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Abstract

This dissertation is a study of some aspects of open quantum systems - phenomena that

emerge in a system that is a quantum particle coupled to thermostat. The problem is

once again revisited and modeled in the well known Caldeira-Leggett framework as a

quantum particle (quantum system) plus quantum thermostat composed of an infinite

number of harmonic oscillators. The composite system is treated as a closed quantum

system. The analysis is performed using the language of quantum generalized Langevin

equations which for particular cases are solved by the Laplace transformation method.

This is by no means a novel problem, nonetheless, as it became apparent, even such

a seemingly well-known system can conceal previously unknown properties. This, in

turn, allows for deeper understanding properties of the system and formulation of new

interpretations of known relations. In this dissertation, I have included the re-derivation

of quantum Langevin equations for two paradigmatic and exactly solvable models: a

free Brownian particle and a harmonic oscillator.

The main result of this dissertation is the formulation of the theorem on partition

of kinetic energy for quantum systems. By virtue of this theorem both mean kinetic

energy Ek at the thermodynamical equilibrium state and, for the case of the harmonic

oscillator, mean potential energy Ep can be expressed as the relations Ek = 〈Ek〉 and
Ep = 〈Ep〉, where 〈Ek〉 and 〈Ep〉 are average kinetic and potential energies per one degree

of freedom of the harmonic oscillators of thermostat. Here, the symbol 〈. . .〉 denotes a
two-fold averaging:

1. over the Gibbs canonical state for the thermostat and

2. over thermostat oscillators frequencies ω which contribute to Ek and Ep according

to the probability distributions Pk(ω) and Pp(ω), respectively.

This can be viewed as a long-awaited quantum counterpart of the classical energy

equipartition theorem and is a significant contribution to fundamentals of quantum

statistical physics.



8

Streszczenie

Niniejsza rozprawa doktorska poświęcona jest zagadnieniu energetyki układów kwan-

towych oddziałujących z termostatem. Omawiany problem został opisany w oparciu

o model Caldeiry-Leggetta: kwantowa cząstka (układ kwantowy) plus kwantowy ter-

mostat składający się z nieskończonej liczby niezależnych oscylatorów harmonicznych.

Analiza przedstawiona w pracy jest oparta na uogólnionych równaniach Langevina,

które rozwiązywałem przy użyciu metody tranformacji Laplace’a. Zagadnienie któremu

poświęcona jest ta rozprawa nie jest w żadnej mierze nowym problem, niemniej jednak

nawet tak dobrze poznane układy mogą skrywać w sobie ciągle nieodkryte własności. To

z kolei może prowadzić do głębszego zrozumienia problemu oraz sformułowania nowych

interpretacji. W rozprawie tej zawarłem analizę dwóch paradygmatycznych i anali-

tycznie rozwiązywalnych modeli: swobodnej cząstki Browna oraz oscylatora harmon-

icznego. Główny rezultat tej pracy zawarty jest w zaproponowanym twierdzeniu o party-

cji energii na mocy którego zarówno średnia energia kinetyczna Ek w stanie równowagi

termodynamicznej, jak i w przypadku oscylatora harmonicznego jego średnia energia

potencjalna Ep, mogą zostać wyrażone za pomocą relacji Ek = 〈Ek〉 i Ep = 〈Ep〉, gdzie
〈Ek〉 oraz 〈Ep〉 są odpowiednio średnią energią kinetyczną i potencjalną przypadającą na

jeden stopień swobody oscylatorów harmonicznych wchodzących w skład termostatu.

Użyty tu symbol 〈. . .〉 oznacza podwójne średniowanie:

1. ze względu na stany zespołu kanonicznego Gibbsa dla termostatu

2. ze względu na częstości oscylatorów termostatu ω, które wnoszą wkład do energii

kinetycznej Ek jak i potencjalnej Ep określony poprzez odpowiednie rozkłady

prawdopodobieństwa Pk(ω) i Pp(ω).

Wynik ten jest odpowiednikiem klasycznego twierdzenia o ekwipartycji energi dla

układów kwantowych i stanowi istotny wkład do kwantowej fizyki statystycznej.
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1 Introduction

Quantum physics shows that its world can exhibit behavior which is radically different

from its classical counterpart. Wave-particle duality, entanglement of states, decoher-

ence, Casimir forces, quantum information: these are generic examples which in turn

carry the potential for new applications in the near or further future. Yet, there remain

new properties, behavior and phenomena to be uncovered in this world. One such an

example is a theorem on equipartition of energy. It is one of the fundamental and

universal laws of classical statistical physics. In this context, the quantum counterpart

of this theorem still has not been formulated for quantum systems. In this PhD thesis,

I attempt to take one step forward. In classical statistical physics, this theorem states

that for each degree of freedom the average kinetic energy equals Ek = kBT/2, where

kB is the Boltzmann constant and T is temperature of the system. Already in 1845

John James Waterston, an often forgotten pioneer of the kinetic theory of gases, pro-

posed equipartition of kinetic energy for translational motion. This idea was further

extended by the fathers of modern statistical physics in the persons of James Clerk

Maxwell (1859) and Ludwig Boltzmann (1876). Since that time the theorem on energy

equipartition has become one of the most important and most useful relations exploited

in various branches of Natural Science, including physics, chemistry and biology. Sur-

prisingly, from the time of Max Planck (1900) and the birth of quantum mechanics,

there is no quantum analogue of the energy equipartition theorem.

In literature, one can find reports on energetics of selected quantum systems [1]. In

Ref. [2], an exact expression for the thermodynamic free energy of a quantum oscillator

interacting, via dipole coupling, with a blackbody radiation field was derived. Next,

the same authors studied a similar problem by the more conventional method using the

fluctuation-dissipation theorem and obtained the expression for kinetic energy of the

quantum oscillator [3]. At the same time, the review on quantum Brownian motion was

published [4]. Formulas for the variance of position and momentum of the oscillator

are presented in Table 2 therein. There are also books [5, 6, 7, 8] in which different

expressions for kinetic energy of a free Brownian particle can be obtained directly or
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indirectly. Lately, kinetic energy of a trapped Fermi gas has been considered [9]. Many

other aspects of quantum Brownian motion have been intensively studied in last few

years [10, 11, 12, 13, 14, 15, 16, 17, 18]. However, the previous results have not been

directly related to the energy equipartition theorem.

In our papers [19, 20, 21, 22], after over 150 years from its first manifestation for

classical systems and after over 100 years of development of quantum theory, we try

to fill this far-reaching gap, at least partially, and derive quantum law for partition

of energy which seemingly has escaped from the researchers eyes for so many years.

The proposed law has an appealing, transparent and simple form in which Ek can be

related to thermal kinetic energy per one degree of freedom of the thermostat consisting

of quantum harmonic oscillators (bosons). It is valid for an arbitrary strength of the

system-thermostat coupling. We derive it for two paradigmatic and exactly solvable

models of quantum open systems: a free Brownian particle and a harmonic oscillator.

Last but not least, we formulate conditions for the validity of this law for a general quan-

tum system. To this aim we apply the Callen-Welton fluctuation-dissipation relation.

However, we still cannot prove the normalization condition of an auxiliary probability

density for arbitrary quantum systems.

Due to its fundamental character, the presented problem is of broad interest (for

all physicists) and has significant implications across all subfields of quantum physics.

Moreover, we propose a new theoretical technique with far-reaching impact in which

the average value of quantum observables in equilibrium state, in particular, kinetic

energy, may be directly inferred solely from the known properties of the heat bath. It is

a challenge to extend our approach to other quantum systems to show that indeed our

proposed law is universal and holds true for all quantum systems. One of the methods

could be based on thermodynamic retarded Green functions which can be calculated for

toy systems or approximately for selected systems and next to test the normalization

condition.

1.1 Structure of the dissertation

The PhD thesis is based on four published papers:
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• 1. P. Bialas and J. Łuczka, Kinetic energy of a free quantum Brownian particle,

Entropy 20, 123 (2018)

• 2. J. Spiechowicz, P. Bialas, and J. Łuczka, Quantum partition of energy for a

free Brownian particle: Impact of dissipation, Phys. Rev. A 98, 052107 (2018)

• 3. P. Bialas, J. Spiechowicz, J. Łuczka, Partition of energy for a dissipative

quantum oscillator, Scientific Reports 8, 16080 (2018)

• 4. P. Bialas, J. Spiechowicz, J. Łuczka, Quantum analogue of energy equipartition

theorem, Journal of Physics A: Mathematical and Theoretical 52, 15 (2019)

The chronology of these papers is different. In the first paper (sent to Entropy at

the end of 2017), I started to attack the problem of calculation of kinetic energy for a

free quantum particle without any attempt to relate it to the theorem on equipartition

of energy. I exploited the method of the integro-differential Langevin equation and

solved this equation for a special form of the integral (memory) kernel by converting

this equation into a set of differential equations. Accidentally we have noticed that the

expression for kinetic energy of the Brownian particle can be interpreted as a mean value

of kinetic energy of the quantum oscillator over some probability distribution P. It was

a stimulus to look deeper into the universality of this expression and next the fourth

paper (J. Phys. A) has been written. The method of solution of the Langevin equation

has been radically simplified and this method allowed to reveal a relation between

the probability density P and the response function R(t) which solves the Langevin

equation. The relation is extremely simple and therefore remarkable. Chronologically

and historically, the fourth paper (J. Phys. A) was the second one (because of a long

procedure in publishing this paper). The next two papers (2 and 3) have been published

without any perturbations and contain a detailed analysis of the problem for selected

examples of dissipation mechanisms in dynamics of selected quantum systems.

