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Chapter 10

Root Phenotyping Pipeline for Cereal Plants

Michal Slota, Miroslaw Maluszynski, and Iwona Szarejko

Abstract The proposed system for the phenotypic analysis of root traits that is

presented here enables the precise description of the root growth kinetics of cereal

plants. The designed pipeline is composed of a drip irrigation system to supplement

plants with a medium, a high-resolution root system scanning facility and a method

for comprehensive image analysis. The system enables low-effort, accurate and

highly repeatable analysis of features of the root system of cereal seedlings and

young plants until the early tillering stage. This system employs an automatic drip

irrigation line, which is controlled remotely by a programmable logic controller

(PLC). The PLC adapter used facilitates the automated control of all system

modules, thus allowing the rate of the medium flow to be adjusted for the supple-

mentation of plants. The system employs measuring sensors for the continuous

monitoring of the parameters of the culture medium. This continuous sensing of

medium parameters can be applicable for mineral nutrition studies and abiotic

stress response testing. The installed drip lines are injected into transparent acrylic

tubes (500 mm high, 32/30 mm in outer and inner diameter, with a circular opening

in the bottom of 3 mm in diameter) that are filled with glass beads. The acrylic tubes

are placed in opaque cover tubes that permit the non-destructive observation of the

growth of the root system. Enhanced imaging quality contributes to an increase in

the precision of the results that are obtained in the course of the analysis of root

parameters using specialised root scanners coupled with the WinRHIZO system.

This novel phenotyping pipeline permits noninvasive observation of root system

growth adjusted for the subsequent root image acquisition with a reduced back-

ground noise. The method combines automated control of plant growth conditions

with good imaging quality and high replicability of growth parameters.
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10.1 Introduction

10.1.1 Issue of Root Phenotyping

The analysis of root system growth and development remains a challenge in the

area of plant phenotyping. Classical root phenotyping approaches in the field are

extremely laborious and require a considerable effort to properly characterise the

root system architecture under natural conditions (B€ohm 1979). Root systems of

field-grown plants form extensive networks in the soil, which can hinder their

extraction and proper observation (Zhu et al. 2011). Excavation techniques, includ-

ing soil cores and soil profiles, must be applied to study root systems under such

conditions (Prasanna et al. 2013). By contrast, root system studies carried out under

greenhouse or growth chamber conditions offer a more homogeneous experimental

setting due to the ability to better control the environmental variables. Nonetheless,

greenhouse-based assays of root phenotyping still remain time-consuming and

labour-intensive when a soil substrate is applied for plant growth. Soil-based root

phenotyping experiments are extremely limited by the difficulty of observing root

growth and development without the disruption of the surrounding soil core

(Menon et al. 2007). Moreover, the rooting volume of plants growing in pots of

varying sizes significantly influences the calculated root system volume (Poorter

et al. 2012). Therefore, multiple experimental setups for the in vitro screening of

plant root traits have been developed. To facilitate the visualization of root growth,

plants can be grown in hydroponic cultures, on surfaces of agar or paper or in clear

gel media in transparent containers (Zhu et al. 2011). Most of these methods are

restricted to relatively young plants, which may not directly correlate with the

architecture of the fully developed root system (Zhu et al. 2011). The application of

in vitro assays in plant phenotyping can also lack the capability of imitating the

complex natural conditions and can frequently cause stress itself. Root screening

assays that involve gel media tend to expose roots to light and may cause hypoxia

(Zhu et al. 2011). On the other hand, much progress has recently been made in the

investigations of the roots of small plants on agar plates, which can easily be

adopted for the purpose of automated large-scale growth screening (Nagel

et al. 2009; Yazdanbakhsh and Fisahn 2009).

10.1.2 Root Phenotyping of Cereal Plants

Cereals have a fibrous root system that is composed of embryonic roots and

adventitious (crown) roots that emerge postembryonically (Smith and De Smet

2012). Isolated embryonic roots are formed in the early stage of plant development,

which are initially the only roots that allow water uptake from the soil. Embryonic

roots penetrate the soil deeply and have numerous lateral roots. During late devel-

opment, plants produce a smaller number of thicker and less branched adventitious
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roots that grow beneath the soil but that do not penetrate the deeper layers (Coudert

et al. 2010). A specific spatial and temporal pattern of the root growth of monocots

