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Abstract
Cobalamins, cobalt glyoximate complexes and nickel complexes with Triphos (bis(diphenylphosphinoethyl)phenylphos-
phine) and PPh2CH2CH2SEt ligands were studied with the DFT/BP86 method in connection with methyl transfer reactions.
Geometries, methyl binding energies and redox potentials were determined for the studied complexes. Three- and four-
coordinate structures were considered for nickel complex with PPh2CH2CH2SEt ligand, whereas four- and five-coordinate
for its methyl derivative. On the basis of calculations, the possible mechanism of methyl transfer reaction between cobalt
and nickel complexes was considered.

Keywords Nickel complexes · Cobalt complexes · DFT · Redox potentials · Methyl transfer

Introduction

The B12 vitamin derivatives (cobalamins) present in
methyltransferases take part in many enzymatic methyl
transfer reactions [1–3]. A unique methyl transfer reaction,
where metals act as donors and acceptors of the methyl
group, is found in the acetyl-CoA (Ljungdahl-Wood)
pathway of autotrophic carbon fixation in various bacteria
and archaea [4]. Acetyl-CoA is synthesized at the Ni-Ni-
[4Fe-4S] cluster (the A-cluster) of acetyl-CoA synthase
(ACS) through condensation of coenzyme-A (CoASH) with
CO and the methyl group from CH3-Cob(III)alamin of the
corrinoid-iron-sulfur protein (CoFeSP) [5, 6]. A key step
of such synthesis is the transfer of the methyl group from
CoFeSP to the proximal Ni atom in the active site of ACS
[7]. This reaction proceeds according to the equation:

CH3 − Co(III )FeSP + CO + CoASH � CH3CO

− SCoA + Co(I)FeSP + H+ (1)
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The occurrence of Ni(0) [8, 9] or Ni(I) [10] in reaction
(1) of ACS was postulated. Since the mechanism of cat-
alytic action of the ACS enzyme is not fully understood [8,
11–13], models of methylation reactions involving nickel
complexes and various methylation factors are being exam-
ined experimentally [9, 14–19]. Likewise, many complexes
relevant to ACS enzyme are investigated experimentally
[20–24] and computationally [25–29]. Examples of methy-
lation reactions with nickel participation are [10, 28]:

Ni(T riphos)PPh3+CH3−Co(dmgBF2)2py+sol −→
Ni(T riphos)CH+

3 +Co(dmgBF2)2sol−+PPh3+py,

(2)

where Triphos stands for bis(diphenylphosphinoethyl)phe-
nylphosphine ligand, and

Ni(PPh2CH2CH2SEt)2 + CH3J −→
Ni(PPh2CH2CH2SEt)2CH+

3 + J−. (3)

In general, two mechanisms—SN 2 and radical—are
possible in methyl transfer reactions with cobalamin
participation [28, 30, 31]. Both reactions (2) and (3) involve
methylation of nickel(0) complexes. In the first step of the
radical reaction, the methyl derivative should be reduced by
the methyl acceptor; thus, the homolytic cleavage of Co-
CH3 bond is initiated by electron transfer between reactants.
The radical mechanism is therefore possible when methyl
acceptor is able to reduce methyl donor.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11224-019-01384-z&domain=pdf
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For theoretical modelling of such reactions with the
use of DFT method, it is extremely important to apply
a functional which properly describes electronic structure
of the reactants, giving the results comparable with
experiment. This is especially important for methyl-metal
binding energy and oxidation—reduction properties of the
reacting complexes. In this work, the calculational study
was carried out for nickel and cobalt complexes pertinent to
biological (1) and model (2), (3) methyl transfer reactions
with the use of DFT method and nonhybrid functional
BP86. This functional allows to get a good description of
the cobalt-methyl bond in alkylcobalamins, while the hybrid
functionals significantly underestimate the energy of this
bond [32–35]. Calculations for transition metal complexes
show that BP86 functional gives also good estimation for
redox potentials [36–38]. In the present study, BP86 is used
to determine geometry, methyl binding energies and redox
potentials for the investigated cobalt and nickel complexes.
The results are compared with the experimental data.

