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Abstract
Anthropogenic salinisation of freshwater ecosystems is frequent across the world. The scale of this phenomenon remains
unrecognised, and therefore, monitoring and management of such ecosystems is very important. We conducted a study on the
mollusc communities in inland anthropogenic ponds covering a large gradient of salinity located in an area of underground coal
mining activity. A total of 14 gastropod and 6 bivalve species were noted. No molluscs were found in waters with total dissolved
solids (TDS) higher than 17.1 g L−1. The share of alien species in the communities was very high in waters with elevated salinity
and significantly lower in the freshwaters. Canonical correspondence analysis (CCA) showed that TDS, pH, alkalinity, nitrate
nitrogen, ammonium nitrogen, iron, the content of organic matter in sediments, the type of substrate and the content of sand and
gravel in sediments were the variables that were significantly associated with the distribution of molluscs. The regression analysis
revealed that total mollusc density was positively related to alkalinity and negatively related to nitrate nitrogen. The taxa richness
was negatively related to TDS, which is consistent with previous studies which indicated that a high salinity level is a significant
threat to freshwater malacofauna, causing a loss of biodiversity and contributing to the colonisation and establishment of alien
species in aquatic ecosystems.
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Introduction

The anthropogenic salinisation of inland waters is manifested
by an increase in the total dissolved solids (TDS) which
among others is caused by mining activity (Pond et al. 2008;
Cañedo-Argüelles et al. 2013; Ciparis et al. 2015). On a global
scale, there are no regulations regarding the introduction of
salt loads into the aquatic environment. For example, the
European Union Water Framework Directive has no regula-
tions of the limits on the introduction of major ions into the
environment by member countries (Schuler et al. 2018). It is
often unknown how significant is salinity in comparison to
other environmental stressors, how it may interact with these

stressors, how important the different drivers of salinisation
are and howwater salinity might influence aquatic ecosystems
in the future. Research that answers these questions are nec-
essary for an effective ecosystem management (Dunlop et al.
2007; Cañedo-Argüelles et al. 2018). Schuler et al. (2018)
point out that to reduce anthropogenic salt pollution manage-
ment strategies must include multi-stakeholder and co-
adaptive management strategies. It is also very important to
monitor rivers and streams whose salty water can enter into
stagnant freshwater ecosystems or flow from saline water bod-
ies and bring additional salt into lotic ecosystems (Williams
2001). Monitoring can be used to predict the direction of the
dispersion of alien species and would contribute to the more
effective and precise prevention of biological invasions and
their deleterious effects (Petruck and Stöffler 2011; Piscart
et al. 2011; Kefford et al. 2012) as well as to predict changes
in water chemistry due to the fact that, according to scientist
(e.g. Cañedo-Argüelles et al. 2013; Dugan et al. 2017),
salinisation of freshwater ecosystems is more and more fre-
quent not only in arid, semi-arid and Mediterranean climates
but also in temperate and cold regions of the world. Moreover,
freshwater salinisation will continue to increase, due to
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climate change and numerous anthropogenic pressures that
have not changed in their intensity or geographical extent
(Cañedo-Argüelles et al. 2013, 2018; Le et al. 2019; Olson
2019).

Bivalves and gastropods have a wide global distribution
and perform an important role in the functioning of aquatic
ecosystems. Anthropogenic habitats, especially water bodies
located in urban, industrial and mining areas, may create en-
vironments that are inhabited by a diverse malacofauna and
that can be refuges for rare and threatened species (Kiviat and
MacDonald 2004; Lewin et al. 2015; Spyra 2017). In clay pit
ponds, Lewin and Smoliński (2006) showed the presence of
rare and protected species of the gastropods Anisus vorticulus
(Troschel, 1834) and Valvata naticina (Menke, 1845), which
is one of the rarest species and is critically endangered
with extinction. Stagnicola turricula (Held, 1836),
which is another very rare and disappearing species in
Germany and Austria, was also noted in anthropogenic
ponds (Lewin and Cebula 2003; Skowrońska-Ochmann
et al. 2012). Sulikowska-Drozd (2009) recorded
Gyraulus rossmaessleri (Auerswald, 1852), which is rare
in Europe, and the protected mussel Anodonta cygnea
(Linnaeus, 1758) in city park ponds. This species was also
noted in mine subsidence reservoirs with elevated water salin-
ity in coal mining areas (e.g. Lewin 2012; Kašovská et al.
2014; Lewin et al. 2015).

The creation of water bodies and anthropogenic distur-
bances of the aquatic environment (e.g. drainage, pollutions,
hydrotechnical structures) contribute to the introduction and
dispersion of alien gastropod species, among them
Potamopyrgus antipodarum (Gray, 1843), Physa acuta
(Drapamaud, 1805) and Ferrissia fragilis (Tryon, 1863),
whose abundances are currently increasing (Meier-Brook
2002; Havel et al. 2005; Lockwood et al. 2007; Spyra 2008;
Früh et al. 2012; Spyra and Strzelec 2014). Alien species are
able to tolerate a wide range of environmental conditions, and
their evolutionary potential allows them to adapt to new con-
ditions (Winterboum 1969; Hylleberg and Siegismund 1987;
Strzelec 1999; Hänfling and Kollmann 2002; Dunlop et al.
2007; Van Leeuwen et al. 2013). Species that are introduced
into rivers and estuaries such as the invasive New Zealand
mud snail P. antipodarum, which was brought into Europe
through commercial shipping, can easily get into inland wa-
ters. It is assumed that its high tolerance to salinisation is one
of the factors that enable it to colonise new areas (Piscart et al.
2011). Anthropogenic water bodies also create ‘open niches’
for the invasion of the Chinese mussel Sinanodonta woodiana
(Lea, 1834), which is rapidly spreading in European countries
(e.g. Beran 2008; Mouthon 2008; Adam 2010; Douda et al.
2011; Spyra et al. 2012). The success of invaders is also pro-
moted by the disappearance of native freshwater species from
environments with anthropogenic high salinity. Freshwater
species can be excluded by salinity stress, which causes them