poses a challenge for high- or moderate-throughput root phenotyping. The complex

root systems of monocotyledonous plants require special efforts in order to main-

tain the equilibrium between the analysis throughput and imaging resolution. As the

throughput of a screening method increases, it causes a reduction in the accuracy

and precision of the measurements (Cobb et al. 2013). The process of high-

throughput phenotyping depends on a combination of specialised techniques for

plant growth, imaging and image analysis (Clark et al. 2013). Many screening

techniques have been applied for rapid and reproducible measurements under

controlled conditions, including aeroponics, hydroponics, wax-petrolatum layer,

soil-filled chambers or pipes (Prasanna et al. 2013). It is necessary to consider the

degree to which a root phenotype will be expressed in the target experimental

conditions. Manual techniques remain reliable for small experiments that involve

simple measurements with fewer replicates (Clark et al. 2013). However, there is a

growing interest in exploring new techniques in order to capture and extract

phenotypes from a larger number of plants with greater precision and reduced

subjectivity (French et al. 2009). It is essential to adjust a plant growth system to

the purpose of the image capture. The key to maintaining precision in a

phenotyping experiment is to employ a stable instrument setup that can effectively

ensure imaging quality (Cobb et al. 2013). Image acquisition that employs digital

cameras or scanners for the purpose of imaging is straightforward for non-soil

grown plants. By contrast, plants grown in a soil substrate must either be separated

from the soil or imaged using minirhizotron tubes for two-dimensional (2D) image

capture (Zhu et al. 2011). Several root screening approaches involve the application

of three-dimensional (3D) imaging techniques. The most promising technique for

noninvasive 3D imaging in soil is X-ray computed tomography (CT) and magnetic

resonance imaging (MRI) (Metzner et al. 2015). There are also other applicable

approaches that include selective plane illumination microscopy (SPIM) and opti-

cal projection omography (OPT) that are adapted for plants grown in transparent

media (Downie et al. 2012). Regardless of the method that is used for image

acquisition, it is essential to properly analyse the data obtained in a reproducible

manner. Large image datasets require the application of novel software solutions in

order to process and extract meaningful estimates of phenotypic variation. Most

image analysis tools employ predefined processing and analysis methods in semi-

automatic and automatic procedures in order to quantify multiple phenotypes from

single images or groups of images (Cobb et al. 2013). Numerous commercial and

open-licence software packages have been developed to solve specific tasks (Lobet

et al. 2013).
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10.1.3 Proposed Root Phenotyping Pipeline

In spite of all of the progress that has been made in the field of plant root

phenotyping, there is still a gap between the complex, multifunctional commercial

platforms which have been developed for high throughput and precision screening

and the simpler root phenotyping protocols which can be adjusted for specific plant

species and screening assay. The described protocol offers the possibility to

develop the moderate-throughput, reliable and cost-effective method that would

facilitate the precise characterisation of the root system architecture in cereals. The

system employs an automatic drip irrigation line which transports a medium

solution to individual plants. Thus, the designed system offers a possibility to

carry out mineral nutrition studies by altering the composition of aqueous medium.

The watering pumps which supplement the plants with a medium can be placed in

the separate tanks containing differed medium variants. The plant growth system

provides randomised conditions maintained in an automated manner. A built-in

programmable logic controller (PLC) computer provides a controllable power-line

access for the connection of all of the system accessories (water pumps, air pump,

heating device) as well as collects data from external sensors (temperature sensor,

pH/redox or other ion-selective electrodes). This setup facilitates the monitoring of

culture medium parameters (pH, temperature, redox potential) and the generation of

different time-lapse graphs of the changes in parameters. Due to the application of

the glass beads as a substrate which provides the mechanical impedance for root

growth, the parameters such as a total root length and a density of lateral roots have

higher values compared to plants grown under conventional hydroponic conditions.

The imaging of root systems can be performed in a destructive (with a use of the

flatbed scanners coupled with theWinRHIZO software) as well as a non-destructive

manner (using a digital camera for the image acquisition). The measurements of the

root system which are acquired using the proposed system were demonstrated to be

reproducible within the biological repetitions of the tested barley genotypes in each

replication of the experiment. The robustness of the system maintenance has been

repeatedly tested and optimised (see Notes 1 and 2, and Table 10.3). The novel

protocol for the root phenotyping of cereal plants presented here consists of a

complete pipeline for maintaining plant growth combined with image acquisition

and data analysis methods (Fig. 10.1).