The thesis is organized in the following way: In Chapter 2, the theorem on energy

equipartition for classical systems is formulated. I describe an alternative interpreta-

tion of this relation for the total system (the given system + thermostat) being in the
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Gibbs canonical state. I present the method of a generalized Langevin equation for

classical systems and properties of classical thermal noise. The classical version of the

fluctuation-dissipation theorem is reminded. It allows to compare it with its quantum

counterpart. I also show how the energy equipartition relation follows from the standard

Langevin equation. Chapter 3 comprises a brief discussion on quantum Brownian mo-

tion and introduction to the theory of a generalized Langevin equation. I list properties

of quantum thermal noise and quantum version of the fluctuation-dissipation relation.

In Chapters 4 and 5, two exactly solved models are studied: a free Brownian particle and

quantum dissipative oscillator. These two old clichéd models have been re-considered

many, many times by each next generation of physicists. However, it has been difficult

to find a transparent presentation of this fundamental issue of the quantum statistical

physics focused on kinetic energy. Chapter 4 contains a detailed analysis of energetics

for free quantum Brownian motion. This chapter contains a solution of the generalized

Langevin equation. The solution method is based on the Laplace transformation. Next,

I formulate the quantum energy partition theorem and analyze it for a broad spectrum

of specific memory kernels of the generalized Langevin equation. Various forms of the

memory kernels correspond to various dissipation mechanisms of energy. Moreover,

the case of exponentially decaying oscillations of memory kernel is calculated by two

different methods (mainly because of the pedagogical reason and to include the method

used in the first paper). At the end of this chapter, some specific regimes are discussed.

In Chapter 5, the quantum dissipative oscillator is analyzed. An additional aspect is

analyzed, namely, potential energy of the oscillator is re-considered in the framework of

the energy partition. In Chapter 6, I apply the Callen-Welton fluctuation-dissipation

relation to derive the energy partition relation for arbitrary quantum systems. How-

ever, while the positivity (non-negativity) of the probability distribution P is proved,

its normalization is still an open problem and is re-formulated to the question of the

value of the corresponding generalized susceptibility χ(ω) at zero frequency, i.e. what

is the value of χ(0)? In the final part of the thesis, there are five Appendices with

supplemental technical materials.
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2 Equipartition of kinetic energy for classical systems

2.1 Equipartition of energy - Gibbs canonical distribution ap-

proach

In 1845 John James Waterston formulated a version of equipartition of energy for trans-

lational motion [23]. In 1876 Ludwig Boltzmann proposed the following [24]:

For a system in thermodynamic equilibrium, the mean kinetic energy is

equally shared among all degrees of freedom of the system.

We re-derive the formula for equipartition of kinetic energy in classical systems in a

way that allows us to generalize it also for quantum systems.

Let the classical system S of particles be in a thermodynamic equilibrium state with

thermostat (environment, heat bath, surroundings) E of temperature T . The system

S is characterized by the Hamiltonian:

HS = HS(X,P) =
∑
i

P 2
i

2Mi

+
∑
i

US(Xi) +
∑
i,j

VS(Xi, Xj), (2.1)

where X,P are vectors of all coordinates {Xi} and all momenta {Pi} of the system S.

Let the thermostat E be characterized by the Hamiltonian:

HE = HE(x,p) =
∑
k

p2
k

2mk

+
∑
k

UE(xk) +
∑
k,n

VE(xk, xn), (2.2)

where x,p are vectors of all coordinates {xk} and all momenta {pk} of the thermostat

E. The interaction between the system and thermostat is of a general form,

HS−E = HS−E(X,x) =
∑
i,k

λik V (Xi, xk), (2.3)

where the set of parameters {λik} characterizes the coupling strength between the

system and thermostat.

We assume that the thermodynamic equilibrium state of the total system S + E is

described by the Gibbs canonical states P (X,P,x,p) = (1/C0)e−H/kBT , where kB is
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the Boltzmann constant, the total Hamiltonian is the sum:

H = H(X,P,x,p) = HS +HS−E +HE (2.4)

and the normalization constant C0 reads

C0 =

∫ ∞
−∞

dP

∫ ∞
−∞

dX

∫ ∞
−∞

dp

∫ ∞
−∞

dx exp{−H(X,P,x,p)/kBT}. (2.5)

We calculate averaged kinetic energy E (S)
k of one degree of freedom of the system S,

namely,

E (S)
k =

1

2Mi

〈P 2
i 〉 =

1

C0

∫ ∞
−∞

dP

∫ ∞
−∞

dX

∫ ∞
−∞

dp

∫ ∞
−∞

dx
P 2
i

2Mi

exp{−H(X,P,x,p)/kBT}.
(2.6)

Integration yields:

E (S)
k =

1

2Mi

〈P 2
i 〉 =

1

2
kBT.

Next, we calculate averaged kinetic energy E (E)
k of one degree of freedom of the ther-

mostat E:

E (E)
k =

1

2mk

〈p2
k〉 =

1

C0

∫ ∞
−∞

dP

∫ ∞
−∞

dX

∫ ∞
−∞

dp

∫ ∞
−∞

dx
p2
k

2mk

exp{−H(X,P,x,p)/kBT}.
(2.7)

The result reads

E (S)
k =

1

2mk

〈p2
k〉 =

1

2
kBT.

From above consideration it follows that

E (S)
k =

1

2Mi

〈P 2
i 〉 =

1

2
kBT =

1

2mk

〈p2
k〉 = E (E)

k (2.8)

Now, one can re-formulate the theorem on equipartition of kinetic energy in the follow-

ing way:

For each degree of freedom of the system S, its averaged kinetic energy is

equal to the averaged kinetic energy of one degree of freedom of thermostat

E, i.e.,

E (S)
k = E (E)

k (2.9)
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Moreover, E (S)
k does not depend on the number of particles, the form of the potential

US(Xi), the form of interaction VS(Xi, Xj) and the strength of coupling λik between

the system and thermostat. It depends only on temperature T of thermostat.

2.2 Langevin equation

Let us consider a particle (called the Brownian particle) in contact with a large amount

of non-interacting particles forming thermostat. Each particle of thermostat is modeled

as a harmonic oscillator. An interaction between the Brownian particle and thermostat

starts at time t = 0. For time t ≤ 0, thermostat is in the Gibbs canonical state. We

assume the celebrated Caldeira-Leggett Hamiltonian of the total closed system [25]:

H =
P 2

2M
+ U(X) +

∑
k

[
p2
k

2mk

+
mkω

2
k

2
(qk − ηkX)2

]
. (2.10)

The total Hamiltonian can be divided into three parts: the Hamiltonian of the Brownian

particle:

HB =
P 2

2M
+ U(X), (2.11)

the Hamiltonian of thermostat:

HE =
∑
k

[
p2
k

2mk

+
mkω

2
k

2
q2
k

]
(2.12)

and bi-linear interaction:

HI =
∑
k

mkηkω
2
k qkX (2.13)

The last part
∑

kmkω
2
kη

2
kX

2/2 is a counter-term which must be included to ensure that

dissipation is homogeneous in all space.

2.2.1 Derivation of Langevin equation

We want to construct an effective dynamics of the Brownian particle. To this aim we

use the Hamilton equations of motion for all degrees of freedom, both for the particle
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and for thermostat. They read

Ẋ(t) = {X,H} =
P

M
, (2.14)

Ṗ (t) = {P,H} =
∑
k

ηkω
2
kmk (qk − ηkX)− U ′(X), (2.15)

q̇k(t) = {qk, H} =
pk
mk

, (2.16)

ṗk(t) = {pk, H} = ω2
kmk (Xηk − qk) , (2.17)

where

U ′(X) =
d

dX
U(X). (2.18)

The last two Hamilton equations can be rewritten in the form of one second order

differential equation:

mk
d2

dt2
qk (t) = ηkω

2
kmkX(t)− ω2

kmk qk (t) (2.19)

This inhomogeneous differential equation can be solved by the Green’s function method:

qk(t) = qk0 cos (ωkt)+
pk0

mkωk
sin (ωkt)+ηkωk

∫ t

0

ds sin [ωk (t− s)]X(s), t > 0, (2.20)

where qk0 = qk(0) and pk0 = pk(0) are initial values of the coordinate and momentum of

the thermostat oscillators, respectively. Next, we insert it into Eq. (2.15). From (2.14)

and (2.15) we then obtain

M
d2

dt2
X(t) = −U ′(X(t))− η2

kω
2
kmkX(t) + ηkω

2
kmk qk (t)

= −U ′(X(t))−
∑
k

η2
kω

2
kmkX(t)

+
∑
k

ηkω
2
kmk

{
qk0 cos (ωkt) +

pk0 sin (ωkt)

mkωk
+ ηkωk

∫ t

0

ds sin [ωk (t− s)]X(s)

}
(2.21)

We integrate by parts the integral term and finally we get the effective equation in the

form

MẌ(t) + U ′(X(t)) = −
∫ t

0

ds γ(t− s)Ẋ(s)− γ(t)X(0) + F (t), t > 0, (2.22)
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where

γ(t− s) =
∑
k

c2
k

mkω2
k

cosωk(t− s) (2.23)

is the memory kernel or the dissipation function and

F (t) =
∑
k

ck

[
qk0 cos(ωkt) +

pk0 sin(ωkt)

mkωk

]
(2.24)

is the fluctuating force - the random force or thermal noise which arise from random

(or uncertain) initial conditions for positions and momenta of the thermostat particles.