to fail in the competition for food and habitat when they oc-
cupy the same ecological niche as alien species (Piscart et al.
2005; Alonso and Castro-Díez 2012). This often enables the
invader species to become the dominant groups in non-native
regions (Alonso and Castro-Díez 2008; Ba et al. 2010; Bäthe
and Coring 2011; Braukmann and Böhme 2011). Survival in a
new territory is also dependent on the degree of envi-
ronmental similarity between the donor and recipient
regions (Ba et al. 2010). There is still no detailed data
on the resistance mechanisms of alien species to the
salinity of water. There are also cases in which exotic
aquatic species have colonised and become well
developed in freshwaters. Piscart et al. (2011) showed
that many non-native species have a salinity tolerance
that is similar to native species. This also proves that
other biotic and abiotic factors such as temperature,
waste water pollution, increases in sedimentation, nutri-
tion, microhabitat structure, hydromorphological degradation
and different biological interactions are important for a suc-
cessful invasion and that these factors should be considered
together (Velasco et al. 2006; Bäthe and Coring 2011).

To date, the impact of anthropogenic salinity on a whole
benthic macroinvertebrate fauna has primarily been studied in
running waters (e.g. Ziemann 1997; Kefford et al. 2003;
Piscart et al. 2005; Piscart et al. 2006a, b; Bäthe and Coring
2011; Kefford et al. 2011; Piscart et al. 2011; Cañedo-
Argüelles et al. 2013) and in laboratory experiments (e.g.
Kefford et al. 2004; Carver et al. 2009; Cañedo-Argüelles
et al. 2014; Hintz et al. 2017; Schuler et al. 2017).
Meanwhile, research that focuses only on malacocoenosis
and on anthropogenic saline water bodies (e.g. Kašovská
et al. 2014) with a large gradient of anthropogenic salinity is
scarce. Such studies were conducted only in natural ecosys-
tems such as lakes (e.g. Timms 1981, 1983; Hammer et al.
1990; Williams et al. 1990; Wollheim and Lovvorn 1995,
1996; Anufriieva and Shadrin 2018) and wetlands (e.g.
Brock and Shiel 1983; Pinder et al. 2005). Therefore, the
objectives of the presented study were to determine the com-
position and structure of the mollusc communities along the
anthropogenic salinity gradient; to assess the impact of other
environmental factors on the biodiversity, abundance and bio-
mass of the molluscs in the anthropogenic water bodies that
are located in an area of underground coal mining and to
identify species that might be useful in monitoring of water
bodies contaminated with salt.

Materials and methods

Study area

The research was conducted once a month from June to
October in 2016 and in June, July, August, October and
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November in 2017 in nine anthropogenic water bodies with
different salinity degrees. All of the ponds are situated in one
of the most industrialised and urbanised regions in Europe and
one of the largest coal basins in the world—the Silesian
Region (southern Poland) (Fig. 1). The entire area has
strongly been affected by underground coal mining. It
has almost no natural water bodies , and i t is
characterised by a large concentration of anthropogenic
reservoirs, including mining subsidence ponds and set-
tling ponds (Jaruchiewicz 2014). The investigated ponds
were created as a result of land subsidence over
exploited hard coal seams and were used by coal mines
to retain saline underground waters (Table 1). According
to the classification of Hammer et al. (1990), three
freshwater ponds (numbers 1, 2, and 3) (TDS < 0.5 g
L−1), three subhaline (numbers 4, 5, and 6) (TDS =
0.5–3.0 g L−1) and three hypohaline water bodies (num-
bers 7, 8, and 9) (TDS = 3.0–20.0 g L−1) were selected
for the study. Their characteristics are presented in
Table 1.

Field surveys and laboratory analysis

In each pond, samples of molluscs were taken by the quanti-
tative method using a 25 × 25 cm frame that was placed
randomly at three sites in two habitats, i.e. unvegetated bottom
sediments and sediments that had been overgrown by macro-
phytes. A total of 143 samples were taken during the study
period. The samples of molluscs were transported to the lab-
oratory in plastic containers and then sieved with a 0.4-mm
diameter mesh, sorted and preserved in 80% ethanol. The
molluscs were identified to the species level based on their
morphological and anatomical features according to Glöer and
Meier-Brook (1998), Glöer (2002) and Jackiewicz (2000).
The nomenclature follows Piechocki and Wawrzyniak-
Wydrowska (2016). The collected specimens were counted
and weighed (wet mass) on laboratory scales that have an
accuracy of 0.001g. The density of individuals per 1 m2 was
estimated.

The zoocenological analysis of the communities of mol-
luscs was based on the following indices:

Fig. 1 Location of the anthropogenic ponds that were studied (1–3 freshwater, 4–6 subhaline, 7–9 hypohaline)
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1. Dominance index (D): D = ka/K × 100, where k is the
number of individuals of a species and a and K are the total
number of individuals in a sample. The following dominance
classes were used according to Górny and Grüm 1981—
eudominants: D > 10%, dominants: D = 5.1–10%, subdomi-
nants: D = 2.1–5.0%, recedents: D < 2.0% and subrecedents:
≤ 1.0% of sample.