Method of calculations

The calculations were carried out with the use of
Gaussian16 program [39]. The DFT method with BP86
[40, 41] functional and TZVP [42] basis sets were used in
the calculations. The effect of environment was taken into
account by PCM solvent model [43–45], with water (for Co
complexes) and acetonitrile (for Ni complexes) as solvents.
The geometry of all studied complexes was fully optimized.
The zero point energy (ZPE) and G3 dispersion correction
[46, 47] were added to the calculated binding energies.

Methylcobalamin (MeCbl) is a methyl derivative of
vitamin B12 which is uses in methyltransferases enzymes
as a methylation factor. In CoFeSP protein it exists as a
base-off form. The base-on form of methylcobalamin has
dimethylbenzimidazole (DMB) as a ligand trans to methyl
[2]. In the base-off form, DMB is replaced by a water
ligand. The base-on and base-off forms are shown in Fig. S1
(Supporting Material).

In the present study, the base-on and base-off structures
were examined in the form of simplified models, in
which all the corrin (denoted further as Cor) side
chains were replaced by hydrogen atoms and for base-on
methylcobalamin the 5,6-dimethylbenzimidazole trans axial
base was replaced by imidazole [48]. The base-off form
without trans axial base and with water molecule as ligand
was also considered. The calculations for cobalt complexes
without methyl ligand were also performed for the sake of
comparison with the experimental data.

The calculations for cobalt dimethylglyoxime complexes
and nickel complexes were carried out, in reference to the
reactions (2) and (3). The Ni(PPh2CH2CH2SEt)2 complex

was examined with nickel in three oxidation states: Ni(II),
Ni(I) and Ni(0) which were studied experimentally [10]. In
the case of the one and two-electron reduced complex the
four and three coordinated complexes were investigated. For
Ni(Triphos)PPh3 complex, the calculations were performed
in the neutral and oxidized state. The relevant methyl
derivatives of nickel complexes were also studied.

Results and discussion

The aim of this work is to compare the properties of nickel
and cobalt methyl derivatives in relation to methyl transfer
reactions. It is essential in context of reactions (1) and
(2), where the methyl group is transferred between the two
metal centers, from cobalt to nickel. The important question
is what properties of these complexes cause the reaction
to run in this direction, what is the relative strength of
methyl binding and other electron properties. It could help
to explain the occurrence of nickel in the ACS enzyme and
the unique biological properties of ACS enzyme. To the
best of our knowledge, there are no studies with theoretical
methods for methyl nickel complexes in the literature. The
cobalamin-methyl complexes were extensively investigated
theoretically [3, 32, 33, 35, 49–61] due to their enormous
significance in biological processes. We performed also the
calculations for cobalt complexes to have consistent data set
obtained with the same method, basis set, solvent and other
computational conditions.

Structure

The axial ligand distances for cobalt complexes and methyl-
nickel bond lengths for nickel complexes are collected in
Table 1. The obtained structures are presented in Figs. 1,
2, 3, 4, and 5. In Supporting Information, the total energies
and selected geometrical parameters of the investigated
complexes are given in Table S1 and Tables S2, S3, S4, and
S5, respectively.

Cobalt complexes

For cobalamin and dimethylglyoxime complexes the geom-
etry of optimized structures are shown in Figs. 1 and 2,
respectively. The axial ligand bond lengths are gathered in
Table 1. Other selected geometrical parameters for cobal-
amins and cobaloximes are presented in Tables S1 and S2,
respectively and the numbering of atoms in Fig. S2.

For cobalamins, the most notable features are related to
geometry changes occurring upon reduction. After reduction of
the five-coordinated complex CoCorIm, the imidazole li-
gand dissociates and the four-coordinated CoCor(I) com-
plex is formed. This is in agreement with the experimental
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Table 1 Selected distances (Å) in Co and Ni complexes

Calc. Exp.