Moreover, we have introduced the rescaled coupling parameters

ck = ηkmkω
2
k. (2.25)

Although we do not know precisely initial conditions for thermostat, we can assume their

initial probability distribution. Eq. (2.22) is called a generalized Langevin equation and

alone it does not offer the full description of the investigated problem. In order to get

the full picture, we have to assume properties of classical thermal noise F (t).

2.2.2 Classical thermal noise

We assume that at initial time t = 0, thermostat is in the state of thermal equilibrium

and is characterized by the Gibbs canonical distribution:

f(q̄, p̄) = C0 exp

(
− HE

kBT

)
(2.26)

where q̄ = (q1, q2, . . .) and p̄ = (p1, p2, . . .) refer to thermostat degrees of freedom. The

constant C0 is the normalization parameter determined by the condition∫ ∞
−∞

∫ ∞
−∞

dq̄dp̄f(q̄, p̄) = 1 (2.27)

Because the Hamilton function of thermostat is a quadratic form, the distribution f(q̄, p̄)

is a Gaussian distribution. Taking into account properties of the Gaussian distribution,
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we can calculate the mean values for positions and momenta:

〈xk(0)〉 = 0 (2.28)

〈pk(0)〉 = 0 (2.29)

〈pk(0)pj(0)〉 =
〈
pk(0)2

〉
δk,j = mkkBTδk,j (2.30)

〈xk(0)xj(0)〉 =
〈
qk(0)2

〉
δk,j =

kBT

mkω2
k

δk,j (2.31)

〈pk(0)xj(0)〉 = 0 (2.32)

From the above relations one can deduce properties of thermal noise. It is a stochastic

Gaussian process of zero-mean,

〈F (t)〉 =
∑
k

ck

[
〈qk(0)〉 cos(ωkt) +

〈pk(0)〉 sin(ωkt)

mkωk

]
= 0 (2.33)

and its correlation function reads

〈F (t1)F (t2)〉 =
∑
k

c2
k

[〈
qk(0)2

〉
sin(ωkt1) sin(ωkt2) +

〈pk(0)2〉
m2
kω

2
k

cos(ωkt1) cos(ωkt2)

]
(2.34)

At this point we can utilize Eqs. (2.30) and (2.31) and it allows to write down the noise

correlation function as

〈F (t1)F (t2)〉 = kBT
∑
k

c2
k

mkω2
k

cos (ωk (t1 − t2)) (2.35)

We note that the above expression resembles a definition of the memory kernel γ(t) in

Eq. (2.23). Hence, we can write:

〈F (t1)F (t2)〉 = kBTγ(t1 − t2) (2.36)

This constitutes the fluctuation-dissipation theorem for classical systems. Previously

described reasoning and utilizing properties of the noise term allows to obtain a full pic-

ture of a classical Brownian motion in the form of the effective equation - the generalized

Langevin equation:

MẌ(t) + U ′(X(t)) = −
∫ t

0

dsγ(t− s)Ẋ(t)− γ(t)X(0) + F (t), t > 0 (2.37)

〈F (t)〉 = 0 (2.38)

〈F (t1)F (t2)〉 = kBTγ(t1 − t2) (2.39)
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This equation is a basis of many applications to a broad class of problems. The simplest

is the case of a free Brownian particle, i.e. when U(X(t)) ≡ 0 and when thermal noise

is the Dirac delta-correlated Gaussian force F (t). In literature, it is named the ohmic

damping, i.e. when γ(t) = 2γ0δ(t), and F (t) is called Gaussian white noise. In this

case, the generalized Langevin equation (2.37) reduces to the form

MẌ(t) = −γ0Ẋ(t) + F (t) (2.40)

〈F (t)〉 = 0 (2.41)

〈F (t1)F (t2)〉 = 2γ0kBT δ(t1 − t2) (2.42)

It is a Langevin equation for a free Brownian particle which correctly describes prop-

erties of its velocity v(t) = Ẋ(t). In particular, the second moment < v2(t) > is finite.

2.3 Equipartition of energy - Langevin equation approach

Application of the Langevin equation in classical statistical physics is diverse. This ap-

proach was proposed by Paul Langevin to analyze the simplest case of Brownian motion

- the problem discussed by Smoluchowski and Einstein. Langevin in his paper proposed

in his own words "infinitely more simple" approach to this issue. His method is based on

rewriting the problem (2.40) in the form of the stochastic differential equation[26, 27]:

mv̇ = −γv + L(t) (2.43)

〈L(t)〉 = 0 (2.44)

〈L(t)L(s)〉 = ζδ(t− s), ζ = 2γkBT, (2.45)

where v is the velocity of the Brownian particle and L(t) is noise (that arises from

random collisions of the Brownian particle with particles of environment).

The solution of this inhomogeneous linear differential equation reads

v(t) = v0e
−γt/m +

∫ t

0

e−γ(t−τ)/m L(τ) dτ (2.46)

The averaged value of the velocity is

〈v(t)〉 = 〈v0〉 e−γt/m (2.47)
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and the second moment reads

〈
v(t)2

〉
=
〈
v2

0

〉
e−2γt/m +

ζ

2γm
(1− e−2γt/m) (2.48)

For long time, when the equilibrium state is reached, one gets

lim
t→=∞

〈
v(t)2

〉
=

ζ

2γm
=
kT

m
(2.49)

and for mean kinetic energy

Ek =
m 〈v2(t)〉

2
=

1

2
kBT (2.50)

It shows how the energy equipartition relation can be obtained from the Langevin

equation.
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3 Generalized quantum Langevin equation

3.1 Introduction

Physical aspects of classical Brownian motion was studied at the beginning of 20th

century by Einstein and Smoluchowski. The quantum Brownian motion certainly is

the simplest case of a dissipative quantum system. It is a well-known problem and as

such has been investigated for many decades by scientists and there are hundreds of

papers published on this topic. It would seem that nowadays there is nothing more to

say about such a system. I want to show that even in the simplest systems still new

findings can be revealed.

3.2 Hamiltonian formulation of problem

Let us consider a quantum system defined in the following way:

• a quantum Brownian particle of mass M is coupled to bosonic heat bath

• at time t = 0 thermostat is in a state of thermal equilibrium

• thermostat consists of an infinite set of non-interacting quantum oscillators

• the total system (the Brownian particle + thermostat) is a closed system evolving

according to the unitary evolution determined by the total Hamiltonian

H = HB +HE +HI (3.1)

where HB is the Hamiltonian of the Brownian particle, HE is the Hamiltonian of ther-

mostat and interaction between the particle and thermostat is described by the Hamil-

tonian HI . As in the classical case, we choose the Caldeira-Legget Hamiltonian:

H =
p2

2M
+ U(x) +

∑
k

[
p2
k

2mk

+
mkω

2
k

2
(qk − ηkx)2

]
(3.2)
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where:

HB =
p2

2M
+ U(x) (3.3)

HE =
∑
k

[
p2
k

2mk

+
mkω

2
k

2
q2
k

]
(3.4)

HI =
∑
k

[
mkω

2
kqkηkx

]
(3.5)

and the coordinate and momentum operators {x, p} refer to the Brownian particle while

{qk, pk} are the coordinate and momentum operators of the k-th heat bath oscillator of

mass mk and the eigen-frequency ωk. The parameter ηk characterizes the interaction

strength of the particle with the k-th oscillator. There is the counter-term, the last

term proportional to x2, which is included to cancel a harmonic contribution to the

particle potential. All coordinate and momentum operators obey canonical equal-time

commutation relations.

3.3 Heisenberg equations

Analogically as in the case of classical systems, we write down equations of motion

which in this case are the Heisenberg equations:

ẋ = − i
~

[x,H] =
p

M
(3.6)

ṗ = − i
~

[p,H] = − i

~
[p, U(x)] +

∑
k

ck (qk − ηkx) (3.7)

q̇k = − i
~

[qk, H] =
pk
mk

(3.8)

ṗk = − i
~

[pk, H] = −mkω
2
k (qk − ηkx) , ck = ηkmkω

2
k (3.9)

By combining equations (3.8) and (3.9) we construct the second order differential equa-

tion:

mkq̈k(t) = −mkω
2
k [qk(t)− ηkx(t)] (3.10)

with the solution

qk(t) = qk0 cos (ωkt) +
pk0 sin (ωkt)

mkωk
+ ηkωk

∫ t

0

ds sin [ωk (t− s)]x(s), (3.11)
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where xk0 = xk(0) and pk0 = pk(0). It has the same form as Eq. (2.20) introduced

in the previous chapter for classical Brownian motion. Nevertheless, there is a vital

difference in the meaning of used symbols. Now qk, pk, x and p are operators acting on

vectors of the Hilbert space. Other differences will become apparent when we proceed

into deeper analysis.