2. Constancy (C): C = n/N × 100, where n is the number of
samples in which a given species occurs and N represents the
total number of samples.

3. The Shannon-Wiener index (Hauer and Lamberti 2006):
H’ = −∑ (Pi)(log2Pi), where Pi = Ni/N − the proportion of
individuals of species i.

During the sampling of the molluscs, samples of the water
were also taken from each pond once a month. Water vari-
ables, i.e. conductivity, pH, total dissolved solids (TDS), tem-
perature and dissolved oxygen, were measured in the field
using Hanna Instruments and WTW portable metres. Other
variables: alkalinity, iron, chlorides, nitrate nitrogen, nitrite
nitrogen, ammonium nitrogen, phosphates, calcium, magne-
sium, potassium and sulphates, were analysed in the laborato-
ry usingmetres and reagents byHanna Instruments andMerck
according to the standard methods of Hermanowicz et al.
(1999).

Additionally, samples of bottom sediments were collected
in order to determine the content of organic matter and select-
ed heavy metals and the grain size composition of bottom
sediments in all of the water bodies. The total organic matter
content (%) from the habitats that had been overgrown by
macrophytes and from unvegetated bottom sediments was de-
termined using the loss-on-ignition (LOI) method, which
measures weight loss in sediment samples after combusting
them at 550 °C according to PN-88/B04481 (Myślińska
2001). The total content of heavy metals (Cd, Cu, Zn, Pb) in
the bottom sediments was determined after homogenisation
and mineralisation with aqua regia (nitric acid and hydrochlo-
ric acid in a molar ratio of 1:3) using an inductively coupled
plasma-optical emission spectroscope (ICP OES), while their
fractional composition was determined using an inductively
coupled plasma-mass spectrometry (ICP MS) according to
Tessier’s procedures (Tessier et al. 1979) and were partitioned
into five fractions: exchangeable, bound to carbonates, bound
to Fe-Mn oxides, bound to organic matter and residual. The
grain size composition of the bottom sediments was deter-
mined using the sieve method.

Recorded macrophytes were identified to the species or
genus level according to Szafer et al. (1986) at the sampling
sites.

Data analyses

The significance of differences in the water variables among
the ponds with different water salinity levels (according to theTa
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classification of Hammer et al. 1990) was calculated using the
ANOVA Kruskal-Wallis and multiple comparisons post hoc
test because the data did not have a normal distribution (using
the Kolmogorov–Smirnov test for normality). The analyses
were performed using Statistica (version 13.1).

A non-metric multidimensional scaling (NMDS) on log (x
+ 1)-transformed mollusc abundance data and the Bray-Curtis
distance measure was used for testing the grouping of the
examined substrate types (unvegetated bottom sediments
and sediment overgrown by macrophytes). Variation in mol-
lusc community structure was visualised graphically using a
principal coordinates ordination (PCO) on the basis of Bray-
Curtis distance measure. All these analyses were performed
using the Canoco ver. 5.0 package.

The relationship between the composition of the mollusc
communities and the environmental variables was determined
using canonical correspondence analysis (CCA) (CANOCO
5.0). A unimodal analysis was chosen because the length of
the gradient was long (3.541 as determined using a detrended
correspondence analysis on 26 segments with only the species
data). Prior to CCA, the forward selection method for envi-
ronmental variables (conductivity, TDS, pH, alkalinity, oxy-
gen, temperature, chlorides, calcium, magnesium, sulphates,
potassium, nitrate nitrogen, nitrite nitrogen, ammonium nitro-
gen, phosphates, iron, organic matter in sediments, type of
substrate, grain size composition of bottom sediments) was
applied using the Monte Carlo permutation test (499 runs) to
find the variables that best explained the composition of the
mollusc fauna. The Pearson product-moment correlations
were then calculated among the selected environmental vari-
ables to check for redundancy. Rare taxa (those that occurred
in only one sample) were removed from the analysis in order
to reduce the noise in a data set (Gauch 1982). After removing
the rare taxa and redundancy among the significant environ-
mental variables (conductivity and the major ions, i.e. chlo-
rides, sulphates, potassium, calcium and magnesium were ex-
cluded from the analysis because they correlated with TDS as
a measure of salinity—Fig. 2), 11 environmental variables and
15 species were used in the final CCA. The analysis was
performed on log (x + 1)-transformed taxa and environmental
data. The results were displayed graphically in ordination di-
agrams using CanoDraw (version 4.12).

Multiple regression analyses (stepwise backward variable
elimination) were used to assess relationships between envi-
ronmental variables and mollusc density and the taxa richness.
With each step in a regression, the environmental variable
with the lowest partial effect indicated by the highest p value
was removed until only environmental variables related (p ≤
0.05) to the mollusc variables remained. These analyses were
performed using Statistica ver. 13.1.

Cluster analysis using the Bray-Curtis distance measure
and the unweighted pair-group method with arithmetic mean
(UPGMA) linkage method was used to assess the similarity of

the mollusc fauna among the studied ponds. Species that oc-
curred in only one sample were excluded. The analysis was
computed using MVSP software (Kovach Computing
Services, version 3.13p).

Results

Habitat characteristics of the investigated ponds

In total, 35 macrophyte taxa were recorded in the investigated
water bodies. Mougeotia sp., Cladophora sp., Zanichella
palustris (L.), Najas marina (L.) and Ruppia maritima (L.),
which can tolerate elevated water salinity (Podbielkowski and
Tomaszewicz 1996), occurred only in the subhaline and
hypohaline water bodies. Trapa natans (L.), which is legally
protected in Poland (Dz U 2014), occurred in one of the fresh-
water ponds. Five taxa of macroalgae were found during the
study period (Table 2). Management of all of the freshwater
ponds (1 to 3) and subhaline ponds (4 to 6) includes the re-
moval of macrophytes.