CH3CoCorIm+ Co-CCH3 1.990 1.972a

Co-NIm 2.178 2.093a

CH3CoCorIm Co-CCH3 1.981

Co-NIm 2.169

CH3CoCor+ Co-CCH3 1.971

CH3CoCor Co-CCH3 1.959

CoCorIm+ Co-NIm 2.160

CoCorIm Co-NIm 19.745

CH3CoCorH2O+ Co-CCH3 1.974

Co-OH2O 2.370

CH3CoCorH2Od Co-CCH3 1.960

Co-H2H2O 3.073

N1-H1H2O 2.588

N2-H2H2O 2.654

CoCorH2O+ Co-OH2O 2.304

CoCorH2O Co-HH2O 2.218

CH3Co(dmgBF2)2py Co-CCH3 2.033 2.007b

Co-Npy 2.082 2.119b

CH3Co(dmgBF2)2py− Co-CCH3 2.003

Co-Npy 2.269

CH3Co(dmgBF2)2 Co-CCH3 1.980

CH3Co(dmgBF2)−2 Co-CCH3 2.001

Co(dmgBF2)2py Co-Npy 2.050

Co(dmgBF2)2py− Co-Npy 1.993

CH3Ni(PPh2CH2CH2SEt)+2 MeVIe Ni-CCH3 1.981

CH3Ni(Triphos)+ Ni-CCH3 1.975 1.963c

aRef. [82]
bRef. [19]
cRef. [28]
dNumbering of atoms is presented in Fig. S1
eFor the lowest energy conformer (Fig. 4 and Table S1)

data and theoretical calculation results [3, 48, 51, 62–64].
In the reduced base-off methylcobalamin with a water
molecule as an axial ligand the water is coordinated to cobalt
by the oxygen atom. The reduction of CH3Co(III)CorH2O
leads to a system with water linked by hydrogen bond to cor-
rin nitrogens (CH3Co(II)CorH2O). In contrast to that, in the
reduced methyl-free cobalt complex CoCorH2O, the water
molecule is bound by hydrogen bond to the cobalt atom (see
Fig. 1 and Table 1). The existence of cobalt-water hydrogen
bonding was predicted theoretically [64].

In the dimethylglyoxime complexes, the axial base
coordinated to cobalt is pyridine (Fig. 2). The BP86 results
reveal that upon reduction pyridine is not detached both in
methylated and methyl-free complexes.

Nickel complexes

The structures of nickel complexes are depicted in Figs. 3,
4, 5, whereas methyl-nickel bond lengths and other selected
optimized geometrical parameters are collected in Tables 1,
S4, and S5.

For Ni(PPh2CH2CH2SEt)2+
2 a planar structure was ob-

tained (Fig. 3, structure I2+) which is in agreement with the
crystal structure [10, 15]. The one- and two-electron reduced
complexes I+ and I are characterized by a distorted tetrahe-
dral coordination (Fig. 3 and Table S3). For the two-electron
reduced molecule Ni(PPh2CH2CH2SEt)2 which is a Ni(0)
complex, the possibility of ligand dissociation was sug-
gested [15]; hence, the calculations for three-coordinated
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Fig. 1 The optimized structures of cobalamin complexes: ab, cd, kl
reduction does not change the geometry of the complexes; ef – after
reduction the imidazole ligand is detached; gh – after reduction the

water ligand is bonded by hydrogen bond with nitrogen atoms of the
corrin ring; ij – after reduction the water ligand is bonded by hydrogen
bond with the cobalt atom

forms of the one- and two-electron reduced complexes were
also performed (II+-III+ and II-III). II and III differ in
the nickel coordination mode, in II nickel is coordinated by
two phosphorus and one sulfur atom while in III by two
sulfur and one phosphorus atom (Fig. 3 and Fig. S3). Opti-
mized geometry reveals that the coordination of the nickel
atom in two-electron reduced three-coordinate structures
approximately corresponds to vertices of an almost equila-
teral triangle, while in the case of One-electron reduced two-
coordinate phosphorus or sulfur atoms are almost linear
(Fig. 3 and Table S3).

