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The Banach–Mazur game and domain theory

Judyta Bąk and Andrzej Kucharski

Abstract. We prove that player α has a winning strategy in the Banach–
Mazur game on a space X if and only if X is F-Y countably π-domain
representable. We show that Choquet complete spaces are F-Y countably
domain representable. We give an example of a space, which is F-Y count-
ably domain representable, but which is not F-Y π-domain representable.
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1. Introduction. The famous Banach–Mazur game was invented by Mazur in
1935. For the history of game theory and facts about game theory, the reader
is referred to the survey [12]. Let X be a topological space and X = A ∪ B be
any given decomposition of X into two disjoint sets. The game BM(X,A,B)
is played as follows: Two players, named α and β, alternately choose open
nonempty sets with U0 ⊇ V0 ⊇ U1 ⊇ V1 ⊇ · · · .

α U0 U1

· · ·
β V0 V1

Player α wins this game if A ∩ ⋂
n∈ω Un �= ∅. Otherwise β wins.

We study a well-known modification of this game considered by Choquet
in 1958, known as Banach–Mazur game or Choquet game. Player α and β
alternately choose open nonempty sets with U0 ⊇ V0 ⊇ U1 ⊇ V1 · · · . In the
first round, player β starts by choosing a nonempty open set U0.

β U0 U1

· · ·
α V0 V1
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Player α wins this play if
⋂

n∈ω Vn �= ∅. Otherwise β wins. Denote this
game by BM(X). Every finite sequence of sets (U0, . . . , Un), obtained by the
first n steps in this game is called partial play of β. A strategy for player α in
the game BM(X) is a map s that assigns to each partial play (U0, . . . , Un) of
β a nonempty open set Vn ⊆ Un. The strategy s is called a winning strategy for
player α if player α always wins the play of the game using this strategy. The
space X is called weakly α-favorable (see [13]) if X admits a winning strategy
for player α in the game BM(X). We say that a partial play (W0, . . . , Wk)
is stronger than (U0, . . . , Um) if m ≤ k and U0 = W0, . . . , Um = Wm. Notice
that if (W0, . . . , Wk) is stronger than (U0, . . . , Um), then s(W0, . . . , Wk) ⊆
s(U0, . . . , Um), we denote this by (U0, . . . , Um) 	 (W0, . . . , Wk). We denote a
sequence (U0, . . . , Uk) by

−→
U (k).

The strong Choquet game is defined as follows:
β U0 � x0 U1 � x1

· · ·
α V0 V1

Player β and α take turns in playing nonempty open subset, similar to the
Banach–Mazur game. In the first round, player β starts by choosing a point
x0 and an open set U0 containing x0, then player α responds with an open
set V0 such that x0 ∈ V0 ⊆ U0. In the n-th round, player β selects a point
xn and an open set Un such that xn ∈ Un ⊆ Vn−1 and α responds with an
open set Vn such that xn ∈ Vn ⊆ Un. Player α wins if

⋂
n∈ω Vn �= ∅. Oth-

erwise β wins. We say that a partial play (W0, x0, . . . , Wk, xk) is stronger
than (U0, y0, . . . , Um, ym) if m ≤ k and U0=W0, . . . , Um = Wm and x0 =
y0, . . . , xm = ym. We denote this by (U0, y0, . . . , Um, ym) 	 (W0, x0, . . . , Wk,

xk). We denote a sequence (W0, x0, . . . , Wk, xk) by (−→x ◦ −→
W )(k). A topological

space X is called Choquet complete if player α has a winning strategy in the
strong Choquet game, and we then write Ch(X).

For a topological space X, let τ(X) denote the topology on the set X and
τ∗(X) = τ(X)\{∅}. A family P of open nonempty sets is called a π-base if for
every open nonempty set U , there is P ∈ P such that P ⊆ U.