Data summarising the physical and chemical variables of
the water in the investigated water bodies are given in Table 3.
A relatively high concentration of dissolved oxygen was
found in all of the ponds (maximum: from 12.9 mg dm−3 in
the subhaline ponds to 17.6 in the hypohaline ponds). The
content of nutrients (nitrate nitrogen, nitrite nitrogen, ammo-
nium nitrogen and phosphates) was the lowest in the subhaline
water bodies (Table 3). Percent ionic composition of the stud-
ied ponds determined from concentration in mEq L−1 are
shown in Table 4. In the 1, 2 and 3 ponds (freshwaters), the
highest contribution of calcium was observed, while chlorides
dominated in the subhaline and hypohaline water bodies
(numbers 5, 6, 8, and 9). In the ponds 4 and 7, the highest
percentage share had sulphates (Table 4). The Kruskal-Wallis
ANOVA test revealed statistically significant differences in
the median value of conductivity (H = 63.13141, p <
0.0001) and the median concentration of total dissolved solids
(H = 63.13141, p < 0.0001), chlorides (H = 60.95674, p <
0.0001), sulphates (H = 45.23897, p < 0.0001), potassium (H
= 37.00591, p < 0.0001), magnesium (H = 53.37663, p <
0.0001) and iron (H = 28.45855, p < 0.0001) between the
hypohaline, subhaline and freshwater ponds. The Kruskal-
Wallis ANOVA test also showed significant differences in
the median concentration of nitrite nitrogen (H = 24.35032,
p < 0.0001) and calcium (H = 52.13484, p < 0.0001) between
the hypohaline ponds and the other types of water bodies and
in the median concentration of ammonium nitrogen (H
= 22.62095, p < 0.0001) between the subhaline and
other types of ponds. The subhaline and freshwater
ponds differed significantly in the median value of the
water pH and the hypohaline and freshwater water bod-
ies in the median value of alkalinity.
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The organic matter content in the bottom sediments of the
studied anthropogenic water bodies ranged from 0.4 to 54.0%.
The Kruskal-Wallis ANOVA test revealed statistically signif-
icant differences in the median content of organic matter in the
sediments (H = 68.30246, p < 0.0001) between all of the types
of ponds. The highest concentration of bioavailable Cd and
Cu were found in the hypohaline water bodies, whereas bio-
available Zn and Pb were found in the subhaline water bodies
(Table 3). The bottom sediments of the freshwater ponds and

one hypohaline pond (9) were built mainly of sand, whereas
gravel predominated in the sediments in the other water bodies
(4–8) (Table 1).

Mollusc communities

In total, 20 mollusc species were recorded in the inves-
tigated water bodies—14 gastropod species and 6 bi-
valve species (Table 5). Among them, three alien

Fig. 2 Linear regression equations for the conductivity (a), chlorides (b), sulphates (c), potassium (d), calcium (e) and magnesium (f) as the function of
the total dissolved solids (TDS); r: the Pearson coefficient, P: level of significance
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gastropods were recorded, i.e. P. antipodarum, P. acuta
and F. fragilis. Potamopyrgus antipodarum only oc-
curred in the hypohaline ponds. The share of bivalves
in the total number of collected molluscs was low. The
highest density and biomass of Mollusca were noted in
the subhaline water bodies (Table 5).

Mollusc communities in relation to environmental
factors

The NMDS analysis based on log (x + 1) transformed abun-
dance data did not indicate the grouping of the sampling sites
with different substrate types (Fig. 3).

Table 2 The occurrence of
macrophytes at the sampling sites
in the investigated freshwater
(1–3), subhaline (4–6) and
hypohaline (7–9) water bodies

Taxa Ponds

Freshwater Subhaline Hypohaline

1 2 3 4 5 6 7 8 9

Eleocharis palustris (L.) Roem. & Schult. x x

Phragmites australis (Cav.) Trin. Ex. Steud. x x x x x x x x x

Persicaria amphibia L. x

Myriophyllum spicatum L. x x x

Typha angustifolia L. x x x x

Typha latifolia L. x x x x x

Najas marina L. x x x x x

Ceratophyllum demersum L. S. Str. x x

Potamogeton crispus L. x x x x x

Scirpus sylvaticus L. x x x

Lycopus europaeus L. x x

Lythrum salicaria L. x

Stuckenia pectinata (L.) Börner x

Ranunculus aquatilis L. x

Ranunculus circinatus Sibht. x x

Sparganium erectum L. x

Lemna minor L. x

Alisma plantago-aquatica L. x x x

Schoenoplectus lacustris (L.) Palla x

Trapa natans L. x

Solanum dulcamara L. x

Juncus conglomeratus L. x

Juncus bulbosus L. x

Iris sibirica L. x

Ruppia maritima L. x

Mentha aquatica L. x

Potamogeton natans L. x

Galium palustre L. x

Zannichellia palustris L. x

Chara vulgaris L. x

Enteromorpha sp. x x x

Cladophora sp. x x x

Mougeotia sp. x

Spirogyra sp. x

Lyngbya sp. x

No. of taxa in water body 6 16 15 8 11 8 2 2 2

No. of taxa in salinity type of water bodies 26 16 4
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The PCO plot (Fig. 4) showed that the structure of the
mollusc communities changed: P. antipodarum occurs abun-
dantly in the more saline ponds, while P. acuta and F. fragilis
were more common in the freshwater ponds. On the other
hand, there were no seasonal changes in the communities.