The computed energies (Fig. 3) show that the lowest
energy complex is a four-coordinate one for both reduced
states, I+ and I. The three-coordinated complex with two
phosphines (II) is 6.9 kcal/mol higher in energy (14.3 kcal
with dispersion correction) than four-coordinate I. The
three-coordinate complexes in which the nickel atom is
coordinated by two sulfur atoms and one phosphorus are
much higher in energy.

The methylated complex CH3Ni(PPh2CH2CH2SEt)+2
was examined in the form of five- and four-coordination
structures. The obtained structures MeI–MeVI are shown
in Fig. 4. These structures differ in mutual position of sulfur
and phosphorus atoms and metal coordination number
where MeI and MeII are five-coordinate and MeII–
MeVI are four-coordinate. The lowest energy structure is

MeVI, where nickel is coordinated by two phosphorus
and one sulfur atoms and where sulfur is in trans
position to the methyl group. BP86 functional gives
five-coordinated structure, MeII, as a second one in
energy (6.2 kcal/mol, and 1.6 kcal/mol higher with
dispersion correction). Basing on the NMR spectra, the five-
coordinated geometry is suggested [10]. Taking into account
a small energy difference calculated with D3 correction, it
is possible that sulfur ligands undergo very fast exchange
process.

The nickel complexes with Triphos ligand are depicted in
Fig. 5 and the optimized geometry parameters are gathered
in Table S5. The Ni(Triphos)PPh3 which is a Ni(0) complex
has a distorted tetrahedral structure, which is in agreement
with the crystal structure [28]. Similarly the distorted
tetrahedral geometry was obtained for Ni(Triphos)PPh+

3 .
The methyl derivative, CH3Ni(Triphos)+ which is a Ni(II)
complex, has a planar structure, which is also in accordance
with the experiment [28].

Methyl-metal bonding

The methyl binding energy in the investigated cobalt and
nickel complexes was computed according to the formula:

EB = �E + ZPE + D3 + BSSE, (4)
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Fig. 2 The optimized structures of dimethylglyoxime cobalt complexes

where

�E = E(CH3) + E(ML) − E(CH3 − ML),

and ML, ZPE, D3 and BSSE denote metal complex, zero
point energy, dispersion correction and basis set superposi-
tion error correction, respectively.

The obtained results are collected in Table 2 with the
experimental data for comparison, where available.

There were many theoretical studies in which Co-C bind-
ing energy was calculated [3, 32–35, 49–61, 64–74]. It was
shown that gradient functional BP86 gives binding energy
close to experimental, while the hybrid functionals signif-
icantly underestimate its value. The TPSS functional was
found to perform well in binding energy calculations for
adenosylcobalamin system [73, 74]. We use BP86 as it
gives good results for EB and reduction potentials as well,
as shown further. As mentioned earlier our binding energy

calculations for cobalamins are performed to have con-
sistent data set of computational results allowing for sys-
tematic comparison between cobalt and nickel complexes.
Inspection of data in Table 2 reveals that the binding
energies without dispersion correction are generally under-
estimated. The good agreement of the BP86+D3 calculated
binding energies for methylcobalamin and its reduced form
with experimental data [59, 75] is also found in the present
calculations. The BSSE error is rather small (about 1.5 kcal)
and of similar value for all complexes studied.

From the data in Table 2, it can be noted that for
the reduced cobalamins (3 and 5, Table 2), the methyl
binding energy is smaller than in the case of oxidized
ones. The mechanism of methyl dissociation in the reduced
methylcobalamin was studied theoretically, and it was
shown that the reduction occurs on the corrin ring [76].
When looking at the spin density values collected in Table 3,
one can find that indeed the unpaired electron is localized
on the corrin ring in the reduced methylcobalamin. Similar
pattern emerges from the electron density difference plots
shown in Fig. 6, where the largest values are found on corrin
carbons in the reduced methylcobalamin base-on and base-
off forms. As mentioned in the “Cobalt complexes” section,
the reduced cobalamin occurs in the base-off form where
the axial base is missing or replaced by a water molecule.