10.2 Materials

10.2.1 Design of a Plant Growth System

Note: The description of the functioning of the system refers to the numbering of its

components in Figs. 10.2a and b.
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1. The system uses an automatic drip irrigation line that is controlled remotely by

the programmable logic controller (PLC).

2. The PLC adapter coupled with a PLC computer (Fig. 10.2; 13) enables the

automated control of all of the system modules: water pumps, air pumps and

heating devices. It offers a power-line access for water and air pump trans-

formers (Fig. 10.2; 1 and 2).

3. Medium flow is maintained by adjusting the afferent (Fig. 10.2; 3) and efferent

pumps (Fig. 10.2; 11). The PLC adapter allows the independent programming

of the afferent and efferent pumps, which can operate in a continuous or

discontinuous module with preset time intervals.

4. The afferent pumps are placed in opaque canisters (Fig. 10.2; 4) with a water

level indicator for medium storage. When the canister is filled with the

medium, a pH electrode and a thermal sensor are injected to each canister.

5. Aerating pipes (Fig. 10.2; 6) are inserted into the medium canisters for the

proper aeration of the medium solution by the air pumps (Fig. 10.2; 5).

6. The system is equipped with measuring sensors for the continuous monitoring

of the parameters of the culture medium: temperature, pH, redox state, and

concentration of specific ions.

Fig. 10.1 The overview of the pipeline for the preparation of phenotyping experiments. The

pipeline consists of the following stages: experiment design, maintaining the growth setup, plant

phenotyping and the data acquisition and analysis
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Fig. 10.2 Overview of the plant growth system. Schematic layout (a) and photographs (b) of the

watering system that consists of a transformer for an afferent pump (1), a transformer for an

efferent pump (2), an afferent water pump (3) placed in the canister with the culture medium (4),

air pumps (5), an aerating pipe (6), a supply pipe (7), a distributor with 12 outlets (8), distribution

pipes (9), acrylic tubes filled with a substrate (10), an efferent pump placed on the bottom of a

stackable box (11), drain tubing (12), a tablet connected to a PLC adapter (13), a pipe peg (14), a

distribution pipe with a plastic tip (15), an acrylic tube filled with glass beads (16)
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7. PLC-controlled experimental conditions can be monitored, and all of the

medium flow parameters can be modified by setting the desired threshold

values. The solution that is applied allows the water flow efficiency to be

adapted for the current capacity of the experiment that is being conducted.

8. Supply pipes (Fig. 10.2; 7) transfer the medium to water distributors (Fig. 10.2;

8) connected to drip lines (Fig. 10.2; 9). Each drip pipe capped with a plastic tip

(Fig. 10.2; 15) is attached to the pipe pegs (Fig. 10.2; 14) and inserted into the

acrylic tubes which are filled with glass beads (Fig. 10.2; 16).

9. The transparent tubes are placed into opaque cover tubes to protect the roots

from the light. Transparent, 3-mm soda-lime glass beads (Sigma, Cat.

No. Z265926-1EA) allow for the noninvasive observation of root system

growth. This substrate also facilitates the root system cleaning, which improves

the final image quality.

10. The acrylic tubes, which are equipped with a bottom drainage opening to

ensure the proper draining of the medium, are placed together in a stackable

box. The excess medium is drained off from the bottom of the box into the

medium canister by efferent pumps through the drain tubing (Fig. 10.2; 11).

10.2.2 Root Scanning Setup

Note: The root scanning setup employs an STD4800 scanner (Regent Instrument)

and an Epson Perfection V700 photo scanner equipped with the WinRHIZO

System. For additional guidelines, please refer to the operating instructions for

the STD4800 scanner and the WinRHIZO technical manuals. The description of the

system’s setup uses the numbering of its components in Figs. 10.3a and b.

1. The scanner (Fig. 10.3; 1) should be installed on a vibration-free table to avoid

any image noise. The scanner has an additional transmissive lighting system—a

transparency unit (TPU). The reflective white plastic in front of the scanner

cover must be removed to scan with the TPU light (Fig. 10.3; 2).

2. The scanner should be connected to a PC with a USB2 cable (Fig. 10.3; 3). All of

the necessary drivers and analysis software are provided with the system.

3. A positioning system (Fig. 10.3; 4) is to be used to adapt the scanner for scanning

plant roots. The positioning system is made of semiopaque plastic blocks to

accommodate different scan area sizes.