Next, we can insert the previously found solution (3.11) into the equation:

Mẍ = − i

~
[p, U(x)] +

∑
k

ck (qk − ηkx) (3.12)

As a result we obtain

Mẍ(t) = − i

~
[p(t), U(x(t))]

+
∑
k

ck

(
qk0 cos (ωkt) +

pk0 sin (ωkt)

mkωk
− ηkx+ ηkωk

∫ t

0

ds sin [ωk (t− s)]x(s)

)
(3.13)

The integration by part of the integral term results in the following effective equation

of motion for the particle coordinate operator x(t), namely,

Mẍ(t) +
i

~
[p(t), U(x(t))] = −

∫ t

0

ds γ(t− s)ẋ(s)− γ(t)x(0) + η(t) (3.14)

p(t) = Mẋ(t) (3.15)

where:

γ(t− s) =
∑
k

c2
k

mkω2
k

cos(ωk(t− s)) (3.16)

η(t) =
∑
k

ck

[
qk0 cos(ωkt) +

pk0

mkωk
sin(ωkt)

]
(3.17)

The function γ(t) is the memory kernel or the dissipation function and η(t) is an

operator which mimics thermal noise. The above formulas look like the corresponding

formulas for classical systems. The function γ(t) is a scalar function but η(t) is an

operator and its commutator at different moments is:

[η(t1), η(t2)] =
∑
k

c2
k

[
i~

mkωk
sin(ωkt1) cos(ωkt2)− i~

mkωk
cos(ωkt1) sin(ωkt2)

]
(3.18)

= i~
∑
k

c2
k

mkωk
sinωk(t1 − t2) (3.19)

As we can see thermal noise at different instants does not commute.
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3.4 Quantum thermal noise

We assume that the initial state ρ(0) of the composite system S + E is uncorrelated,

i.e.,

ρ(0) = ρS(0) ⊗ ρE(0),

where ρS is an arbitrary state of the Brownian particle and ρE is an equilibrium Gibbs

canonical state ρE ∝ exp(−HE/kBT ) of thermostat of temperature T with the Hamil-

tonian HE given by Eq. (3.4). Next, the thermodynamic limit is imposed meaning

that thermostat is infinitely extended and the quasi-periodic dissipation kernel γ(t) is

a decaying function of time. The bosonic thermostat in the Gibbs state is distributed

according to the Bose-Einstein distribution. For the thesis to be self-contained, some

useful formulas can be found in Appendix A. The correlation function of quantum

thermal noise is:

〈η(t1)η(t2)〉 =
∑
k

~c2
k

2mkωk

[
coth

(
~ωk
2kT

)
cosωk (t1 − t2) +

1

i
sinωk (t1 − t2)

]
(3.20)

We note that the correlation function is complex and its imaginary part is an odd

function. It does not tend to its classical limit and therefore we have to introduce the

symmetric correlation function:

C(t1 − t2) =
〈
[η(t1), η(t2)]+

〉
=

1

2
(〈η(t1)η(t2)〉+ 〈η(t2)η(t1)〉) (3.21)

=
∑
k

~c2
k

2mkωk
coth

(
~ωk
2kT

)
cosωk (t1 − t2) (3.22)

This function is even and has only real values. In summary, the operator-valued random

force η(t) is a family of non-commuting operators whose commutators are c-numbers.

Its mean value is zero, 〈η(t)〉 ≡ Tr [η(t)ρE] = 0 and the symmetrized correlation function

C(t1 − t2) depends only on time difference |t1 − t2|. Statistical characteristics of the

operator η(t) are similar to characteristics for a classical stationary Gaussian stochastic

process, which models thermal equilibrium fluctuations in classical systems. Therefore,

it is called the Gaussian operator, which represents quantum thermal equilibrium noise.
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3.5 Quantum fluctuation-dissipation theorem

In the classical case examined in the previous chapter we have shown the relation con-

necting fluctuations of random force and the dissipation kernel. For classical Brownian

motion these two objects are connected by the linear relation:

〈η(t1)η(t2)〉 = kBT γ(t1 − t2) (3.23)

For quantum Brownian motion the fluctuation-dissipation theorem can be also formu-

lated. For the sake of latter investigation let us firstly introduce the spectral function:

J(ω) =
∑
k

c2
k

mkω2
k

δ(ω − ωk). (3.24)

Then the damping kernel (3.16) can be expressed as

γ(τ) =

∫ ∞
0

dωJ(ω) cosωτ (3.25)

and the correlation function (3.21) reads

C(τ) =

∫ ∞
0

dω
~ω
2

coth

(
~ω

2kBT

)
J(ω) cosωτ. (3.26)

If we introduce the Fourier cosine transforms of the dissipation and correlation functions

in the form

γ(τ) =

∫ ∞
0

dω γ̂F (ω) cosωτ, C(τ) =

∫ ∞
0

dω ĈF (ω) cosωτ, (3.27)

then we see that the following equality

ĈF (ω) =
~ω
2

coth

(
~ω

2kBT

)
γ̂F (ω) (3.28)

holds true. It constitutes the quantum version of the fluctuation-dissipation theorem

[28]. In contrast to the classical world, in the quantum case this relation connects spec-

tra ĈF (ω) of the noise correlation function and spectra γ̂F (ω) of dissipation. Quantum-

ness is contained in the prefactor in the above equation which depends on the frequency

ω. For high temperature

coth

(
~ω

2kBT

)
≈ 2kBT

~ω
(3.29)

and then

ĈF (ω) = kBT γ̂F (ω) (3.30)

which is the Fourier transform of the classical relation (2.36).
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3.6 Generalized Langevin equation

We have derived the effective evolution equation for the coordinate and momentum

operators of the Brownian particle in the form

Mẍ(t) +
i

~
[p(t), U(x(t))] = −

∫ t

0

dsγ(t− s)ẋ(s)− γ(t)x(0) + η(t) (3.31)

p(t) = Mẋ(t) (3.32)

together with properties of Gaussian operator-valued thermal noise:

〈η(t)〉 = 0 (3.33)

C(t1 − t2) =
〈
[η(t1); η(t2)]+

〉
(3.34)

ĈF (ω) =
~ω
2

coth

(
~ω

2kBT

)
γ̂F (ω) (3.35)

Probably Magalinskij [29] was the first, in 1959, who derived the generalized Langevin

equation and formulated the problem in the above way. Next, from 1966, a series of

papers has been published on this topic, but a complete list of papers is too long to

present here. We cite a part of them [30, 31, 32, 33, 34, 35]. Eq. (3.31) with thermal

noise description defines a wide class of systems. There are two ingredients which have

to be prescribed to determine a specific system - that is:

• the potential U(x)

• the memory kernel γ(t) or associated with it the correlation function of thermal

noise via Eq. (3.35).

The choice of the memory kernel γ(t) models dissipation mechanism of the system.

The quantum generalized Langevin equation can be exactly solved only for two

forms of the potential U(x), i.e.,

1. for a free Brownian particle when U(x) ≡ 0

2. for a harmonic oscillator when U(x) ∝ x2

In other cases, approximative methods are used. However, usually they are mathemat-

ically uncontrolled. One can also use numerical analysis (which is also an approxima-

tion).
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4 Partition of energy for free quantum Brownian par-

ticle

4.1 Formulation of problem

Let us start from the simplest exactly solvable case of quantum Brownian motion, i.e.,

the free Brownian particle. In this case the potential U(x) ≡ 0 and the Langevin

equation reduces to the form

Mẍ(t) = −
∫ t

0

dsγ(t− s)ẋ(s)− γ(t)x(0) + η(t) (4.1)

p(t) = Mẋ(t) (4.2)

The integro-differential equation (4.1) is a linear equation and the integral term is of a

convolution form. Therefore one can apply e.g. the Laplace transform method. The use

of integral transformation provides the benefits of transforming an analytical problem

into algebraic ones. Moreover the problem that we are dealing with is defined on time

semi-line, which makes a choice of the Laplace transformation to be natural. The main

object of our interests is kinetic energy of the Brownian particle in the long-time limit,

when a thermodynamic equilibrium state is reached .

4.2 Laplace transformation method

To construct a solution for the position operator x = x(t) we apply the Laplace trans-

formation of Eq. (4.1),

L{Mẍ(t)} (z) = ML{x(t)} (z) z2 −Mzx(0)−Mẋ(0) (4.3)

= M
(
X̂L(z)z2 − x(0)z − ẋ(0)

)
L
{∫ t

0

dsγ(t− s)ẋ(s)

}
(z) = L{γ(t)} (z)L{ẋ(t)} (z) (4.4)

= γ̂L(z)zX̂L(z)− γ̂L(z)x(0)

L{−γ(t)x(0) + η(t)} (z) = −γ̂L(z)x(0) + η̂L(z) (4.5)
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where we use the following notation for the Laplace transform

L{f(t)} (z) = f̂L(z) =

∫ +∞

0

dze−tzf(t) (4.6)

We note here that in literature one can find various notation for this transformation like

L (f) (z), [Lf ] (z) Lt [f ] or Lt[f(t)] or L{f(t)}. The last notation is used for instance in

Ref. [36]. We apply it here with a slight modification of adding explicitly z indicating

the point at which the Laplace transformation is taken. For the sake of brevity and

readability we use shorthand notation for the Laplace transform of the function f :

f̂L(z), where index L stands for "Laplace".

We can summarize equations (4.3) together with (4.4) and (4.5) into the form:

x̂L(z)
(
Mz2 + γ̂L(z)

)
= Mzx(0) +Mẋ(0) + η̂L(z) (4.7)

By performing the inverse Laplace transformation for (4.7) we get the solution:

x(t) = R(t)x(0) +Q(t)p(0) +

∫ t

0

Q(t− s)η(s)ds (4.8)

In a similar way one can obtain a solution for the momentum operator:

p(t) = Ṙ(t)x(0) +R(t)p(0) +

∫ t

0

R(t− s)η(s)ds (4.9)

where the functions Q(t) and R(t) are defined by their Laplace transforms:

L{Q(t)} (z) = Q̂L(z) =
1

Mz2 + zγ̂L(z)
(4.10)

L{R(t)} (z) = R̂L(z) =
M

Mz + γ̂L(z)
(4.11)

Both functions are called the response functions for the position and momentum oper-

ators, respectively.