The CCA with a forward selection of environmental vari-
ables showed that TDS, pH, alkalinity, nitrate nitrogen, am-
monium nitrogen, iron, the content of organic matter in the
sediments, type of substrate (unvegetated bottom sediments
and sediments that had been overgrown by macrophytes),
the content of sand and gravel in the bottom sediments best
explained the variance in the distribution of mollusc species in
the studied ponds. The first two axes explained 21.2% of the
variance in the taxa data and 64.9% of the variance in the
relationship between the taxa and environmental variables.
Potamopyrgus antipodarum was associated with a high con-
tent of TDS, whereas the other species were found in waters
with lower TDS values (Fig. 5). Segmentina nitida (Müller,
1774) and F. fragilis were more abundant on the bottoms that
had been overgrown by macrophytes and those with a higher

content of sand in the sediments. Physa acuta and Radix
balthica Linnaeus, 1758 were associated with a higher content
of ammonium nitrogen in the water, whereas R. auricularia
(Linnaeus, 1758),U. pictorum,Gyraulus alba (Müller, 1774),
G. crista, Hippeutis complanatus (Linnaeus, 1758),
Planorbarius corneus (Linnaeus, 1758) and Lymnaea
stagnalis (Linnaeus, 1758) were associated with a higher con-
tent of iron in the water (Fig. 5). The relationship between the
composition of mollusc species and the environmental vari-
ables was significant (Monte Carlo test of significance of the
first canonical axis [eigenvalue = 0.358], F ratio = 14.147, p =
0.002; test of significance of all of the canonical axes [trace =
0.933], F ratio = 4.501, p = 0.002).

Potamopyrgus antipodarum was the only species that was
recorded in the hypohaline waters with a salinity of up to
17.1 g L−1. Physa acuta, F. fragilis, L. stagnalis, G. crista,
R. balthica, A. anatina and U. pictorum were noted in waters
in which the salinity did not exceed 2.59 g L−1. However,
Aplexa hypnorum (Linnaeus, 1758), P. corneus ,
Bathyomphalus contortus (Linnaeus, 1758) and Anisus

Table 3 The physical and
chemical variables of the water,
organic matter content and
selected heavy metal content in
the bottom sediments in the
investigated types of water bodies

Ponds

Parameter Freshwater (ranges) Subhaline (ranges) Hypohaline (ranges)

Water

Temperature (°C) 7.9–27.1 6.8–26.2 10.7–25.6

Dissolved oxygen (mg L−1) 2.5–15.3 4.9–12.9 6.8–17.6

pH 6.4–9.6 7.1–8.7 7.1–8.5

Alkalinity (mg L−1) 40–250 110–300 150–445

Conductivity (μS cm−1) 220–910 1130–5200 7750–42,400

Total dissolved solids (mg L−1) 100–450 560–2590 3860–21,100

Chlorides (mg L−1) 8–167 111–1090 920–19,000

Potassium (mg L−1) 1–10 4–48 30–92

Sulphates (mg L−1) 23–147 132–720 750–3600

Calcium (mg L−1) 10–124 64–135 200–995

Magnesium (mg L−1) 1.2–28 0.7–51 180–340

Nitrate nitrogen (mg L−1) 0–13.6 0–8.0 0.06–10.5

Nitrite nitrogen (mg L−1) 0–0.2 0–0.04 0.001–1.8

Ammonium nitrogen (mg L−1) 0.1–9.3 0.03–0.7 0.3–5.7

Phosphates (mg L−1) 0–2.2 0–0.2 0.001–1.2

Iron (mg L−1) 0.1–2.8 0.01–1.0 0.06–1.6

Sediments

Organic matter (%) 0.4–54.0 1.2–34.4 2.2–35.4

Cadmium bioavailable (μg kg−1) 97–791 248–568 361–1445

Cadmium total (μg kg−1) 97–814 304–634 378–1472

Copper bioavailable (μg kg−1) 1789–7236 9385–20,197 12,370–21,156

Copper total (μg kg−1) 2633–23,736 12,755–32,547 23,670–31,956

Lead bioavailable (μg kg−1) 5948–21,783 3716–44,396 3068–19,289

Lead total (μg kg−1) 2966–29,853 11,786–55,046 13,268–39,689

Zinc bioavailable (μg kg−1) 15,278–104,626 19,447–122,495 63,421–75,971

Zinc total (μg kg−1) 26,478–168,926 61,547–168,982 80,521–131,682
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spirorbis (Linnaeus, 1758) were only present in freshwaters
with TDS of up to 0.45 g L−1 (Fig. 6).

A regression analysis revealed that total mollusc density
was positively related to alkalinity and negatively related to
nitrate nitrogen (adj. R2 = 0.205, p = 0.024 and p = 0.029). The
taxa richness was negatively related to TDS (adj. R2 = 0.325, p
= 0.00048).

A cluster analysis, which was based on the structure of the
mollusc communities, separated the hypohaline and subhaline
ponds (i.e. ponds 4 to 9) in a distinct group in relation to the
freshwater ponds (ponds 1 to 3) (Fig. 7).