A dcpo (directed complete partial order) is a poset (P,�) in which every
directed set has a supremum. If p, q ∈ P , then we say that “p is far below
q” whenever for any directed set D with q � sup(D), there is some d ∈ D
with p � d. A domain is a dcpo in which every element q is the supremum
of the directed set {p ∈ P : “p is far below q”}. This notion has been intro-
duced by D. Scott as a model for the λ-calculus, for more information see [1],
[10]. Domain representable topological spaces were introduced by Bennett and
Lutzer [2]. We say that a topological space is domain representable if it is
homeomorphic to the space of maximal elements of some domain topologized
with the Scott topology. In 2013, Fleissner and Yengulalp [3] introduced an
equivalent definition of a domain representable space for T1 topological spaces.
We do not assume the antisymmetry condition on the relation �. As Önal
and Vural suggested in [11], if we need an additional antisymmetric property,
let us consider the equivalent relation E on the set Q defined by “pEq if and
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only if (p � q and q � p) or p = q”. We do not assume any separation axioms,
if it is not explicitly stated.

We say that a topological space X is F-Y (Fleissner–Yengulalp) countably
domain representable if there is a triple (Q,�, B) such that
(D1) B : Q → τ∗(X) and {B(q) : q ∈ Q} is a base for τ(X),
(D2) � is a transitive relation on Q,
(D3) for all p, q ∈ Q, p � q implies B(p) ⊇ B(q),
(D4) for all x ∈ X, the set {q ∈ Q : x ∈ B(q)} is upward directed by �

(every pair of elements has an upper bound),
(D5ω1) if D ⊆ Q and (D,�) is countable and upward directed, then

⋂{B(q) :
q ∈ D} �= ∅.

If the conditions (D1)–(D4) and the condition
(D5) if D ⊆ Q and (D,�) is upward directed, then

⋂{B(q) : q ∈ D} �= ∅
are satisfied, we say that the space X is F-Y domain representable.

In [4], Fleissner and Yengulalp introduced the notion of a π-domain rep-
resentable space, as this is analogous to the notion of a domain representable
space.

We say that a topological space X is F-Y (Fleissner–Yengulalp) countably
π-domain representable if there is a triple (Q,�, B) such that
(πD1) B : Q → τ∗(X) and {B(q) : q ∈ Q} is a π-base for τ(X),
(πD2) � is a transitive relation on Q,
(πD3) for all p, q ∈ Q, p � q implies B(p) ⊇ B(q),
(πD4) if q, p ∈ Q satisfy B(q)∩B(p) �= ∅, there exists r ∈ Q satisfying p, q � r,
(πD5ω1) if D ⊆ Q and (D,�) is countable and upward directed, then

⋂{B(q) :
q ∈ D} �= ∅.

If the conditions (πD1)–(πD4) and the condition
(πD5) if D ⊆ Q and (D,�) is upward directed, then

⋂{B(q) : q ∈ D} �= ∅
are satisfied, we say that the space X is F-Y π-domain representable.

2. π-domain representable spaces. In [5], Kenderov and Revalski have shown
that the set E = {f ∈ C(X) : f attains its minimum in X} contains a Gδ

dense subset of C(X) is equivalent to the existence of a winning strategy
for player α in the Banach–Mazur game. Oxtoby [9] showed that if X is a
metrizable space, then player α has a winning strategy in BM(X) if and only
if X contains a dense completely metrizable subspace. Krawczyk and Kubís
[6] have characterized the existence of winning strategies for player α in the
abstract Banach–Mazur game played with finitely generated structures instead
of open sets. In [7], there has been presented a version of the Banach–Mazur
game played on a partially ordered set. We give a characterization of the
existence of a winning strategy for player α in the Banach–Mazur game using
the notion “π-domain representable space” introduced by W. Fleissner and L.
Yengulalp.

Theorem 1. A topological space X is weakly α-favorable if and only if X is
F-Y countably π-domain representable.
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Proof. If X is F-Y countably π-domain representable, then it is easy to show
that X is weakly α-favorable.