4.3 Kinetic energy

The solution (4.8) for the coordinate operator of the Brownian particle is needed for

analysis of quantum diffusion process. It is not the aim of this thesis. The second

solution given by Eq. (4.9) is needed to calculate a mean value of kinetic energy of the
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Brownian particle. We do it for the regime of long time t → ∞ when a thermal equi-

librium state is reached. From Eq. (4.9) we can obtain the symmetrized momentum-

momentum correlation function
〈
[p(t); p(s)]+

〉
. For long times, t � 1, s � 1, due to

the properties of the response function R(t) (limt→∞R(t) = 0, c.f. Appendix B) only

one term in the expression for
〈
[p(t); p(s)]+

〉
survives:

〈
[p(t); p(s)]+

〉
=

∫ t

0

dt1

∫ s

0

dt2 R(t− t1)R(s− t2)
〈
[η(t1); η(t2)]+

〉
. (4.12)

We can express the noise correlation function C(t1−t2) =
〈
[η(t1); η(t2)]+

〉
by its Fourier

transform to get

〈
[p(t); p(s)]+

〉
=

∫ ∞
0

dω ĈF (ω)

∫ t

0

dt1

∫ s

0

dt2 R(t− t1)R(s− t2) cos [ω (t1 − t2)] .

(4.13)

The special case t = s corresponds to the second statistical moment of the momentum

operator,

〈p2(t)〉 =

∫ ∞
0

dω ĈF (ω)

∫ t

0

dt1

∫ t

0

dt2 R(t− t1)R(t− t2) cos [ω (t1 − t2)] . (4.14)

By introducing new variables τ = t− t1 and u = t− t2 we transform this equation into

the following form

〈p2(t)〉 =

∫ ∞
0

dω ĈF (ω)

∫ t

0

dτ

∫ t

0

du R(τ)R(u) cos [ω (τ − u)] . (4.15)

We perform the limit t→∞ to obtain the expression for the average kinetic energy in

the equilibrium state, namely:

Ek = lim
t→∞

1

2M
〈p2(t)〉 =

1

2M

∫ ∞
0

dω ĈF (ω)I(ω), (4.16)

where

I(ω) =

∫ ∞
0

dτ

∫ ∞
0

du R(τ)R(u) cos [ω (τ − u)]

=
1

2

∫ ∞
0

dτR(τ)eiωτ
∫ ∞

0

duR(u)e−iωu +
1

2

∫ ∞
0

dτR(τ)e−iωτ
∫ ∞

0

duR(u)eiωu

= R̂L(iω)R̂L(−iω) (4.17)
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is a product of the Laplace transforms of the response function R(t). At this point, we

can exploit the quantum fluctuation-dissipation relation (3.28), i.e.,

ĈF (ω) =
~ω
2

coth

(
~ω

2kBT

)
γ̂F (ω), (4.18)

to express the noise correlation spectrum ĈF (ω) by the dissipation spectrum γ̂F (ω) and

convert (4.16) to the form

Ek = 〈Ek〉 =

∫ ∞
0

dω Ek(ω)P(ω), (4.19)

where

Ek(ω) =
~ω
4

coth

(
~ω

2kBT

)
(4.20)

is thermal kinetic energy per one degree of freedom of thermostat consisting of free

harmonic oscillators [37] and

P(ω) =
1

M
γ̂F (ω)R̂L(iω)R̂L(−iω). (4.21)

The latter can be represented in an equivalent form as

P(ω) =
1

M
γ̂F (ω)R̂L(iω)R̂L(−iω)

=
M

π

γ̂L(iω) + γ̂L(−iω)

[γ̂L(iω) + iMω][γ̂L(−iω)− iMω]
=

1

π

[
R̂L(iω) + R̂L(−iω)

]
(4.22)

It is interesting that P(ω) is a probability measure.

4.3.1 Probability distribution P(ω)

Theorem 1.

P(ω) defined by Eq. (4.21) is a probability density, i.e.:

• it is non-negative, P(ω) ≥ 0

• it is normalized over a half-line of real numbers, i.e.,
∫ +∞

0
dω P(ω) = 1

Proof. Firstly, let us introduce another representation of the function P(ω) as

P(ω) =
1

π

(
R̂L(iω) + R̂L(−iω)

)
= R̂F (ω) (4.23)
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where R̂F (ω) is the Fourier cosine transform of the function R(t) defined as:

R̂F (ω) =
2

π

∫ +∞

0

dtR(t) cos (ωt), (4.24)

R(t) =

∫ +∞

0

dω R̂F (ω) cos (ωt). (4.25)

Since R(0) = 1 (c.f. Appendix B) and from the above equation one obtains

R(0) = 1 =

∫ +∞

0

dω R̂F (ω) (4.26)

and therefore for arbitrary system parameters∫ +∞

0

P(ω)dω = 1. (4.27)

This leads us to the conclusion that P(ω) is normalized to unity. Now, we rewrite the

formula (4.23) into the form which more convenient for later calculations. For this

purpose we note that the Laplace transform can be expressed by the Fourier cosine and

sine transforms. In particular,

γ̂L(iω) =

∫ ∞
0

dt γ(t)e−iωt = A(ω)− iB(ω) (4.28a)

A(ω) =

∫ ∞
0

dt γ(t) cos (ωt), (4.28b)

B(ω) =

∫ ∞
0

dt γ(t) sin (ωt). (4.28c)

If we insert it into Eq. (4.21) then

P(ω) =
2M

π

A(ω)

A2(ω) + [B(ω)−Mω]2
. (4.29)

Let us note that the function A(ω) is related to the spectral function J(ω) defined as

J(ω) =
π

2

∫ +∞

0

dtγ(t) cosωt. (4.30)

Indeed, from the above equation and the definition (4.28c) it follows that A(ω) =

(π/2)J(ω). Because the spectral function is non-negative, J(ω) ≥ 0, and the denomi-

nator in (4.29) is positive, the function P(ω) is non-negative as required. The represen-

tation (4.29) allows to study the influence of various forms of the dissipation function

γ(t) or equivalently the spectral density J(ω). To summarize we have proven that P(ω)

is the properly defined probability density function.
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The formula (4.19) together with Eq. (4.21) constitutes a quantum law for partition

of energy. It means that the averaged kinetic energy Ek of the Brownian particle is an

averaged kinetic energy Ek per one degree of freedom of the thermostat oscillators. The

averaging is twofold:

I. over the thermal equilibrium Gibbs state for the thermostat oscillators resulting

in Ek(ω) given by Eq. (4.20),

II. over frequencies ω of those thermostat oscillators which contribute to Ek according

to the probability distribution P(ω).

Let us now consider specific cases of the memory kernel γ(t) in order to analyze

properties and feature of the probability density P(ω). We want to know which ther-

mostat degrees of freedom (which thermostat oscillators) maximally contribute to the

average energy of the Brownian particle and how it depends on parameters of the

system, in particular on the memory time of dissipation and the system-thermostat

coupling constant. Note that via the expressions in Chapter 3.5, all information about

the system-thermostat interaction and properties of thermostat are embodied either

in the memory (dissipation) kernel γ(t) or equivalently in the thermostat correlation

function C(t).

4.4 Drude model of dissipation

The simplest way to model the dissipation mechanism via the memory kernel γ(t) in

the integral term of the generalized Langevin equation. As a first example we consider

the memory function γ(t) in the form

γD(t) =
γ0

2τc
e−t/τc (4.31)

with two non-negative parameters γ0 and τc. The first one γ0 is the particle-thermostat

coupling strength and has the unit [γ0] = [kg/s], i.e. the same as the friction coefficient

in the Stokes drag. The second parameter τc characterizes time scale on which the

system exhibits memory (non-Markovian) effects. Due to the fluctuation-dissipation

theorem τc can be also viewed as the primary correlation time of quantum thermal
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fluctuations. This exponential form of the memory function is known as the Drude

model and it has been considered frequently in the coloured noise problems. We choose

the above form to ensure that if τc → 0 the function γD(t) is proportional to the Dirac

delta and consequently the integral term in the generalized Langevin equation reduces

to the viscous Stokes drag. Other memory kernels considered in the later part of this

section also possess this scaling property. For classical systems, in the limit τc → 0,

we then obtain the Langevin equation (2.42). In the quantum case, we also obtain the

equation which formally looks like (2.42). However, as we will discuss, the white-noise

limit cannot be performed for quantum systems!

The Laplace transform of the Drude memory kernel reads

γ̂L(z) =
1

2

γ0

τcz + 1
(4.32)

and the Laplace transform of the response function is

R̂L(z) =
M

Mz + γ̂L
=

2M (τcz + 1)

2Mz (τcz + 1) + γ0

(4.33)

Instead of assuming the form of γ(t) one can equivalently specify the spectral density

of thermostat modes which for the Drude damping reads

JD(ω) =
1

π

γ0

1 + ω2τ 2
c

. (4.34)

From Eq. (4.22) we get the following expression for the probability density

P(ω) =
1

π

µ0ε
2(ω2 + ε2)

ω2[ω2 + ε(ε− µ0/2)]2 + µ2
0ε

4/4
, (4.35)

where µ0 = γ0/M defines the rescaled coupling strength of the Brownian particle with

thermostat and ε = 1/τc is the Drude frequency. There are two control parameters ε

and µ0 which have the unit of frequency or equivalently two time scales: the memory

time τc and τv = M/γ0 = 1/µ0 which in the case of a classical free Brownian particle is

the velocity relaxation time.