4. Translucent waterproof trays (Fig. 10.3; 5) that match the positioned scan areas

are supplied with the system for scanning immersed objects. An appropriate tray

should be placed within the positioning system.

5. When applying the trays, spacers should be installed to raise them to the height

of the TPU cover.
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10.3 Methods

10.3.1 Preparation of Culture Media

1. Use the following ingredients to prepare the culture medium (the catalogue

numbers that are used refer to the Sigma–Aldrich product line):

• Ammonium phosphate monobasic (NH4H2PO4), Cat. No. 216003

• Potassium nitrate (KNO3), Cat. No. P8291

• Calcium nitrate tetrahydrate (Ca(NO)3�4H2O), Cat. No. 31218

• Magnesium sulphate heptahydrate (MgSO4�7H2O), Cat. No. 63140

• Boric acid (H3BO3), Cat. No. 202878

• Manganese chloride tetrahydrate (MnCl2�4H2O), Cat. No. 221279

• Zinc sulphate heptahydrate (ZnSO4�7H2O), Cat. No. 204986

• Molybdic acid (H2MoO4�H2O), Cat. No. 232084

• Copper sulphate pentahydrate (CuSO4�5H2O), Cat. No. 209198

• Ferric sodium ethylenediaminetetraacetate (NaFeEDTA), Cat. No. E6760

All of the chemical compounds used should be chemically pure for the purpose

of analysis (AR signature—analytical reagent).

2. Use specified quantities of each compound for the preparation of the medium

stocks (macro, micro and Fe) (Table 10.1).

3. Dissolve all compounds in deionised water and autoclave the stocks at 121 �C,
1.1 bar for 45 min.

4. Store all medium stocks at 4 �C.

Fig. 10.3 Imaging setup for root analysis. The PC (a) is connected to the scanner (b) with a TPU

lighting system. The scanner (1) with the cover removed (2) is connected to the PLC computer (3).

The WinRHIZO system accessories consist of a scanner positioning system (4) and a translucent

waterproof tray (5)
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5. Adjust the pH of the medium at 5.9–6.1 using 1 N NaOH (Sigma, Cat.

No. 221465).

6. Prepare the medium in advance in an opaque canister with a tap and a water level

indicator and store them at 4 �C.

10.3.2 Controlling the System and Monitoring the Medium
Parameters

Note: The automatic drip irrigation system is controlled by a programmable logic

controller (PLC) that provides a convenient power-line access for the connection of

all of the system’s peripherals. The PLC adapter is also equipped for the continuous

sensing of parameters of the culture medium. For additional guidelines, please refer

to the operating instructions for the applied PLC adapter.

1. The afferent pumps, efferent pumps and air pumps should be connected to the

power-line adapter. The adapter has six 230 V outputs for connecting the

programmable devices. Use submersible water pumps (4�) with a maximal

operating pressure of 1 bar (14 psi) and a maximal flow of 250 l/h with three

outlets. Use air pumps (2�) with a minimal oxygen flow of 320 l/h. For

additional guidelines on assembling the pumps, please refer to the technical

manual from the pumps supplier.

2. The PLC adapter (Fig. 10.4a) can be programmed using in-system program-

ming (ISP) and in-application programming (IAP). For setting the switch

on/off times of the defined outputs, program the PLC adapter directly or use

the PLC software for PCs (Fig. 10.4b).

3. Define the switch on/off times of the outputs using the software that is pro-

vided. Select the Tools menu and browse the Output parameters.
4. Define the length of the switch on time and switch off time interval for the

device.

Table 10.1 Hoagland

medium composition

(Hoagland and Arnon, 1950)

Group Compound Stock volume Quantity [g]

Macro NH4H2PO4 250 ml 28.76

KNO3 25.28

Ca(NO)3�4H2O 59.04

MgSO4�7H2O 61.62

Micro H3BO3 1000 ml 2.86

MnCl2�4H2O 1.81

ZnSO4�7H2O 0.22

H2MoO4�H2O 0.02

CuSO4�5H2O 0.08

Fe NaFeEDTA 100 ml 1
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5. Connect the PLC adapter with the PLC computer using a USB cable.

