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ABSTRACT
In this study we propose a simple mathematical model based on the equilibrium equation for the materials de­

formed elastically. Owing to the turgor pressure of the cells, the peripheral walls of the outer tissue are under ten­
sion, while the extensible inner tissue is under compression. This well known properties of growing multicellular 
plant organs can be derived from the equation for equilibrium. The analytic solutions may serve as a good starting 
point for modeling the growth of a single plant cell or an organ.

KEY WORDS: equilibrium equation, growing plant cell/organ, tissue stresses.

INTRODUCTION

The notion of growth tensors in developing plant organs 
has been known for a long time (see Kutschera 1989 for 
a review). The mathematical description for such systems 
has been successfully applied to apical meristems where 
the proliferating cells produce tissue stresses. The newly 
formed stresses influence the structure of the growing 
organ and, in particular, the principal directions of growth; 
also enforces the natural coordinate system which manage 
the further development of the organ (Hejnowicz et al. 
1984; Hejnowicz 1984). A different situation one observes 
for elongating plant organs, such as coleoptiles in young 
grasses or elongation zones in roots, where cells division 
takes place very rarely. Various stresses occur because of 
different properties of cell walls in the organ growing due 
to the water uptake driven by the gradient in water poten­
tial, Kutschera 2000. In particular, walls in the outer tissu­
es are more rigid and thick, while inner tissues are elastic 
and thin walled. Thus, in an elongating plant organ, the ou­
ter tissue in under tension and the inner one - under com­
pression (Kutschera 1989, 1995; Hejnowicz and Sievers 
1995). The distribution of the tissue stresses as well as de­
formation of the particular tissue layers can be found using 
one of the equilibrium equations for deformed materials. In 
theory of elasticity, among commonly used constitutive 
equations (describing mathematical relations between 
stress and strain, or movement of a body), equations for 
equilibrium play a significant role in solving the problem 

of finding the deformation of the bulk which undergoes an 
external action (Landau and Lifszyc 1993; Atkin and Fox 
2005). The equilibrium equation may be derived for mate­
rials deformed elastically or non-elastically. In the first ca­
se, the displacement vector a is time-independent, in 
contrary to the second case. In this article we focus on the 
elastic properties in order to solve the equation using ana­
lytic methods. Such approach may be considered as a first 
step towards further development of the model where the 
numerical calculations may be unavoidable.

MODEL

Assuming no external volumetric force (like gravity) ac­
ting on the body, the equilibrium equation for the displace­
ment vector U takes on the form

(1) 2(l-v)V(Vw)-(l-2v)Vx(Vxw)=0,

where V (nabla) is a differential operator, n - Poisson 
coefficient. Eq. (1) can be analytically solved when the 
problem exhibits a high degree of symmetry, i.e. cylindri­
cal or spherical one. A biological argument leads us to 
consider the cylindrical symmetry, since elongating cells 
or organs often have such ashape (e.g. internode cell of al­
gae Nitellopsis obtusa L., or coleoptiles of Graminae). 
Now, we wish to find an appropriate model reflecting elon­
gation of (a) asingle plant cell and (b) plant organ.
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In cylindrical coordinate system vector operators grad, 
div and curl become

(true for arbitrary scalar or vector fields A and I , re­
spectively) and the problem significantly complicates. Ho­
wever, if we assume that the displacement field

has magnitude depending only on the distance r, then Eq. 
(1) becomes (through Eq. (2))

(3) U
b ur =ar + — 
r

Here we propose a model for an elongating plant cell as 
a hollow cylinder which can be thin or thick (in analogy to 
thin or thick cell wall, respectively). The cylinder is im­
mersed in a medium (with pressure pa), and is filled by 
a homogeneous fluid which plays a role of cell sap (with 
pressure P-Y, where Y - yield threshold). Elastic properties 
of the cylinder (cell wall) are represented by two physical 
quantities: Young's modulus e and Poisson coefficient n.