If we want to study the impact of the particle mass M or the coupling γ0 we have

to use the following scaling

x = ωτc =
ω

ε
, (4.36)
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Figure 1: Exponential decay of the dissipation function γD(t) = (γ0/τc)e
−t/τc known as

the Drude model. The probability distribution PD(ω) and P̃D(y) in two scalings are

presented for different values of the dimensionless parameter α = τv/τc = M/(τcγ0).

Left panel: τc is fixed and τv is changed. Right panel: τv is fixed and τc is changed.

which yields the expression

PD(x) = εP (εx) =
2

π

2α(x2 + 1)

x2[2α(x2 + 1)− 1]2 + 1
, (4.37)

where

α =
M

τcγ0

=
ε

µ0

=
τv
τc

(4.38)

is the ratio of two characteristic times. It is remarkable that this probability distribution

does not depend on these three parameters separately but only on one parameter α being

their specific combination. We should remember that τc is fixed in this scaling. In Fig.

1 we present the probability distribution PD(x) for different values of the parameter

α. We can observe that the thermostat oscillators contribute to kinetic energy Ek

in a non-homogeneous way. There is the most probable value of PD(x) indicating the

optimal oscillator frequency xM which brings the greatest contribution to kinetic energy

of the Brownian particle. As it is illustrated in the panel, for small values of α mainly

oscillators of high frequency contribute to Ek whereas for large values of α primarily

the thermostat oscillators low frequencies have a crucial impact on Ek. As α increases

xM → 0 and PD(x) becomes a monotonically decreasing function (not depicted). In

other words it means that e.g. when the coupling strength between the system and

thermostat γ0 is strong then contribution of high-frequency oscillators to Ek is most
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pronounced; if the particle mass M increases the optimal frequency xM decreases.

Next we analyze the influence of the memory time τc on the probability distribution

P(ω). For this purpose we should use another scaling:

y =
ω

µ0

. (4.39)

It leads to the expression

P̃D(y) = µ0P(µ0y) =
1

π

α2(y2 + α2)

y2[y2 + α(α− 1/2)]2 + α4/4
, (4.40)

with the same dimensionless parameter α defined in (4.38). In the right panel of Fig. 1

we present this distribution for selected values of α. It follows that for small values of the

parameter α, or equivalently for long memory time τc, the distribution is notably peaked

in the region of low frequency modes. Then it rapidly decreases to zero. Consequently

only slowly vibrating thermostat oscillators contribute significantly to kinetic energy of

the particle. The situation is quite different for short memory time τc (large values of

α). Then the distribution is flattened meaning that much wider window of oscillators

frequency contribute to Ek in a similar way.

For the Drude model, the maximum of the probability density can be analytically

evaluated and the result reads

ωm = ω0

√
1− α = ω0

√
1− M

τcγ0

, ω0 =

√
εµ0

2
α < 1. (4.41)

Hence, the distribution P(ω) displays the non-monotonic character only when α < 1. It

is the case when the memory time τc is long enough or/and the particle-thermostat cou-

pling constant γ0 is sufficiently strong. In other words, the dynamics is pronouncedly

non-Markovian and the thermodynamic equilibrium state is far from the Gibbs canon-

ical one. When τc or/and γ0 decreases the maximum of P(ω) disappears.

In the remaining part of this chapter, we present the probability distribution P(ω)

for different forms of the memory kernel γ(t) without any scaling. One can easily

reproduce both scalings. For the scaling as in Eq. (4.36), one can put ε = 1 and rescale

µ0 → µ0/ε to get the distribution Pi(x) (the index i indicates the form of the memory

function). For the scaling as in Eq. (4.39), one can put µ0 = 1 and rescale ε → ε/µ0
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Figure 2: The case of Gaussian decay of the memory kernel γG(t) = (γ0/
√
πτc) e−t

2/τ2c .

Probability distribution PG(x) is presented for different values of the dimensionless

parameter α (M and/or γ0 is changed, τc is fixed).

to get the distribution Pi(y). In the first scaling, one can analyze the influence of the

particle mass M and the particle-thermostat coupling γ0. In the second scaling - the

memory time τc.

4.5 Gaussian memory kernel

Another possible choice of the dissipation kernel γ(t) is the rapidly decreasing Gaussian

function, namely,

γG(t) =
γ0√
πτc

e−t
2/τ2c . (4.42)

The Laplace transform of this memory kernel is:

γ̂L(ω) =
γ0

(
− erf

(
ωτc
2

)
+ 1
)
e
ω2τ2c

4

2
(4.43)

and the Laplace transform of the response function is given by the expression

R̂L(ω) =
2M

2Mω + γ0

(
− erf

(
ωτc
2

)
+ 1
)
e
ω2τ2c

4

(4.44)

The corresponding spectral density is also Gaussian and reads

JG(ω) =
γ0

π
e−ω

2τ2c /4. (4.45)

The probability distribution PG(ω) has the form

PG(ω) =
4

πµ0

e−(ω/4ε)2

[2ω/µ0 + ie−(ω/4ε)2Erf (−iω/2ε)] [2ω/µ0 − ie−(ω/4ε)2Erf (iω/2ε)]
, (4.46)
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Figure 3: The probability distribution Pn(x) is depicted for different values of the

power exponent n appearing in the generalized algebraic decay of the dissipation kernel

γn(t) = [(n− 1)/2] γ0τ
n−1
c /(t+ τc)

n. The dimensionless parameter α = 0.1.

where Erf(z) is the error function

Erf(z) =
2√
π

∫ z

0

dt e−t
2

. (4.47)

In Fig. 2 we present this probability distribution PG(x) [in the scaling (4.36)] for

selected values of α (τv = M/γ0 is changed and τc is fixed) . Similarly as in the case of

the Drude model, the oscillator frequency xM which brings the greatest contribution to

kinetic energy of the particle is a decreasing function of the parameter α. However, here

we observe two differences: (i) at some interval of α the maximum of PG(x) decreases

as α increases and (ii) the half-width of PG(x) increases as α increases while for the

Drude model it is almost constant in a wide interval of α. In this case, the impact of

the memory time τc is similar to that as for the Drude dissipation, see the right panel

of Fig. 1.

4.6 n-Algebraic decay of memory kernel

Apart from two exponential forms of the memory functions which we presented above

one could model the dissipation function γ(t) with algebraic decay. It is worth noting

that the power-law decay of the memory functions has been considered as a model of

anomalous transport processes [38, 39]. Here, we consider the class of functions

γn(t) =
n− 1

2

γ0τ
n−1
c

(t+ τc)n
, (4.48)
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where n ∈ N and n ≥ 2. It has the same limiting Dirac delta form for τc → 0 as in two

previous cases. The Laplace transform of the dissipation kernel is the following:

γ̂L(t) =
γ0 (ωτc)

−n+1 (ωτc)
n−1 (n− 1) eωτc En (ωτc)

2
(4.49)

and the response function assumes the form

R̂L(ω) =
2M

2Mω + γ0 (ωτc)
−n+1 (ωτc)

n−1 (n− 1) eωτc En (ωτc)
(4.50)

The corresponding spectral density reads

Jn(ω) =
(n− 1)γ0

2π

[
e−iωτcEn(−iωτc) + eiωτcEn(iωτc)

]
(4.51)

and En(z) is the exponential integral,

En(z) =

∫ ∞
1

dt
e−zt

tn
. (4.52)

The probability distribution takes the form

Pn(ω) =
2(n− 1)

πµ0

e−iω/εEn(−iω/ε) + eiω/εEn(iω/ε)

[(n− 1)e−iω/εEn(−iω/ε)− 2iω/µ0] [(n− 1)eiω/εEn(iω/ε) + 2iω/µ0]
.

(4.53)

In Fig. 3 we present the influence of the power exponent n appearing in the dissipation

function γn(t) on the probability distribution Pn(x) for fixed α = 0.1. The conclusion

is: an increase of the exponent n causes progressive flattening of the probability density

function. In other words, if the memory function decreases faster and faster to zero the

wider spectrum of frequencies of the thermostat oscillators contribute to Ek.

4.7 Lorentzian decay of memory kernel

It is interesting to compare the algebraic case for n = 2 with the Lorentzian memory

function which reads

γL(t) =
γ0

π

τc
t2 + τ 2

c

. (4.54)

In the probability theory it is termed as the Cauchy distribution. The Laplace transform

of this function is

γ̂F (ω) = −γ0 ((2 Si (ωτc)− π) cos (ωτc)− 2 sin (ωτc) Ci (ωτc))

2π
(4.55)
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Figure 4: The probability distribution PL(x) is depicted for the Lorentzian dissipation

kernel γL(t) = γ0τc/π(t2 + τ 2
c ) and selected values of the dimensionless parameter α (M

or γ0 can be changed and τc is fixed).

where Si and Ci are trigonometric integrals defined as:

Si(x) =

∫ x

0

sin(t)

t
dx (4.56)

Ci(x) =

∫ x

0

cos(t)

t
dx (4.57)

and the Laplace transform of the response function can be presented in the form

R̂L(ω) =
2πM

2πMω − γ0 ((2 Si (ωτc)− π) cos (ωτc)− 2 sin (ωτc) Ci (ωτc))
(4.58)

Alternatively, it may be imposed by the following spectral density of thermostat modes,

JL(ω) =
γ0

π
e−ωτc . (4.59)

Such a choice of the dissipation kernel leads to the following probability distribution

(ε = 1/τc)

PL(ω) =
4π

µ0

e−ω/ε

π2e−2ω/ε + c2(ω)
, (4.60)

where

c(ω) = e−ω/εEi(ω/ε)− eω/εEi(−ω/ε)− 2π

µ0

ω (4.61)

and Ei(z) is the exponential integral defined as

Ei(z) =

∫ z

−∞

et

t
dt. (4.62)
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Figure 5: The probability distribution PS(x) is presented for the oscillatory decay

γS(t) = (γ0/π) sin(t/τc)/t (the Debye type model) and selected values of the dimen-

sionless parameter α = τv/τc. In the left panel τc is fixed and τv = M/γ0 is changed.