6. Import the selected parameters to the PLC device by choosing the Tools menu/
Output parameters/Send to device.

7. Connect two pH electrodes (pH range 5–9) to the PLC device.

8. Calibrate the pH electrodes separately using the PLC adapter menu. Press the

OK button for 2 s. Press SET to choose the desirable calibrating parameter

(pH4, pH9, temperature) for each electrode. Insert a calibrating electrode into

appropriate buffer (ph4, pH9). Wait for about 1 min to ensure that you get a

stable measurement and press the OK button to save the result. The calibrating

process can be terminated by pressing the ESC button.

9. Calibrate the temperature sensor using the same option as described in point

8 using a conventional thermometer measurement as a reference.

10. The measurement data from the pH electrodes and temperature sensors can be

exported in the .csv format. To import the data choose the Tools menu/Param-
eters settings/Load from device.

10.3.3 Experiment Preparation and Maintenance

1. Autoclave the appropriate amount of soda-lime glass beads, 48 acrylic tubes

and any necessary laboratory glassware. The autoclave program should be

applied as follows: 121 �C, 1.1 bar, 45 min.

2. Sterilise grains in a 5 % solution of sodium hypochlorite (Sigma, Cat.

No. 71696) for 15 min. Remove the sodium hypochlorite solution and wash

grains with sterile water 3 times for 5 min.

Fig. 10.4 Programmable logic controller (PLC) for the watering system control (a) and dedicated

software for the continuous acquisition of the parameters of the culture medium (b)
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3. Plant the grains in sterile square plastic 120 � 120 mm Petri plates (Gosselin,

Cat. No. BP124-05) filled to mid level with sterile moist vermiculite or filter

paper. Incubate the grains at 4 �C for 24 h and then transfer the plates to an

incubator at 24–25 �C for the next 48 h.

4. Fill 48 acrylic tubes with soda-lime glass beads leaving a space of approxi-

mately 5 cm at the top.

5. Transplant the germinated seedlings into the acrylic tubes and replenish them

with an additional portion of soda-lime glass beads leaving a space of approx-

imately 1 cm at the top.

6. Place the distributor pipes that are capped with plastic tips that are attached to

the pipe pegs near the edges of the tube and cover the top opening of it with a

piece of cotton wool.

7. Fill the medium container with the appropriate amount of the medium.

8. Check all of the tubing connections and plug the water and air pump trans-

formers into the power line that is connected to the PLC computer.

9. Start the pumps and set the water and air pumps programs using the PLC

software.

10. Place the system into a growth chamber under controlled conditions: temper-

ature 22/20 �C during the day/night, photoperiod 16/8 h and illumination of

320 μmol m�2 s�1. Supplement the plants with the medium for the entire

duration of the experiment (14 days).

11. Replace the medium in the medium canister every 4 days.

10.3.4 Medium Exchange

1. Use an additional submersible water pump with a maximal operating pressure

of 1 bar (14 psi) and a maximal flow of 250 l/h.

2. Before beginning the medium exchange, make sure that the drip irrigation

system is paused using the PLC adapter.

3. Attach a single supply pipe to one of the three water connections. Close the

remaining water connections by screwing on the end caps.

4. Place the other end of the supply pipe that is connected to the water pump onto

the water draining system.

5. Submerse the pump inside the medium canister.

6. Connect the medium discharge pump to the transformer and plug it directly into

the power supply. Keep the pump turned on until the medium canister is

completely emptied.

7. Attach a rubber pipe to the tap of the medium supply canister. Place the end of

the pipe into the empty canister and turn the tap on. The medium supply

container should be placed above the medium exchange containers for it to

work effectively.

8. Leave the tap turned on until the medium canister is refilled.

9. Repeat steps 5–7 for the second medium canister.
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10. After exchanging the medium in both canisters, turn on the drip irrigation

system again.

10.3.5 Experiment Termination and Root System Cleaning

1. After the experiment is completed, stop the drip irrigation line using the PLC

adapter.

2. Carefully disconnect the drip pipes and remove the acrylic tubes from the cover

tubes.

3. Remove the piece of cotton wool that is covering the tube opening.

4. Carefully remove the plant after moistening the substrate and pouring the water

through bottom drainage opening with a syringe (100 ml) or a beaker.

5. Rinse the plant root system with tap water above the sieve to remove the

remaining glass beads. The extracted seedlings should be kept wet. Keep the

plants in tap water in properly marked 50 ml conical centrifuge tubes until the

roots are scanned using the WinRHIZO system.

6. The time period preceding the root system analysis should be kept to a

minimum.