For an elongating plant organ, in turn, it seems that a fil­
led cylinder (elastic core) covered by a thin layer of quite 
rigid material can be a good analytic model. The core is an 
analogue to the inner tissue of the organ, while the layer is 
an equivalent of the outer tissue. In elongating organs, the 
inner tissue is an assembly of cells with thin elastic walls, 
and the outer tissue is composed mainly of epidermal cells 
which have thick and rigid walls. In our model, these pro­
perties are reflected by different Young's moduli and Pois­
son coefficients (e1, n1 for the core, e2, n2 for the overlay). 
The question is whether such simple models can reflect 
stresses in the cell wall in (a) a single plant cell or apoplast 
in (b) plant organ during growth. This interesting problem 
is discussed in the last section.

SOLUTIONS

For the model of an elongating plant cell the solution is 
ur(r)=ar+b/r with two parameters a and b determined from 
the boundary conditions, which are expressed for the stress 
tensor {s}ij:

• srr = -pa for r = Ri (i=1,2 depending on whether we are 
dealing with thin or thick cylinder, R2>R1)

• srr = -(P-Y) for r = R0 (the inner radius is equal in both 
cases),

see Fig. 1. Now, because in considered models we take 
into account only relatively small elastic deformations, the 

stress {s}ij and strain {u}ij tensors are related by the Hoo­
ke's law. Beneath we present only the expression for srr

(4)

Because of the high degree of symmetry u = («,. (r),0.0) 
and the diagonal elements of the strain tensor are

dnr b u, bI?) " J I . :: <1.
dr r r r

Furthermore, all off-diagonal elements vanish. Then, the 
rr and ff elements of the stress tensor {s}ij have the form 
as follows

a =------- --------fa-(l-2v)-^-l
" (l + v)(l-2v)l ' r2J

(6) / b\=~.—V1 - g+(l-2v)-Tl
’ (l + v)(l-2v)\ r-J

These equations have been used to determine the para­
meters a and b, or - in the second model of plant organ - 
a1, a2 and b2. After some calculations one can obtain the 
following expressions for a and b:

THIN CELL WALL THICK CELL WALL

MODELS OF A SINGLE CELL

Fig. 1. Models for elongating (a) plant cell (with thin or thick elastic cell 
wall) and (b) plant organ: elastic interior (Poisson coefficient n1 < 0.5, 
Young's modulus e1 ~ 0.1) covered by a rigid layer (n2 << n1, e2 ~ 1).
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For the model of an elongating plant organ the solution is 
more complicated:

u. =(a,r,O,O) for/•</?, (within the core)
(8)" = t[w2 = (a2r + ft,/r, 0,0) forRt<r<R2 (in theoutlay)

and has three parameters which can be found from asin­
gle boundary condition and two continuity conditions:

• srr = p for r = R2

. lima,r = limorr <=>o”>(r = R.)=a,'T;)(r = R.) 
r-»Rf r-»R|’

The latter two conditions need a comment. The assump­
tion that the displacement vector has to be continuous is 
natural - during growth the organ shouldn't tear. Radial 
element of the stress tensor srr should also be continuous, 
because the discontinuity would affect the appearance of 
some force acting on the surface r = R1 causing attraction 
or repulsion between the core and the outlay. We believe 
that such situation is not the case here - in the growing 
organ such dislocations and additional pressure in the inter­
face do not occur. The above listed conditions generate 
expressions for a1, a2 and b2 coefficients and can be found 
in the Appendix.

RESULTS

In both cases, (a) and (b), we have calculated radial coor­
dinate ur(r) of the displacement vector, also radial srr and 
angular sff elements of the stress tensor {s}ij, both depen­
dent only on the radial coordinate r. We put the structural 
R0, R1, R2, material parameters n, e, n1, n2, e1, e2 and me­
dium parameters pa, p, P-Y, as follows:

(a) R0 = 1, R1 = 1.375, R2 = 1.5, n = 0.1 and e = 1 (quite 
elastic material)

(b) R1 = 2 and R2 = 2.25, n1 = 0.4 and e1 = 0.1 (very ela­
stic material - physically similar to rubber) and n2 = 0.01 
and e1 = 3 (quite rigid material). In all cases the radius is 
given in [pm], the Young's modulus in [103 MPa] and the 
Poison coefficient - dimensionless.