Assume that X is weakly α-favorable. We shall show that X is F-Y count-
ably π-domain representable. Let s be a winning strategy for player α in
BM(X). We consider a family Q consisting of all finite sequences

(−→
U 0(j0), . . . ,

−→
U i(ji)

)
, where

−→
U m(jm) = (Um

0 , . . . , Um
jm

) is a partial play and m ≤ i, i.e.,

Um
0 ⊇ s(Um

0 ) ⊇ Um
1 ⊇ s(Um

0 , Um
1 ) ⊇ . . . ⊇ Um

jm
⊇ s(Um

0 , . . . , Um
jm

)

and s(
−→
U 0(j0)) ⊇ . . . ⊇ s(

−→
U i(ji)).

Let us define a relation � on the family Q:
(−→

U 0(j0), . . . ,
−→
U i(ji)

)
�

(−→
W 0(l0), . . . ,

−→
W k(lk)

)
iff

s(
−→
U i(ji)) ⊇ s(

−→
W 0(l0))

& i ≤ k & ∀ t ≤ i ∃ r ≤ k
−→
U t(jt) 	 −→

W r(lr).

Since 	 is transitive, � is transitive.
Let us define a map B : Q → τ∗(X) by the formula

B
((−→

U 0(j0), . . . ,
−→
U i(ji)

))
= s(

−→
U i(ji))

for
(−→

U 0(j0), . . . ,
−→
U i(ji)

)
∈ Q.

Since {s(V ) : V ∈ τ∗(X)} is a π-base, {B(q) : q ∈ Q} is a π-base for τ . It
is easy to see that the map B satisfies the condition (πD3).

Towards item (πD4), let p, q ∈ Q be such that B(q) ∩ B(p) �= ∅ and
p =

(−→
U 0(j0), . . . ,

−→
U i(ji)

)
, q =

(−→
W 0(l0), . . . ,

−→
W k(lk)

)
. Since V = B(p) ∩

B(q) ⊆ s(
−→
U 0(j0)) and s is a winning strategy, we find an element

−→
U ′

0(j
′
0)

stronger than
−→
U 0(j0) such that s(

−→
U ′

0(j
′
0)) ⊆ V . Step by step we find a par-

tial play
−→
U ′

t(j
′
t) such that

−→
U t(jt) 	 −→

U ′
t(j

′
t) and s(

−→
U ′

t(j
′
t)) ⊆ s(

−→
U ′

t−1(j
′
t−1))

for t ≤ i. Since s(
−→
U ′

i(j
′
i)) ⊆ s(

−→
W 0(l0)), we find a partial play

−→
W ′

0(l
′
0) such

that
−→
W 0(l0) 	 −→

W ′
0(l

′
0) and s(

−→
W ′

0(l
′
0)) ⊆ s(

−→
U ′

i(j
′
i)). Similarly, as for the se-

quence p, for the sequence q, we define
−→
W ′

t(l
′
t) with

−→
W t(lt) 	 −→

W ′
t(l

′
t) and

s(
−→
W ′

t(l
′
t)) ⊆ s(

−→
W ′

t−1(l
′
t−1)) for all t ≤ k.

Continuing in this way, we get an element r =
(−→

U ′
0(j

′
0), . . . ,

−→
U ′

i(j
′
i),

−→
W ′

0(l
′
0),

. . . ,
−→
W ′

k(l′k)
)

such that p, q � r and r ∈ Q.

Next we show the condition (πD5ω1). Let D ⊆ Q be a countable up-
ward directed set and let D = {pn : n ∈ ω}. We define a chain {qn : n ∈
ω} ⊆ D ⊆ Q such that pn � qn for n ∈ ω. By the condition (πD3), we
get

⋂{B(qn) : n ∈ ω} ⊆ ⋂{B(p) : p ∈ D}. Each qn ∈ Q is of the form
qn =

(−→
Wn

0 (ln0 ), . . . ,
−→
Wn

kn
(lnkn

)
)

.