10.3.6 Root System Analysis Using WinRHIZO System

Note: For additional extensive guidelines, please refer to the WinRHIZO technical

manual.

1. Before the beginning the analysis, make sure that the STD4800 scanner is

connected to the PC with a USB2 cable and that all of the necessary drivers and

analysis software are installed.

2. Cut the roots of a single plant using a sharp pair of scissors in order to separate

all of the embryonic roots.

3. Place the roots (1–2 embryonic roots at a time) on a waterproof tray (Regent

Instruments). The roots should be entirely immersed in water. If necessary refill

the tray with tap water.

4. Position the roots in order to avoid any overlapping lateral roots and ensure that

they are distributed randomly.

5. Before starting the WinRHIZO software, the personal protection key should be

connected to the USB port.

6. Start the WinRHIZO software and select the EPSON Perfection V700/V750

TWAIN as the source.

7. After opening the WinRHIZO program, select the image acquisition parame-

ters by entering the menu Image Acquisition Parameters. Choose the option

‘With tray’ and select the appropriate scan area.
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8. Perform the analysis by pressing the Acquisition icon in order to digitise the

roots and wait a few seconds for the scan to complete (40–60 s). A progress bar

will be displayed during the scanning process.

9. Highlight a specific area on the image that is displayed in the Image Area for

the measurement of the selected part of the image.

10. Enter a sample name within the Sample identification window.
11. Create a data export file or open an existing directory. All of the measurements

will be recorded (in .txt extension) within the selected directory until the

software is closed.

10.3.7 Root Image Analysis

Note: For additional extensive guidelines please refer to the WinRHIZO technical

manual.

1. Initiate the analysis module (after the scanner is disconnected) of WinRHIZO

software.

2. Begin an image analysis of the existing root scan by selecting the appropriate file

directory and pressing the Analysis icon.
3. Enter the sample information data in the Sample identification window that is

displayed. The data repository that was created will record all of the data of the

analyses that are conducted.

4. Modify (if necessary) the root diameter classes using the Graphic area menu

above the displayed image (Fig. 10.5a).

5. Click the horizontal axis to change the classification type in terms of the width of

the classes.

6. Save the measurement output data file in a .txt file (Fig. 10.5b) and import it into

MS Excel or an equivalent program for further data analysis. The parameters that

are generated as a result of the scanning process include: total length of the root

Fig. 10.5 Data analysis of root images using the WinRHIZO system. Image Area of the scanned

root displayed in WinRHIZO software (a) and an MS Excel spreadsheet (b) after importing the .txt

file with the measurement data
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system [cm], root system surface [cm2], root system volume [cm3], root diameter

[mm] and the number of tips. All measurements which can be conducted using

the WinRHIZO software and non-destructive techniques for root and shoot

imaging in time series are summarised in Table 10.2.

10.4 Notes

1. The subsequent stages of the preparation of an experiment indicating required

time are presented in Table 10.3 (the robustness of the system relates to the

experiment carried on 48 plants).

Table 10.2 List of the parameters that can be measured using the system

Organ Measurements Units Destructive

Shoot Projected shoot area cm2 No

cm2 No

Shoot height cm No

Root Root system depth cm No

Projected root area cm2 No

Total length of the root system

WinRHIZO

cm Yes

Projected root surface cm2 Yes

Average root diameter mm Yes

Root surface area cm2 Yes

Root volume cm3 Yes

Number of root tips – Yes

Number of root forks – Yes

Table 10.3 Stages of the experiment in terms of their time-consuming

Stages of the experiment Duration

Experiment preparation Grain surface sterilisation 30 min

Preparation of tubes and substrate 2 h

Medium preparation 2 h

Plant growth Grain incubation [4 �C] 24 h

Grain incubation [24 �C] 72 h

12 days of the growth of plants (+ noninvasive

imaging)

45 min/

day

Data acquisition and

analysis

Experiment termination 2 h

Roots scanning (48 plants) 6 h

WinRHIZO analysis 4 h

Data analysis (WinRHIZO) 2 h

Data analysis (projected shoot and root areas) 3 h
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2. WinRHIZO software can generate two types of files—Images and Data. The

commands for each of these can be found in the Image and Data menus,

respectively. Image files can be saved in the .tiff format, which can be read by

most image-based software packages. Analysis data are saved in the ASCII text

format and have the .txt extension.
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