles’
positions): {{1, 2},{2, 3},{3, 4},{4, 1}}, and {{1, 2},{2, 4},{4, 3},{3, 1}}, the edges {1, 2} and {3, 4}
appear two times and {2, 3}, {1, 4}, {2, 4}, and {1, 3} appear once; hence, the entropy equals:
H = −

(
2 · 2/2 log2(2/2) + 4 · 1/2 log2(1/2)

)
= 2. The second measure of the entropy was defined

analogously, but the length of the solutions was used in the place of the edges. Figure 8 shows the
population entropy, which counts the number of different edges for the proposed heterogeneous
DPSO and the original homogeneous DPSO. The results were obtained for 30 runs of the algorithms,
which solved the gr666 TSP problem instance. As can be seen, the entropy for the homogeneous DPSO
was relatively large during the first few hundred iterations, but quickly fell to much lower levels.
On the contrary, the entropy in the heterogeneous DPSO dropped faster during the initial stage of
the algorithm execution, but after the first 2000 iterations, it consistently remained higher than in the
homogeneous DPSO. The more balanced exploration to exploitation ratio resulting from the diversity
of the particles’ behaviors can explain the higher levels of the entropy for the heterogeneous DPSO.

Figure 9 presents the box-plot of the entropy levels’ measurements based on the lengths of the
solutions corresponding to the DPSO population. The results were consistent with the previous entropy
observations, i.e., the solutions generated by the homogeneous DPSO were less diverse in terms of the
tours lengths than the solutions obtained for the heterogeneous DPSO.

Similar results were obtained for the rat783 TSP instance (Figurea A1 and A2) and the pcb1173 TSP
problem instance (Figures A3 and A4), which can be found in the Appendix section. The parameters
values were used the same as for the gr666 TSP problem instance (Table 6).

Summarizing, the presented study of the entropy confirmed the efficiency of the proposed method
in enforcing the diversity of the behaviors of the particles in the DPSO. This was especially important
in the later stages of the algorithm execution as the more diverse population increased the probability
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of escaping from local minima and often resulted in a higher quality of the final solutions, as confirmed
by the results summarized in Table 7.
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Figure 8. The comparison of the entropy of the homogeneous and the proposed heterogeneous DPSO
for the gr666 TSP problem instance. The entropy was calculated based on the numbers of occurrences
of the edges comprising the particles’ solutions. The plot shows the spread of the entropy levels,
which were measured in 30 executions of the algorithms.
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Figure 9. The comparison of the entropy, which was calculated based on the solution length in
the populations of the homogeneous DPSO and the proposed heterogeneous DPSO for the gr666
TSP problem instance. The plot shows the spread of the entropy levels, which were measured in
30 executions of the algorithms.

7. Conclusions

We have proposed a heterogeneous DPSO algorithm for solving the DTSP. In this algorithm,
each particle can have different values of the crucial DPSO parameters c1, c2, c3, and ω. These values
were chosen randomly according to the discrete probability distribution defined so that different
behaviors of the DPSO particles could be obtained. Computational experiments conducted on a set of
DTSP instances showed that it is beneficial if some particles explore the solution space while others
are more exploitative, i.e., narrow their search by constructing solutions similar to the high-quality
solutions found so far. The diversity of the parameter values in the heterogeneous DPSO produced
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a higher entropy of the population of the generated solutions in comparison with the homogeneous
variant of the algorithm. As a consequence, the heterogeneous DPSO algorithm improved the quality
of the results obtained compared with the homogeneous version. Moreover, the algorithm was easier
to use, since fewer parameters had to be set manually, which is important because choosing the right
values of the parameters can be especially difficult for the DTSP. It is also worth emphasizing that both
versions of the DPSO algorithm were comparable to the proven ACS and PACO metaheuristics in
terms of solution quality. In fact, heterogeneous DPSO was able to generate solutions of better quality
than both of the ACO-based algorithms in most cases, while also exhibiting more rapid convergence if
the computation time was extended.

In the future, we plan to test different types of heterogeneity in addition to the parameter diversity
considered here.
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The following abbreviations are used in this paper:

ACO ant colony optimization
DPSO discrete particle swarm optimization
DTSP dynamic traveling salesman problem
PACO population ant colony optimization
PSO particle swarm optimization
TSP traveling salesman problem

Appendix A. The Entropy Study for the Other TSP Instances
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Figure A1. The comparison of the entropy of the homogeneous and the proposed heterogeneous DPSO
for the rat783 TSP problem instance. The entropy was calculated based on the numbers of occurrences
of the edges comprising the particles’ solutions. The plot shows the spread of the entropy levels,
which were measured in 30 executions of the algorithms.
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Figure A2. The comparison of the entropy, which was calculated based on the solution lengths in
the populations of the homogeneous DPSO and the proposed heterogeneous DPSO for the rat783
TSP problem instance. The plot shows the spread of the entropy levels, which were measured in
30 executions of the algorithms.
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Figure A3. The comparison of the entropy of the homogeneous and the proposed heterogeneous DPSO
for the pcb1173 TSP problem instance. The entropy was calculated based on the numbers of occurrences
of the edges comprising the particles’ solutions. The plot shows the spread of the entropy levels,
which were measured in 30 executions of the algorithms.
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Figure A4. The comparison of the entropy, which was calculated based on the solutions lengths in
the populations of the homogeneous DPSO and the proposed heterogeneous DPSO for the pcb1173
TSP problem instance. The plot shows the spread of the entropy levels, which were measured in
30 executions of the algorithms.
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