In the right panel τv is fixed and τc is changed.

We illustrate this probability distribution in Fig. 4 for different values of the dimen-

sionless parameter α = M/(τcγ0). The oscillator frequency x which brings the greatest

contribution to kinetic energy of the particle is a decreasing function of the parameter

α. Again, as it was in the previous cases, the magnitude of the maxima in the probabil-

ity distribution PL(x) also depends on α. For very small values of α one can note that

high frequency modes almost exclusively contribute to kinetic energy of the particle.

4.8 Debye type model: algebraically decaying oscillations

The next example of a damping kernel is the oscillatory memory function [40]

γS(t) =
γ0

π

sin (t/τc)

t
. (4.63)

which takes both positive and negative values. One can show, via the fluctuation-

dissipation relation, that quantum noise η(t) exhibits anti-correlations. The Laplace

transform of the memory kernel is

γ̂F (ω) = −γ0 arctan (ωτc)

π
+
γ0

2
(4.64)

and the Laplace transform of the response function reads

R̂L(ω) =
2πM

2πMω − γ0 (2 arctan (ωτc)− π)
(4.65)
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Figure 6: Algebraic decay of the dissipation function γA(t) = γ0/(t+ τc). Probability

distribution PA(x) is presented for different values of the dimensionless parameter α =

τv/τc (τc is fixed and τv = M/γ0 is changed).

The spectral density is of the Debye type [40]

JS(ω) =
γ0

π
θ

(
1

τc
− ω

)
, (4.66)

where θ(x) denotes the Heaviside step function. This density is constant J(ω) = γ0/π on

the compact support [0, 1/τc] determined by the memory time τc or the cut-off frequency

ε = 1/τc. Under this assumption the probability density PS(ω) reads

PS(ω) =
4π

µ0

θ(ε− ω)

π2(1 + 4ω2/µ2
0) + 4arctanh(ω/ε)[arctanh(ω/ε)− 2πω/µ0]

(4.67)

and has the same support as J(ω) in the interval [0, ε]. In Fig. 5 we present the

probability density PS(x) for selected values of the dimensionless parameter α in two

various scalings. In the left panel, the memory time is fixed and the coupling γ0 or the

mass M is changed. Again, when e.g. γ0 decreases (i.e. α increases) more and more

oscillators of low frequency contribute to Ek. It is the only one founded case for which

the probability density has a support on finite interval. It means that the thermostat

oscillators of frequencies below some threshold frequency contribute to energy of the

Brownian particle. The high-frequency oscillators do not contribute at all to Ek. One

has to stress that this feature is not related to anti-correlations of thermal noise as

shown in Sec. 4.10.
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4.9 Slow algebraic decay of memory kernel

In this subsection we consider slow algebraic decay of the memory kernel assuming the

form

γA(t) =
γ0

t+ τc
. (4.68)

The Laplace transform of the memory kernel is found to be

γ̂L(t) = γ0e
τcz E1 (τcz) (4.69)

and the Laplace transform of the response function can be expressed as

R̂L(z) =
M

Mz + γ0eτcz E1 (τcz)
(4.70)

This dissipation function does not tend to the Dirac delta when τc → 0 (the limit does

not exist at all) and therefore this case should be clearly distinguished from the previous

cases. The corresponding spectral density has the form

JA(ω) =
2γ0

π
a(ω). (4.71)

The probability distribution reads

PA(ω) =
2

πµ0

a(ω)

a2(ω) + [b(ω)− ω/µ0]2
, (4.72)

where (ε = 1/τc)

a(ω) = −ci(ω/ε) cos(ω/ε)− si(ω/ε) sin(ω/ε), (4.73)

b(ω) = ci(ω/ε) sin(ω/ε)− si(ω/ε) cos(ω/ε). (4.74)

The functions ci(z) and si(z) are cosine and sine integrals defined as

ci(z) = −
∫ ∞
z

cos t

t
dt, (4.75)

si(z) = −
∫ ∞
z

sin t

t
dt. (4.76)

In Fig. 6 we depict PA(x) for different values of the dimensionless parameter α. The

same as before, the optimal frequency of the thermostat oscillators which has the largest

impact on kinetic energy is a decreasing function of α. Qualitatively, it looks similar to
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Figure 7: Panel (a): The probability distribution P̃(y) scaled according to Eq. (4.39) is

depicted for exponentially decaying oscillations with γE(t) = (γ1/τc)e
−t/τc cos (Ωt) and

different values of α = τv/τc with fixed Ω̃ = τvΩ = 0.285, τv = M/γ1. Panel (b): The

same P̃(y) is presented for selected dimensionless frequencies Ω̃ of the memory function

and fixed α = 0.2.

the case of the Drude model, c.f. Fig. 1. However, only for large value of α contribution

of harmonic modes of lowest frequency differs significantly from zero.

Overall, the common characteristic feature of all cases presented above is that the

probability distribution P(ω) occurring in the quantum law for energy equipartition

depends only on one dimensionless parameter α = M/(τcγ0). Moreover, for a small

value of this parameter (the strong particle-thermostat coupling) one typically finds

the bell-shaped probability density with a pronounced maximum for high frequency

ωM which is a decreasing function of α. For large value of α, thermostat oscillators of

low frequencies dominate in contribution to kinetic energy of the Brownian particle.

4.10 Exponentially decaying oscillations - generalization of Drude

model

As the last example, we consider a generalization of the Drude model in the form of

exponentially decaying oscillations [19],

γE(t) =
γ1

τc
e−t/τc cos (Ωt), (4.77)
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where the parameter Ω can be related to frequency in the relaxation process of the

particle momentum. Also in this case, quantum noise η(t) exhibits anti-correlations.

The limiting case Ω = 0 corresponds to the Drude model of dissipation (4.31) with

the rescaled parameter γ1 = γ0/2. Such a choice of the damping kernel leads to the

following spectral density

JE(ω) =
2

π

γ1ε
2(ε2 + ω2 + Ω2)

(ε2 + ω2)2 + 2Ω2(ε2 − ω2) + Ω2
, (4.78)

where ε = 1/τc. The Laplace transform of the memory kernel is

γ̂L(z) =
γ1 (τcz + 1)

Ω2τ 2
c + (τcz + 1)2 (4.79)

and the Laplace transform of the response function is given by the expression

R̂L(z) =
M
(
Ω2τ 2

c + (τcz + 1)2)
Mz

(
Ω2τ 2

c + (τcz + 1)2)+ γ1 (τcz + 1)
(4.80)

In this case, the probability distribution has the form [19]

P(ω) =
2

π

µ0ε
2 (ω2 + ε2 + Ω2)

ω2 [(ω2 + ε2 − Ω2 − µ0ε)2 + 4ε2Ω2] + µ2
0ε

4
. (4.81)

The parameter µ0 = γ1/M defines the rescaled coupling strength of the Brownian par-

ticle to thermostat. We note that in the considered case there are three characteristic

frequencies µ0, ε and Ω or equivalently three time scales which are equal to the recip-

rocals of these frequencies. This observation must be contrasted with all previously

considered damping kernels leading to two characteristic time scales. Kinetic energy of

the free Brownian particle with the exponentially decaying oscillations of the dissipa-

tion function was analyzed in detail in Ref. [19]. Now, we focus on properties of the

probability density occurring in the quantum energy partition theorem. The influence

of the coupling strength µ0 on P(ω) is similar to that of the Drude model: there is only

one maximum for a fixed value of the coupling strength µ0. For larger values of the

latter it is shifted to the right indicating that oscillators of the higher frequency bring

the greatest contribution to kinetic energy of the particle.

The influence of the reciprocal of the correlation time ε = 1/τc is depicted in Fig.

7(a). In this case, we scale Eq. (4.81) as in (4.39), namely y = ω/µ0. The dimensionless
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parameters are α = ε/µ0 = M/(τcγ1) and Ω̃ = Ω/µ0, µ0 = γ1/M . Due to the interplay

of two characteristic time scales associated with the parameters α and Ω̃ we observe

here qualitatively new features. For large values of α � Ω̃ the distribution is almost

flat indicating that all oscillators of thermostat contribute equally to kinetic energy of

the system. When the characteristic frequency α is slightly larger than the other one

α > Ω̃ a single maximum is born. When the opposite situation occurs, i.e. α < Ω̃ then

the distribution P̃(y) exhibits a clear bimodal character. It means that both oscillators

of low and moderate frequency play important role. Further decrease of α extinguishes

the contribution of higher frequencies at the favour of the near zero frequency modes

which are then the most pronounced ones.