The results from the calculations show that for dimethyl-
glyoxime cobalt complex with the axial pyridine ligand the
Co-CH3 bond energy is somewhat larger (about 3.5 kcal)
than in methylcobalamin. After the reduction methyl bind-
ing energy decreases of about 10 kcal (to 33 kcal, Table 2).
Unlike as in cobalamins, after reduction of Co(dmgBF2)2py,
the pyridine ligand is not detached. When the pyridine lig-
and is missing (for 8 and 9), the methyl-cobalt binding
energy for the oxidized and reduced forms are very simi-
lar (about 40 kcal), which is also different than in the case
of MeCbl. These differences can be explained by inspect-
ing the spin densities of the reduced cobalt complexes
gathered in Table 3. The spin densities in reduced glyox-
imate complexes show that reduction occurs partially on
the dimetyloglyoxime ligand and partially on cobalt atom,
which is in contrast to cobalamins, where it occurs solely
on corrin. This can be traced to more negatively charged
cobaloxime than corrin ring (−2 vs. −1). This is also vis-
ible in Fig. 6 where pronounced values of electron density
differences are present on cobalt and methyl. The calcu-
lated methyl binding energy in 6 from Table 2 (42 kcal) is
larger than measured for CH3Co(dmgh)2py [52] amounting
to 33.1 kcal; on the other hand, it is close to calculated value
of 41.06 kcal for CH3Co(dmgH)2NH3 [77] and 40.7 kcal
for CH3Co(dmgH)2NHCH2 [68].

For the nickel complex with the PPh2CH2CH2SEt ligand,
the methyl binding energy is given only for the lowest
energy conformer (MeVI in Fig. 3 and in Table S1),
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Fig. 3 The optimized structures of nickel complexes with PPh2CH2CH2SEt ligand. �E (in kcal/mol) denotes relative energy obtained from BP86
optimization, in parentheses the G3 correction is taken into account

and it amounts to 50.1 kcal/mol. The Ni-CH3 bond
energy calculated for the CH3Ni(Triphos)+ complex is 52.3
kcal/mol and is the largest among all calculated EB

values. To the best of our knowledge, the nickel–methyl
binding energies were not determined experimentally. For
both nickel complexes, the calculated methyl binding
energies are larger than those for cobalt cobaloximes and
cobalamins. This accounts for the fact that the methyl is
transferred from cobalt to nickel complex.

In Table 4, the NBO bonding analysis for metal-methyl
bond is given for cobalt and nickel complexes. Concerning
the cobalt complexes it can be seen that the bonding
σCo−CH3 orbital has approximately equal percentage
participation of cobalt and carbon hybridized atomic
orbitals (between 47% and 53%). The larger deviation is for
CH3Co(dmgBF2)2 with 43% and 57% cobalt and carbon
orbital participation, respectively. For nickel complexes, the
metal contribution to the bonding orbital amounts to 35%
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Fig. 4 The optimized structures of methyl-nickel CH3Ni(PPh2CH2CH2SEt)+2 complex. �E (in kcal/mol) denotes relative energy obtained from
BP86 optimization, in parentheses the G3 correction is taken into account

and carbon to 65%. Thus, some ionic character in Ni–
CH3 bonding can be inferred with participation of formally
CH−

3 ion. In turn, the cobalt–methyl bond can be viewed as
basically covalent.