Since q0 � q1, there is j1 ≤ k1 such that
−→
W 0

0(l
0
0) 	 −→

W 1
j1

(l1j1). We have

s(
−→
W 0

0(l
0
0)) ⊇ B(q0) = s(

−→
W 0

k0
(l0k0

)) ⊇ s(
−→
W 1

j1(l
1
j1)) ⊇ B(q1) = s(

−→
W 1

k1
(l1k1

)).
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Let
−→
U ′

0(l
0
0) =

−→
W 0

0(l
0
0) and

−→
U ′

1(l
1
j1

) =
−→
W 1

j1
(l1j1). Inductively, we can choose

a sequence {s(
−→
U ′

n(lnjn
)) : n ∈ ω} such that

−→
U ′

n(lnjn
) 	 −→

U ′
n+1(l

n+1
jn+1

) and

B(qn) ⊇ s(
−→
U ′

n+1(l
n+1
jn+1

)) ⊇ B(qn+1).

Since s is a winning strategy for player α, we have

∅ �=
⋂

{s(
−→
U ′

n(lnjn
)) : n ∈ ω} =

⋂
{B(qn) : n ∈ ω} ⊆

⋂
{B(p) : p ∈ D}. �

We give an example of a space, which is F-Y countably domain repre-
sentable, but which is not F-Y π-domain representable. Note that this space
is F-Y countably π-domain representable and not F-Y domain representable.

Example 1. We consider the space

X = σ
({0, 1}ω1

)
=

{
x ∈ {0, 1}ω1 : |supp x| ≤ ω

}
,

where supp x = {α ∈ ω1 : x(α) = 1} for x ∈ {0, 1}ω1 , with the topology
(ω1-box topology) generated by the base

B =
{
pr−1

A (x) : A ∈ [ω1]≤ω, x ∈ {0, 1}A
}
,

where prA : σ({0, 1}ω1) → {0, 1}A is a projection.
We shall define a triple (Q,�, B). Let Q = B, and the map B : Q → Q be

the identity. Define a relation � in the following way:

pr−1
A (xA) � pr−1

B (xB) ⇔ pr−1
A (xA) ⊇ pr−1

B (xB)

for any pr−1
A (xA),pr−1

B (xB) ∈ B. It is easy to see that the relation � is transi-
tive and that it satisfies the condition (D3). Now, we prove the condition (D4).
Let x ∈ X and pr−1

A1
(xA1),pr−1

A2
(xA2) ∈ {pr−1

A (xA) ∈ B : x ∈ pr−1
A (xA)}. Since

x ∈ pr−1
A1

(xA1) ∩ pr−1
A2

(xA2), we get xA1 � A2 = xA2 � A1. Set A3 = A1 ∪ A2

and let xA3 ∈ {0, 1}A3 be such that xA3 � A2 = xA2 and xA3 � A1 = xA1 . We
have xA3 ∈ {0, 1}A3 such that x ∈ pr−1

A3
(xA3) ⊆ pr−1

A1
(xA1) ∩ pr−1

A2
(xA2). Hence

pr−1
A1

(xA1),pr−1
A2

(xA2) � pr−1
A3

(xA3).
We prove the condition (D5ω1). Let D ⊆ B be a countable upward directed

family. We can construct a chain {pr−1
An

(xAn
) : n ∈ ω} ⊆ D such that for each

set pr−1
A (xA) ∈ D, there exists n ∈ ω such that pr−1

A (xA) � pr−1
An

(xAn
).

Let B =
⋃{An : n ∈ ω}. Since {pr−1

An
(xAn

) : n ∈ ω} is a chain, there is
xB ∈ {0, 1}B such that xB � An = xAn

for n ∈ ω. Then
⋂

{pr−1
An

(xAn
) : n ∈ ω} = pr−1

B (xB) ∈ B,

and pr−1
B (xB) ⊆ ⋂

D. This completes the proof that the space σ
({0, 1}ω1

)
is

F-Y countably domain representable.
Now we show that X = σ

({0, 1}ω1
)

is not F-Y π-domain representable.
Suppose that there exists a triple (Q,�, B) satisfying the conditions (πD1)–
(πD5). The family P = {B(q) : q ∈ Q} is a π-base. By induction, we define a
sequence {Qα : α < ω1} such that the following conditions are satisfied:
(1) Qα ∈ [Q]≤ω and Qα is upward directed, for α < ω1,
(2)