Discussion

Many previous studies have shown that increasing salinity
results in the elimination of sensitive taxa and their replace-
ment by eurytopic species (e.g. Williams et al. 1990; Boets
et al. 2012; Kefford et al. 2012; Arle and Wagner 2013; Szöcs
et al. 2014; Patnode et al. 2015). Salt-tolerant species includ-
ing alien species usually become greatly abundant as a result
of a lack of competition (an additional effect of a decrease in
species richness) and then communities became monospecific
(Williams et al. 1990; James et al. 2003; Carver et al. 2009;
Bäthe and Coring 2011). Our survey results are consistent
with this hypothesis—only P. antipodarum occurred in the
hypohaline water bodies (TDS above 3.9 g L−1). Thus, the
study may confirm that salinisation may be a factor contribut-
ing to the success of alien species in freshwater environments.
This finding is consistent with the result of previous research
by Piscart et al. (2005), Velasco et al. (2006), Piscart et al.
(2011) and Arle and Wagner (2013). Kašovská et al. (2014)
recorded the highest share of P. antipodarum and P. acuta,
while Piscart et al. (2005, 2006a) observed P. antipodarum,
Corbicula fluminalis (O.F. Müller, 1774) and D. polymorpha
in waters with a high content of salt. In turn, Braukmann and

Böhme (2011) noted that P. antipodarum reached 99.8% of
the total number of all specimens over all of the recorded taxa.
Kašovská et al. (2014) stated that the New Zealand mud snail
could be a potential bioindicator of a high amount of salt in
inland waters. The results of the presented study are consistent
with this statement. The recorded density of P. antipodarum in
this survey was relatively high compared to the studies men-
tioned above and reached up to 12 150 individuals m−2. Even
a single snail that is introduced into a new habitat can start a
population in a short period of time in various types of aquatic
ecosystems—from freshwater to saltwater and from lotic to
lentic ecosystems (Wallace 1985; Ponder 1988; Økland 1990;
Gangloff 1998; Jensen et al. 2001; Duft et al. 2003; Lewin
2012). To date, the majority of studies on the impact of water
salinity on the New Zealand mud snail have been focused on
its tolerance (Hoy et al. 2012), growth rate (Herbst et al. 2008)
and the effects of water salinity on its fecundity under field
conditions (Gérard et al. 2003; McKenzie et al. 2013) or in
laboratory experiments (Jacobsen and Forbes 1997; Drown
et al. 2011; Vazquez et al. 2016). The research has shown
the broad salinity tolerance of P. antipodarum. It can live in
salinity up to 64‰, but the species is able to reproduce only in
water with salinity up to 18‰ (Duncan and Klekowski 1967).

Previous studies in the anthropogenic water bodies in the
area that was studied by us (e.g. Strzelec et al. 2006; Lewin
2012; Spyra and Strzelec 2014; Strzelec et al. 2014; Lewin
et al. 2015; Spyra and Strzelec 2015; Spyra 2017) indicated
that P. acuta and F. fragilis are becoming a more and more
common and abundant in such habitats. The presented results
confirmed that alien P. acuta and F. fragilis are associated with
waters that are rich in nutrients. Moreover, F. fragilis occurred
most frequently at the sites that had been overgrown by
macrophytes. Spyra and Strzelec (2015) determined that
F. fragilis prefers floating Nuphar lutea (L.) Sibth. & Sm.
leaves as a substrate for life, and its abundance was the lowest
on P. australis. In the presented study, the highest share of
F. fragilis was recorded in the freshwater ponds, which had
the highest richness of macrophytes. This may be related to
the fact that vascular plants are a food source for grazers,
provide dead organic matter for detritivorous and create a
favourable habitat for the growth of the periphyton that snails
eat and where they can breed and hide from predators (Storey
1971; Thomaz and Ribeiro da Cunha 2010; Spyra and
Strzelec 2015). It appears that the numerous occurrences of
macrophytes in water bodies with low salinities were associ-
ated with a high content of nutrients in the water.

Clements et al. (2006) and Garg et al. (2009) noted that the
species richness and distribution ofMollusca is affected by the
cumulative effect of macrophytes, a high content of calcium in
the water and pH. In turn, the laboratory experiment of
Berezina (2003) demonstrated that the development of mol-
luscs is primarily associated with the concentrations of sodi-
um, magnesium and potassium in the water. The survey of Pip

Table 4 Percent ionic composition of the investigated freshwater (1–3),
subhaline (4–6) and hypohaline (7–9) water bodies

Ponds Ca2+ Mg2+ K+ SO4
2

−
Cl− TDS

1 49.8 13.4 2.0 20.9 13.9 382

2 36.4 8.9 1.9 19.6 33.2 325

3 35.0 24.0 1.2 25.7 14.1 108

4 26.7 12.1 1.1 35.9 24.2 691

5 21.5 9.5 0.8 31.8 36.4 892

6 16.8 3.5 1.1 29.5 49.1 1716

7 22.8 17.4 0.9 34.9 24.0 5184

8 3.6 6.2 0.4 5.5 84.2 14,519

9 12.9 5.9 0.4 4.9 76.0 16,669
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(1986) showed that the densities of co-occurring mollusc spe-
cies, the presence of parasites and predators and the availabil-
ity of food have a significant influence on malacofauna. The
presented research showed that the salinity affected the
malacofauna in the studied anthropogenic water bodies the
most. Water salinity above 17.1 g L−1 TDS created conditions
that prevented the survival of molluscs. Many studies in saline
ecosystems have shown a direct relationship between the spe-
cies richness of macroinvertebrates and salinisation (e.g.
Timms 1983; Hammer et al. 1990; Williams and Williams
1998; Piscart, et al. 2005; Carver et al. 2009; Uwadiae 2009;
Bäthe and Coring 2011; CCME 2011). In general, biodiversity
decreases with an increasing salinity. Braukmann and Böhme
(2011) noted that waters with the highest salt concentration
were extremely poor in species. Almost all of the benthic

groups had disappeared. Our research indicated that the
highest density, biomass and biodiversity (expressed by the
Shannon-Wiener index H') of mollusc communities were re-
corded in the subhaline water bodies, which had a medium
content of TDS: 0.56–2.6 g L−1. Some authors have also ob-
served that aquatic macroinvertebrates had the highest bio-
mass and diversity in intermediate salinities (e.g. Hammer
et al. 1990; Williams et al. 1990; Cañedo-Argüelles et al.
2014). Timms (1983) related this pattern to increased primary
production in aquatic ecosystems with an intermediate salini-
ty, whereas Williams et al. (1990) related it to the broad range
of salinity tolerance of species in such conditions. Moreover,
Piscart et al. (2006b) considered that the medium content of
salt in water creates favourable conditions for salt-tolerant and
salt-sensitive species.