In Table S5, NBO charges are collected for methyl-nickel
and methyl-cobalt complexes. For cobalt complexes, the
charge on the metal and the methyl group is positive, except
for the reduced base-on glyoxime complex, where the metal
is negative. The charge on metal and methyl in reduced and
non-reduced cobalamin complexes is practically the same,
indicating that the reduction occurs predominantly on the
corrin ring. On the other hand, metal and methyl group
are both more negative in the cobalt glyoximate reduced
complexes. This corroborates with data in Table 3 and
confirms the different behaviors of glyoximate and corrinate
cobalt-methyl complexes upon reduction. These differences
are due to the charge of the macrocyclic ligand, minus one
for corrin and minus two for glyoxime, so the corrin ligand
can accept a larger charge as a result of the reduction. In

turn, in the methyl nickel complexes, the methyl group and
nickel have negative charges.

Redox potentials

Redox potentials were calculated according to the equation:

Eredox = E(Mn+1)sol − E(Mn)sol − 4.34(SHE) (5)

The value of standard hydrogen electrode potential was
taken from [78]. The obtained results are summarized in
Table 5 and compared with experimental data. Because
redox potentials were measured with the use of different
reference electrodes, we converted all values to the
standard hydrogen electrode (SHE). There were several
measurements of redox potentials for various cobalamin
forms [72, 75, 79–81]. The cobalamin redox potentials
were also calculated theoretically [56, 64]. The calculations
performed with BP86 functional show that it gives good
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Fig. 5 The structure of
Ni(Triphos) complexes

results for redox potentials of transition metal complexes
[36–38].

Generally, it can be noted (Table 5) that the BP86
calculated redox potentials are in good agreement with
the experimental data (maximum difference up to 0.2 eV).
From the results it can be seen that for base-off cobalamins
the redox potentials are more positive that for the base-on

ones. For cobaloxime complexes, calculated values of redox
potentials are significantly more positive in comparison
with similar forms of cobalamin complexes.

In regard to the reactions (2) and (3), there may be SN 2
or radical mechanisms involved, the latter one with elec-
tron transfer from the nickel complex to methylcobalamin
or methyl derivative of cobalt dimethylglyoximate. Looking

Table 2 Methyl binding energy EB (kcal/mol)

Molecule �E+ZPE �E+ZPE �E+ZPE Exp.

+D3 +D3+BSSE

1 CH3CoCorIm+ 30.4 40.0 38.7 37±3a, 36±4b, 39 ± 5c

2 CH3CoCor+ 34.9 44.4 43.0
3 CH3CoCor 13.0 21.7 20.2
4 CH3CoCorH2O+ 32.1 41.4 40.0 44.6d, 42 ± 5c

5 CH3CoCorH2O 9.6 19.8 18.4 19.0e

6 CH3Co(dmgBF2)2py 33.8 43.5 42.2 33.1f

7 CH3Co(dmgBF2)2py− 19.0 34.4 33.0
8 CH3Co(dmgBF2)2 32.5 41.1 39.7
9 CH3Co(dmgBF2)−2 31.5 39.7 38.1
10 CH3Ni(PPh2CH2CH2SEt)+2 g 40.0 51.8 50.1

11 CH3Ni(Triphos)+ 44.5 54.6 52.9

aRef. [60]
bRef. [83]
cRef. [84]
aGas phase, Ref. [61]
eRef. [75]
fFor CH3(dmgH)2py, Ref. [52]
gFor the lowest energy conformer MeVI (Fig. 4 and Table S1)
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Table 3 Spin densities in the
reduced cobalamin and
dimethylglyoxime cobalt
complexes

Co Cor CH3

CH3CoCorIm −0.052 −0.949 0.003

CH3CoCor −0, 046 −0.958 0.004

CH3CoCorH2O −0.048 −0.944 0.004

Co (dmgBF2)2 CH3

CH3Co(dmgBF2)2py− −0.300 −0.644 0.023

CH3Co(dmgBF2)−2 −0.333 −0.590 −0.077

Fig. 6 Cross-sectional contours
along the axial bonding for
electron density difference
between the oxidized and
reduced form of selected
cobalamin and
dimethylglyoxime cobalt
complexes, contour values
between − 0.001 a.u (blue) and
0.001 a.u. (red)