⋂{B(q) : q ∈ Qα} = pr−1
Aα

(xAα
) ∈ B for some Aα ∈ [ω1]≤ω and some

xAα
∈ {0, 1}Aα , for α < ω1,



J. Bąk and A. Kucharski Arch. Math.

(3) Qα ⊆ Qβ , for α < β < ω1,
(4) if

⋂{B(q) : q ∈ Qα} = pr−1
Aα

(xAα
) and

⋂{B(q) : q ∈ Qβ} = pr−1
Aβ

(xAβ
)

for some Aα, Aβ ∈ [ω1]≤ω and xAα
∈ {0, 1}Aα and xAβ

∈ {0, 1}Aβ , then
supp xAα

= {α ∈ Aα : x(α) = 1} � {α ∈ Aβ : x(α) = 1} = supp xAβ
, for

α < β < ω1.
We define a set Q0. Take any r0 ∈ Q. There exist a set A0 ∈ [ω1]≤ω and

xA0 ∈ {0, 1}A0 such that pr−1
A0

(xA0) ⊆ B(r0). By conditions (πD1), (πD3),
(πD4), there exists r1 ∈ Q such that r0 � r1 and B(r1) ⊆ pr−1

A0
(xA0). Assume

that we have defined r0 � . . . � rn and a chain {Ai : i ≤ n} ⊆ [ω1]≤ω and
xAi

∈ {0, 1}Ai such that

pr−1
Ai−1

(xAi−1) ⊇ B(ri) ⊇ pr−1
Ai

(xAi
) for i ≤ n.

By conditions (πD1), (πD3), (πD4), there exists rn+1 ∈ Q such that rn � rn+1

and B(rn+1) ⊆ pr−1
An

(xAn
). There exist a set An+1 ∈ [ω1]≤ω and xAn+1 ∈

{0, 1}An+1 such that pr−1
An+1

(xAn+1) ⊆ B(rn+1). Let Q0 = {rn : n ∈ ω}. Then
⋂{B(q) : q ∈ Q0} =

⋂{pr−1
An

(xAn
) : n ∈ ω} = pr−1

A (xA), where A =
⋃{An :

n ∈ ω} and xA ∈ {0, 1}A and xA � An = xAn
for all n ∈ ω.

Assume that we have defined {Qα : α < β} which satisfies the conditions
(1)–(4).

Let Rβ =
⋃{Qα : α < β}. The set Rβ is upward directed by conditions

(3), (1). Let Rβ = {pn : n ∈ ω}. By (2) and (3), we get
⋂ {

B(pn) : n ∈
ω
}

= pr−1
Aβ

(xAβ
) ∈ B for some set Aβ ∈ [ω1]≤ω and xAβ

∈ {0, 1}Aβ . There
exist a set A ∈ [ω1]≤ω and xA ∈ {0, 1}A such that pr−1

A (xA) � pr−1
Aβ

(xAβ
)

and supp xAβ
� supp xA. Since P is a π-base, we can find rβ ∈ Q such that

B(rβ) ⊆ pr−1
A (xA). Inductively, we can define a sequence {qn : n ∈ ω} ⊆ Q, a

chain {An : n ∈ ω} ⊆ [ω1]≤ω, and a sequence {xAn
∈ {0, 1}An : n ∈ ω} such

that rβ , p0 � q0, qn−1, pn � qn, and

B(qn) ⊇ pr−1
An

(xAn
) ⊇ B(qn+1) for n ∈ ω.

Let Qβ = Rβ ∪ {qn : n ∈ ω}. The set Qβ satisfies conditions (1)–(4), so we
finish the induction. The set

⋃{Qα : α < ω1} is upward directed.
By conditions (2), (3), we have

⋂
{B(q) : q ∈

⋃
{Qα : α < ω1}

}
=

⋂
{pr−1

Aα
(xAα

) : α < ω1} =

= π−1
A (xA), for A =

⋃
{Aα : α < ω1} and xA ∈ {0, 1}A

such that xA � Aα = xAα
for α < ω1,

where πA : {0, 1}ω1 → {0, 1}A is the projection. By condition (4), we get
|supp xA| = ω1. Hence π−1

A (xA) ∩ σ
({0, 1}ω1

)
= ∅, a contradiction. �

Note that by the proof of [4, Proposition 8.3] it follows that if there exists a
triple (Q,�, B), which satisfies the conditions of the definition of F-Y count-
ably π-domain representable and |⋂{B(q) : q ∈ D}| = 1 for every countable
and upward directed set D ⊆ Q, then the space X is F-Y π-domain repre-
sentable by this triple.
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Theorem 2. The Cartesian product of any family of F-Y countably π-domain
representable spaces is F-Y countably π-domain representable.