Table 5 Values of the dominance
(D%) and constancy (C%) indices
that were calculated for the
mollusc communities in the water
bodies with different salinity
levels

Taxa Ponds

Freshwater Subhaline Hypohaline

D (%) C (%) D (%) C (%) D (%) C (%)

Potamopyrgus antipodarum (Gray, 1843) 3.7 12.8 90.5 100 100 43.8

Physa acuta (Draparnaud, 1805) 49.7 42.6 5.9 75

Lymnaea sp. (Linnaeus, 1758) 5.2 6.4 1.6 18.8

Lymnaea stagnalis (Linnaeus, 1758) 1.2 10.6

Radix auricularia (Linnaeus, 1758) 1.5 12.8 0.1 10.4

Radix balthica Linnaeus, 1758 0.1 12.5

Aplexa hypnorum (Linnaeus, 1758) 0.3 2.1

Anisus spirorbis (Linnaeus, 1758) 0.2 2.1

Bathyomphalus contortus (Linnaeus, 1758) 0.2 2.1

Ferrissia fragilis (Tryon, 1863) 17.9 17 0.7 22.9

Gyraulus albus (O. F. Müller, 1774) 3.0 10.6 0.05 6.3

Gyraulus crista (Linnaeus, 1758) 9.3 8.5 0.2 25

Hippeutis complanatus (Linnaeus, 1758) 3.4 8.5 0.03 6.3

Segmentina nitida (O. F. Müller, 1774) 0.03 4.2

Planorbarius corneus (Linnaeus, 1758) 1.3 6.4

Anodonta anatina (Linnaeus, 1758) 1.7 6.4 0.7 45.8

Unio pictorum (Linnaeus, 1758) 1.3 6.4 0.02 6.3

Unio tumidus Philipsson, 1788 0.01 2.1

Pisidium henslowanum (Sheppard, 1823) 0.06 8.3

Pisidium subtruncatum Malm, 1855 0.1 14.6

Musculium lacustre (O. F. Müller, 1774) 0.01 2.1

Total individuals 593 14,009 6099

Density (individuals m−2) (range) 0–624 21–13,168 0–5952

Mean density (individuals m−2) 67 1557 678

Biomass (g m−2) (range) 0–1105.42 0.15–1736.76 0–17.62

Mean biomass (g m−2) 46.52 273.23 2.32

Total number of species 15 16 1

Number of species (range) 0–9 1–7 0–1

Shannon-Wiener index H' (range) 0–1.78 0–1.48 0

Mean Shannon-Wiener index H' 0.31 0.52 0
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Zinchenko and Golovatyuk (2013) recorded the presence
of molluscs in rivers with salinities that were no higher than
6.8 g L−1. The survey of Piscart et al. (2005) indicated that the
most favourable values of water mineralisation is 0.46-2.6 g

L−1 for the development of D. polymorpha, C. fluminalis,
P. corneus, Physa sp., Gyraulus sp. and Radix sp. According
to Metzeling (1986), the highest densities of molluscs are
observed in water with a salinity of less than 1 g L−1, whereas

Fig. 4 Principal coordinates analysis (PCO) plot of mollusc communities at freshwater (1–3), subhaline (4–6) and hypohaline (7–9) ponds on the basis of
Bray-Curtis distance measure of the log-transformed data. Sample dates are given as follows: day-month-year

Fig. 3 Result of the non-metric
multidimensional scaling
(NMDS) ordination (based on
log-transformed mollusc abun-
dance data) showing the location
of sampling sites with different
substrate types
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Kefford et al. (2011) found the maximum abundance of
Mollusca in salinities that ranged from 0.64 to 1.0 g L−1.

Similar results were recorded by Kašovská et al. (2014) and
in the laboratory experiments of Berezina (2003). It is worth

Fig. 5 Result of the canonical correspondence analysis (CCA): a
ordination diagram of the best explanatory variables and mollusc
species abundance data. Abbreviations: A.ana: Anodonta anatina, F.fra:
Ferrissia fragilis, G.alb: Gyraulus albus, G.cri: Gyraulus crista, H.com:
Hippeutis complanatus, L.sta: Lymnaea stagnalis, P.acu: Physa acuta, P.

ant: Potamopyrgus antipodarum, P.cor: Planorbarius corneus, P.hen:
Pisidium henslowanum, P.sub: Pisidium subtruncatum, R.aur: Radix
auricularia, R.bal: Radix balthica, S.nit: Segmentina nitida, U.pic:
Unio pictorum

Fig. 6 Distribution of mollusc species along the salinity gradient (B.con:
Bathyomphalus contortus, A.spi: Anisus spirorbis, A.hyp: Aplexa
hypnorum, P.cor: Planorbarius corneus, M.lac: Musculium lacustre,
P.hen: Pisidium henslowanum, S.nit: Segmentina nitida, G.alb:
Gyraulus albus, H.com: Hippeutis complanatus, U.tum: Unio tumidus,