The pressure P-Y has been given as 0.3 MPa (as in typi­
cal elongating plant cell), pa = 0.1 MPa and p= 0.2 MPa.

In Fig. 1 we have visualized both models for elongating 
(a) plant cell and (b) organ. The main conclusion from the 
results presented in Figs 2-7 is drastic lowering of the de­
formation when thickening the cylinder's wall in case (a) 
or - when covering the elastic core by a rigid layer in (b). 
The radial and angular elements of the stress tensor, srr and 
sff, have been presented in Figs 5-6, respectively. In Fig. 7 
one can see that the presence of the outer layer causes de­
crease of srr within the whole cylinder, however, in the ela­
stic core srr remains constant, while in the outlay it increa­
ses up to p (left box). Different response has been obtained 
for the angular element sff, namely an abrupt discontinuity

Fig. 2. Radial coordinate u(r) of the displacement vector U =(wr,0,0) ob­
tained via theoretical calculations from the equilibrium equation. The left 
figure presents ur dependence on r in two cases of a hollow thin (dashed 
line) or thick cylinder (solid line). The right figure presents ur(r) in the fil­
led elastic cylinder covered by athin layer of rigid material (the model of 
an elongating organ). As a reference aplot of “bare” elastic organ has be­
en added (solid line).

Fig. 3. Visualization (in aform of parametric 3D plot obtained for angles 
0 < f< p/2) of the single cell analytic model. The figure presents the ra­
dial coordinate of the displacement vector |7 ; thin cell wall - upper plot, 
thick cell wall - lower plot.

at r = R1 occurs. In the elastic core sffis lowered with re­
spect to the uncovered “bare” core (indicated in Fig. 7 by 
the solid line), but in the outlay sff is much greater (right 
box). Both results presented in Fig. 7 we may refer to the 
compression in the inner tissue and tension in the outer tis­
sue (see Kutschera 1989, 2000).

DISCUSSION

The aim of the present study was to find the distribution 
of the tissue stresses and deformation of elongating plant 
cells and organs using simple mathematical formulae. The 
equilibrium equation for deformed bodies is undoubtedly
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Fig. 4. Visualization (in a form of parametric 3D plot obtained for angles 
0 < f< p/2) of the elongating organ model. The figure presents the radial 
coordinate ur; homogeneous “bare” elastic material - upper plot, elastic 
material covered by athin rigid layer - lower plot.

Fig. 5. The diagonal rr element of the stress tensor {s}ij as a function of 
radius r and angle f - 3D visualization of the model for an elongating 
organ.

a good candidate, as it has been derived from principle 
laws (energy conservation law and continuity equation) 
and as such is universal. In systems with high degree of 
symmetry, the equation (for bodies deformed elastically) 
can be solved analytically, and solutions are easy to inter­
pret. Nonetheless, the question of its appropriateness still 
remains. For an elongating plant cell, the solution is exact, 
if we do not take into account other shapes of the cell than 
cylindrical, and treat the cell wall as a homogeneous struc­
ture. However, an elongating organ is a multicellular orga­
nism, so the model is satisfactory, if we are interesting in 
general and qualitative description. Such description is also 
simplified as we divide the organ only into two compart­
ments: outer and inner tissue. Both are homogeneous, but 
possess different mechanical properties. Further develop­
ment should account for the multicellularity, i.e. the more 
precise model should consider more complicated boundary 
conditions. Especially, the elements of the deformation and 
stress tensors depend on all spatial coordinates: r, f, and z.

Fig. 6. The diagonal ff element of the stress tensor {s}ij as a function of 
radius r and angle f - 3D visualization of the model for an elongating 
organ.

Fig. 7. Plot of the calculated srr and sff versus radius r for the covered 
cylinder. The solid line represents the pressure within the “bare” cylinder.
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Moreover, wishing to find both elastic and plastic proper­
ties of the growing organ one should use the equilibrium 
equation for bodies deformed visco-elastically. It means 
that since vector i,' depends also on time, the problem 
complicates and the system may need to be solved using 
numerical methods.

APPENDIX

After some tedious calculations the expressions for a1, a2 
and b2 read:
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