Table 4 NBO analysis of axial bonds for cobalamin and dimethylglyoxime cobalt complexes (the hybridization of the atoms is indicated with the
percent contribution of the metal-centered d or (and) p orbitals as a superscript, LP denotes an electron lone pair)

NBO Occupancy

CH3CoCorIm+

σCo−CCH3
1.8093 [47%]0.6848(sp13.19d54.29)Co + [53%]0.7287(sp81.11)C

σ ∗
Co−CCH3

0.1326 [53%]0.7287(sp13.19d54.29)Co − [47%]0.6848(sp81.11)C

LP (NIm) 1.6858 sp62.99

CH3CoCorH2O+

σCo−CCH3
1.8167 [49%]0.7033(sp8.29d57.87)Co + [51%]0.7109(sp82.37)C

σ ∗
Co−CCH3

0.1161 [51%]0.7109(sp8.29d57.87)Co − [49%]0.7033(sp82.37)C

LP (OH2O) 1.9908 sp69.75

LP(OH2O) 1.8715 sp76.39

CH3CoCor+

σCo−CCH3
1.8258 [51%]0.7176(sp4.43d60.81)Co + [49%]0.6965(sp83.72)C

σ ∗
Co−CCH3

0.1245 [49%]0.6965(sp4.43d60.81)Co − [51%]0.7176(sp83.72)C
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Table 4 (continued)

NBO Occupancy

CH3Co(dmgBF2)2py

σCo−CCH3
1.6952 [43%]0.6594(sp45.18d38.00)Co + [57%]0.7518(sp81.67)C

σCo−Npy 1.8863 [17%]0.4147(sp54.68d29.42)Co + [83%]0.9099(sp71.82)N

σ ∗
Co−CCH3

0.0805 [57%]0.7518(sp45.18d38.00)Co − [43%]0.6594(sp81.67)C

σ ∗
Co−Npy

0.1686 [83%]0.9099(sp54.68d29.42)Co − [17%]0.4147(sp71.82)N

CH3Co(dmgBF2)2

σCo−CCH3
1.8241 [52%]0.7203(sp5.13d61.09)Co + [48%]0.6936(sp84.94)C

σ ∗
Co−CCH3

0.0691 [48%]0.6936(sp5.13d61.09)Co − [52%]0.7203(sp84.94)C

CH3Ni(PPh2CH2CH2SEt)+2 a

σNi−CCH3
1.7679 [35%]0.5907(sp42.99d34.48)Ni + [65%]0.8069(sp79.18)C

σNi−Strans 1.9082 [20%]0.4481(sp56.68d22.53)Ni + [80%]0.8940(sp80.19)S

σ ∗
Ni−CCH3

0.1237 [65%]0.8069(sp42.99d34.48)Ni − [35%]0.5907(sp79.18)C

σ ∗
Ni−Strans

0.1295 [80%]0.8940(sp56.68d22.53)Ni − [20%]0.4481(sp80.19)S

CH3Ni(Triphos)+

σNi−CCH3
1.7856 [35%]0.5894(sp42.73d33.16)Ni + [65%]0.8078(sp79.23)C

σNi−Ptrans 1.8443 [28%]0.5258(sp57.18d22.48)Ni + [72%]0.8506(sp70.42)P

σ ∗
Ni−CCH3

0.1290 [65%]0.8078(sp42.73d33.16)Ni − [35%]0.5894(sp79.23)C

σ ∗
Ni−Ptrans

0.1311 [72%]0.8506(sp57.18d22.48)Ni − [28%]0.5258(sp70.42)P

aFor the lowest energy conformer (MeVI, Fig. 4 and Table S1)

Table 5 Redox potentials Eredox (V)