P.sub: Pisidium subtruncatum, R.aur: Radix auricularia, U.pic: Unio
pictorum, F.fra: Ferrissia fragilis, R.bal: Radix balthica, G.cri:
Gyraulus crista, A.ana: Anodonta anatina, L.sta: Lymnaea stagnalis,
P.acu: Physa acuta, P.ant: Potamopyrgus antipodarum)
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adding that many scientists (e.g. Ziemann 1997; Blasius and
Merritt 2002; Kefford et al. 2004; Zalizniak et al. 2009b; Van
Dam et al. 2010; CCME 2011; Johnson et al. 2014; Cañedo-
Argüelles et al. 2016; Dunlop et al. 2015, 2016; Kefford et al.
2016) have shown that the toxic effects of salinisation on
macroinvertebrates are due to the osmotic effect not only of
the total salt concentration in the water but also of the compo-
sition of the major ions as well as of the proportion of these
ions, thus some species that are tolerant of one set of ionic
proportions may be sensitive to another; in addition, some of
the ions may increase or decrease the adverse effect of salinity.

Similar to Piscart et al. (2006b), this study indicated the
highest occurrence of mussels in waters with an intermediate
salinity, especially A. anatina, which has recently disappeared
from several parts of Europe (Beggel and Geist 2015). This
could be explained by the fact that the subhaline ponds were
stocked with the fish that are required for the development of
its glochidia and are a good vector for its dispersion (Pip
1986). All of the life stages of unionid mussels are sensitive
to an elevated content of chlorides (Bringolf et al. 2007), but
glochidia are particularly sensitive to acute exposure (Gills
2011; Echols et al. 2012; Patnode et al. 2015). Beggel and
Geist (2015) found that a chloride concentration above
5962 mg L−1 caused the death of A. anatina glochidium in
laboratory conditions, whereas according to Canadian Water
Quality Guidelines for the Protection of Aquatic Life (2011),
the short-term exposures to chloride levels above 640 mg L−1

may pose the greatest toxic effects on glochidia of certain
freshwater mussel species (CCME 2011).

The results of our study indicated that in addition to water
salinity (expressed by the content of TDS), the distribution of
mollusc species was affected among others by alkalinity and
pH. Previous studies (e.g. Bendell and McNicol 1993;
Skowrońska-Ochmann et al. 2012) showed that molluscs are
the most sensitive group of aquatic biota to acidification; thus,
they are greatly influenced by pH of the water. According to

Hoverman et al. (2011), gastropod richness should be high in
alkaline and large habitats. The densities and number of gas-
tropod species increase at a higher pH (especially above pH
7.0) and decrease below pH 6.0 (e.g. Hall et al. 1980; Økland
1990, 1992; Heino 2000; Spyra 2010, 2017). Økland (1983)
stated that at a low pH of water, calcium ions are hardly avail-
able for freshwater snails. Briers (2003) and Lewin et al.
(2015) found that species such as P. planorbis, P. corneus
and L. stagnalis were associated with a high concentration
of calcium because they are considered to be calciphiles.
Vinogradov et al. (1987) stated that in waters with a low sa-
linity, the concentration of calcium that is needed for shell
building is insufficient for most of molluscs. However,
Berezina (2003) showed that for gastropods of the genus
Planorbis and Lymnaea, a low content of calcium was
favourable and that they were the most tolerant to a decrease
in water salinity. The high share of these snails in the mollusc
communities in the studied freshwater ponds may be due to
the low calcium content compared to the other water bodies.
The laboratory experiments of Zalizniak et al. (2006, 2009a,
b) also indicated that low pH may affect a tolerance on the
water salinity with low calcium concentrations of some inver-
tebrates, especially P. acuta.

Results of our research in ponds with different water salin-
ity located in the one of the largest coal basins in the world
indicated the important role of freshwater and medium-saline
anthropogenic ponds as substitute habitats for malacofauna. In
these water bodies, we noted 17 species that are included on
the European red list of non-marine molluscs as Least
Concern (LC) (Cuttelod et al. 2011). Therefore, such ponds
should be protected against pollution, including salinisation,
because, as our research has shown, the high water salinity is a
significant threat to freshwater malacofauna and contributes to
the colonisation and establishment of alien species.

Monitoring and management of mining wastewater is nec-
essary. We inclined to introduce the regulations proposed by

Fig. 7 Diagram of the faunal
similarities of the studied
freshwater (1–3), subhaline (4–6)
and hypohaline (7–9) ponds using
the Bray-Curtis distance measure
and unweighted pair-group
methods with the arithmetic mean
(UPGMA) linkage method.
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Lach et al. (2006), which include a system for continuous
monitoring of the quantity and quality of underground mine
waters as well as the performance of water tests below the
point of water discharge. These measurements should primar-
ily concern electrical conductivity andmajor ions. Ion-specific
regulations should be included in the regional, national and
global legislation. This would allow for permanent control of
mining activity, to limit contamination and capture of
exceedances of pollutants introduced into the aquatic habitats,
as well as for a real valuation of environmental losses (Bogart
et al. 2018; Cañedo-Argüelles et al. 2018; Schuler et al. 2018).
Moreover, we promote the proposal of Schuler et al. (2018)
that desalinisation technologies could be used by coal mines,
focusing on removing specific ions fromminingwaters and its
phytostabilisation. In order to protect aquatic life from second-
ary salinisation, cooperation between scientists, entrepreneurs,
politicians and the local community is also necessary.
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