Proof. Let X be a product of a family {Xa : a ∈ A} of F-Y countably π-domain
representable spaces. Let (Qa,�a, Ba) be a triple which satisfies conditions
(πD1)–(πD4) and (πD5ω1) for the space Xa. Any basic nonempty open subset
U in X is of the form U =

∏{Ua : a ∈ A}, where Ua is nonempty open subset
of Xa and Ua = Xa for all but a finite number of a ∈ A. We may assume that
0a ∈ Qa is the least element in Qa and Ba(0a) = Xa for each a ∈ A. Put

Q =
{

p ∈
∏

{Qa : a ∈ A} : |{a ∈ A : p(a) �= 0a}| < ω
}

.

Define a relation � on Q by the formula

p � q ⇐⇒ p(a) �a q(a) for all a ∈ A,

where p, q ∈ Q. Let us define a map B : Q → τ∗(X) by B(p) =
∏{Ba(p(a)) :

a ∈ A}, where p ∈ Q. It is easy to check that (Q,�, B) is a F-Y countably
π-domain representing X. �

In a similar way, one can prove the above theorem also for F-Y countably
domain representable, F-Y π-domain representable, and F-Y domain repre-
sentable.

3. Domain representable spaces. In 2003, Martin [8] showed that if a space
is domain representable, then player α has a winning strategy in the strong
Choquet game. In 2015, Fleissner and Yengulalp [4] showed that it is sufficient
that a space is F-Y countably domain representable. Now, we shall show that
the property of being F-Y countably domain representable is necessary. For
this purpose, we can use a triple (Q,�, B) defined in [4, Proposition 8.3] or
we can use a similar triple to the triple defined in the Theorem 1. Namely,
if s is a winning strategy for player α, we consider a family Q consisting
of all finite sequences (−→x0 ◦ −→

U 0(j0), . . . ,−→xi ◦ −→
U i(ji)), where −→xm ◦ −→

U m(jm) =
(Um

0 , xm
0 , . . . , Um

jm
, xm

jm
) is a partial play in the strong Choquet game for all

m ≤ i, i.e.,

Um
0 ⊇ s(Um

0 , xm
0 ) ⊇ Um

1 ⊇ s(Um
0 , xm

0 , Um
1 , xm

1 ) ⊇ . . . ⊇ Um
jm

⊇ s(Um
0 , xm

0 , . . . , Um
jm

, xm
jm

)

and s(−→x0 ◦ −→
U 0(j0)) ⊇ . . . ⊇ s(−→xi ◦ −→

U i(ji)).
Let us define a relation � on the family Q:

(−→x0 ◦ −→
U 0(j0), . . . ,−→xi ◦ −→

U i(ji)
)

�
(−→y0 ◦ −→

W 0(l0), . . . ,−→yk ◦ −→
W k(lk)

)

iff s
(−→xi ◦ −→

U i(ji)
)

⊇ s
(−→y0 ◦ −→

W 0(l0)
)

& i ≤ k &

∀ t ≤ i ∃ r ≤ k −→xt ◦ −→
U t(jt) 	 −→yr ◦ −→

W r(lr).

We define a map B : Q → τ∗ by the formula

B
((−→x0 ◦ −→

U 0(j0), . . . ,−→xi ◦ −→
U i(ji)

))
= s

(−→xi ◦ −→
U i(ji)

)
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for each
(−→x0 ◦ −→

U 0(j0), . . . ,−→xi ◦ −→
U i(ji)

)
∈ Q.

As a consequence, we obtain:

Theorem 3. A topological space X is Choquet complete if and only if it is F-Y
countably domain representable.
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