Calculated Exp. SHE �Ea
0

CH3CoCorIm+/CH3CoCorIm − 1.58 − 1.60b,f − 1.36 (− 0.22)
CH3CoCor+/CH3CoCor − 1.41 − 1.45b,g − 1.21 (− 0.20)
CoCorIm+/CoCorIm − 0.78 − 0.85b,g − 0.61 (− 0.17)
CH3CoCorH2O+/CH3CoCorH2O − 1.40
CoCorH2O+/CoCorH2O − 0.36 − 0.74b,g − 0.50 (0.14)
CoCor+/CoCor − 0.38
CH3Co(dmgBF2)2py/CH3Co(dmgBF2)2py− − 0.99 − 1.10c,h − 1.10 (0.11)
CH3Co(dmgBF2)2/CH3Co(dmgBF2)−2 − 0.15
Co(dmgBF2)2py/Co(dmgBF2)2py− − 0.14
Co(dmgBF2)2/Co(dmgBF2)−2 − 0.08 − 0.55b,j − 0.31 (0.23)

Ni(PPh2CH2CH2SEt)2+
2 /Ni(PPh2CH2CH2SEt)+2 0.01 − 0.56d,i − 0.02 (0.03)

Ni(PPh2CH2CH2SEt)+2 / Ni(PPh2CH2CH2SEt)2 Ie − 0.65 − 1.14d,i − 0.60 (− 0.05)
Ni(Triphos)PPh+

3 / Ni(Triphos)PPh3 − 0.30 − 0.10c,h − 0.10 (− 0.20)

a�E0 = Ecalc
0 − ESHE

0
bSCE = the standard calomel electrode
cSHE = the standard hydrogen electrode
dAg/AgNO3 = the standard silver electrode
eFor the lowest energy conformers (Table S1)
fRef. [72]
gRef. [79]
hRef. [28]
iRef. [10]
jRef. [85]
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at the calculated reduction potentials of these complexes in
Table 5, one can see that the reduction potentials of nickel com-
plexes are in most cases much higher than for the base-on and
base-off cobalamins and higher than for the methyl-cobalt
dimethylglyoxime complexes with a pyridine ligand (base-
on). This makes the radical reductive mechanism unlikely.
On the other hand, the reduction potential of methyl cobalt
glyoximate without pyridyne (base-off) is significantly
higher than that for the base-on, contrary than in cobal-
amnis. Thus, the radical-reductive mechanism in principle
could be possible for base-off glyoximate. This is proba-
bly not the case, because a pyridine or solvent molecule is
attached to the cobalt atom in glyoximate complexes.

Conclusions

Several cobalt and nickel complexes involved in the methyl
transfer reactions were examined with the DFT method
using BP86 functional. The geometries, methyl binding
energies and redox potentials of all the species were studied.
For reduced cobalamins axial base undergo dissociation,
which is consistent with experiment. In the base-off forms
with water as an axial ligand, water molecule is linked
by hydrogen bond to corrin nitrogen (CH3CoCorH2O). In
methyl-free cobalamin (CoCorH2O), the water molecule
forms a hydrogen bond with cobalt atom.

Experimentally the five-coordinate structure for methy-
lated nickel complex with PPh2CH2CH2SEt ligand is
suggested. Our calculations give small energy difference
between five- and four-coordinate forms (1.6 kcal) which
may imply fast interconversion between them.

There are noticeable differences in geometry, Co-CH3

binding energies and redox potentials between cobalamin
and dimethylglyoxime complexes, which indicates that
chemical properties of these two systems are different. On
the basis of the experimental redox potentials (−1.1 for
CH3Co(dmgBF2)2py/CH3Co(dmgBF2)2py− redox couple
and −0.1 for Ni(Triphos)PPh+

3 /Ni(Triphos)PPh3), it was
suggested that the reaction (2) takes place according to the
SN 2 mechanism [28]. In the case of radical mechanism
reduction of CH3Co(dmgBF2)2py by Ni(Triphos)PPh3

would be required. Our calculated redox potentials confirm
such a statement, the calculated redox potential are equal to
−0.99 V and −0.3 V, respectively.

Reaction (2) is fast [28] which can be attributed
to the fact that the binding energy of methyl in the
CH3Ni(Triphos)+ complex is about 10 kcal/mol higher than
in the CH3Co(dmgBF2)2py complex.
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