Last but not least, we elaborate on the impact of the oscillation frequency Ω. We

keep the scaling with respect to the system-thermostat coupling strength µ0 = γ1/M . In

Fig. 7(b) we present the probability distribution P̃(y) for a few values of the dimension-

less frequency Ω̃ = Ω/µ0 and fixed α = 0.2. The result confirms our earlier observation

that due to interplay of two characteristic time scales the probability density may be

bimodal. It is realized when the magnitude of Ω̃ and α is comparable. For very small

Ω̃ the distribution P̃(y) possesses one very pronounced maximum, whereas for large Ω̃

it becomes a monotonically decreasing function of the dimensionless frequency y.
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Figure 8: The generalized Drude model of dissipation: Average kinetic energy of the

free Brownian particle as a function of rescaled temperature. (a) The influence of

the rescaled particle-thermostat coupling strength µ̃0 = µ0/ε, where µ0 = γ1/M and

ε = 1/τc. The rescaled energy is Ẽ = Ek/~ε and the rescaled temperature is T̃ =

kBT/~ε. The rescaled Ω̃ = Ω/ε = 1. (b) The influence of the rescaled inverse decay

time ε̃ = ε/µ0. The rescaled energy is Ẽ = Ek/~µ0 and the rescaled temperature

is T̃ = kBT/~µ0. The rescaled Ω̃ = Ω/µ0 = 1. (c) The influence of the rescaled

frequency Ω̃ = Ω/µ0. The rescaled energy is Ẽ = Ek/~µ0 and the rescaled temperature

is T̃ = kBT/~µ0. The rescaled ε̃ = ε/µ0 = 1.

4.10.1 Average kinetic energy in terms of series

From the relation

Ek = 〈Ek〉 =

∫ ∞
0

dω Ek(ω)P(ω), (4.82)

it is difficult to draw conclusions on dependence of the average kinetic energy on the

system parameters. However, for the exponentially decaying oscillations (4.77) we can
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present another form of Ek. For this purpose we exploit the series expansion [36]

x coth
(x

2

)
= 2 + 4

∞∑
n=1

x2

x2 + 4π2n2
(4.83)

that allows us to calculate the integral in (4.19). Details on this procedure are presented

in Appendix E. From Eq. (E.8) shown there we get the expression

Ek =
kBT

2

[
1 + 2

∞∑
n=1

~µ0 ~ε (~ε+ 2πnkBT )

~µ0 ~ε (~ε+ 2πnkBT ) + 2πnkBT (~ε+ 2πnkBT )2 + 2πnkBT (~Ω)2

]
,

(4.84)

where µ0 = γ1/M is related to the coupling constant and ε = 1/τc is related to the

memory time. Here, the average kinetic energy is represented by an infinite series and

some information on Ek can be inferred from this form. Since for n ≥ 1 all terms

under the sum are non-negative, hence kBT/2 is a lower bound for the energy Ek.

Therefore energy of a quantum Brownian particle is always greater than for classical

one. The term under the sum is a rational function of four characteristic energies

kBT, ~µ0, ~ε, ~Ω. The numerator and denominator are the products of energy to

power three like e.g. (~µ0) (~ε) (kBT ). It is easy to observe that each term under

the sum is a non-increasing function with respect to Ω because it occurs only in the

denominator. Moreover, it can be shown that partial derivatives of each term with

respect to µ0 and ε are non-negative and it follows that all terms are non-decreasing

with respect to µ0 and ε, respectively. In consequence, Ek is a non-increasing function

of Ω and a non-decreasing function of µ0 and ε. All these properties are illustrated in

Fig. (8).

4.10.2 Regime of long memory time

The damping kernel γ(t) in the Langevin Eq. (4.1), i.e.,

Mẍ(t) = −
∫ t

0

dsγ(t− s)ẋ(s)− γ(t)x(0) + η(t) (4.85)

p(t) = Mẋ(t) (4.86)

describes memory effects determined by the relaxation (decay) time τc. For the time

scales shorter than τc, memory effects may play an important role. For times longer
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than τc memory effects can be neglected. Now, we consider the generalized Drude model

and the case of long decay time τc. More precisely, we assume that τc is much longer

than the thermal Matsubara time ~/kBT , namely,

τc =
1

ε
� ~

2πkBT
. (4.87)

In other words, ~ε� 2πkBT and then ~ε + 2πnkBT ≈ 2πnkBT in Eq. (4.84). In this

regime, Eq. (4.84) takes the form

Ek =
kBT

2

[
1 + 2

∞∑
n=1

~2µ0 ε

~2(µ0ε+ Ω2) + (2πnkBT )2

]
. (4.88)

We can use the formula (4.83) to rewrite the above equation in a more compact form

as

Ek =
kBT

2

[
Ω2

εµ0 + Ω2
+

~εµ0

2kBT
√
εµ0 + Ω2

coth

(
~
√
εµ0 + Ω2

2kBT

)]
. (4.89)

For the Drude model, when Ω = 0, it reduces to the following equation

Ek =
~√εµ0

4
coth

(
~√εµ0

2kBT

)
. (4.90)

It is an interesting result because it looks like Eq. (4.20) for averaged kinetic energy of

the oscillator with its redefined eigenfrequency ω0 =
√
εµ0 =

√
γ1/(Mτc). Remember

that the relation (4.87) should be satisfied and it means that

τc >> 1.21× 10−12 1

T
sec. K. (4.91)

E.g., for temperature 1 Kelvin, τc � 10−12 sec. while for 10−4 Kelvin, τc � 10−8 sec.

Therefore for higher temperatures it is easier to fulfil this condition.

4.10.3 Method of differential equations

The integral part of the generalized Langevin Eq. (4.1) is convolution of γ(t) and ẋ(t).

It suggests to apply integral transforms like Laplace or Fourier ones to solve it. Here

we want to demonstrate another method which is based on the observation that:

if γ(t) fulfils a linear ordinary differential equation with constant coefficients then Eq.

(4.1) can be converted to a set of ordinary differential equations.
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It is a case of the generalized Drude model. Note that the function γ(t) in the form

(4.77) fulfils a differential equation of second order which is similar to the Newton

equation for a damped harmonic oscillator. We introduce auxiliary variables (in fact,

operators) u(t) and v(t) by the relations

u(t) = µ

∫ t

0

e−ε(t−s) cos[Ω(t− s)] p(s)ds, (4.92)

v(t) = µ

∫ t

0

e−ε(t−s) sin[Ω(t− s)] p(s)ds, (4.93)

µ = µ0 ε, µ0 =
γ1

M
, ε =

1

τc
. (4.94)

Then Eq. (4.1) for γ(t) defined in Eq. (4.77) is converted to the following set of four

differential equations

ẋ(t) =
1

M
p(t),

ṗ(t) = −u(t)− γ(t)x(0) + η(t),

u̇(t) = µp(t)− εu(t)− Ωv(t),

v̇(t) = Ωu(t)− εv(t). (4.95)

In such a case, in order to calculate averaged kinetic energy, it is sufficient to consider

the reduced set of three equations

ṗ(t) = −u(t)− γ(t)x(0) + F (t),

u̇(t) = µp(t)− εu(t)− Ωv(t),

v̇(t) = Ωu(t)− εv(t). (4.96)

It can be rewritten in the matrix form

d

dt
X(t) = AX(t) + B(t), (4.97)

where

X(t) = [p(t), u(t), v(t)]T, (4.98)

B(t) = (−γ(t)x(0) + η(t))
[

1 0 0
]T

(4.99)
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and T denotes the transpose of a matrix which switches the row into the column. The

matrix A has the form

A =


0 −1 0

µ −ε −Ω

0 Ω −ε

 . (4.100)

The solution of the non-homogeneous linear differential Eq. (4.97) reads

X(t) = R(t)X(0) +

∫ t

0

R(t− s)B(s)ds, R(t) = eAt, (4.101)

where

X(0) = [p(0), 0, 0]T. (4.102)

The spectrum of the matrix A and its invariant subspaces determine the time depen-

dence of (4.101). Now, the only problem is to determine the exponential of the matrix

At, i.e. the matrix R(t), which can be computed in many ways. The authors of the

paper [41] say about 19 ways. As they write: "In practice, consideration of compu-

tational stability and efficiency indicates that some of the methods are preferable to

others, but that none are completely satisfactory". The traditional way is to transform

A to its Jordan canonical form. Here we will use a less traditional method, namely,

the Putzer algorithm [42], in which the exponential of the matrix At can be computed

knowing nothing more than the eigenvalues of the matrix A. Moreover, the algorithm

does not require that the matrix A is diagonalizable. We think that this method is

simple, elegant and suitable for presentation to students and younger researchers. It is

described in Appendix C.

The operator of kinetic energy Hk(t) = p2(t)/2M is expressed by the momentum

p(t) which is the first component of the vector X(t) determined by Eq. (4.101). We

calculate its average in the long time limit t→∞ when a stationary state is approached.

The first component of X(t) is

p(t) = R11(t)p(0) +

∫ t

0

R11(t− s)γ(s)x(0)ds+

∫ t

0

R11(t− s)F (s)ds, (4.103)

where R11(t) is the first element of the matrix R(t). As is shown in Appendix C, el-

ements of this matrix are exponentially decreasing functions of time. It means that
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the average value of the momentum 〈p(t)〉 → 0 as t → ∞. To evaluate the average

kinetic energy, we consider the symmetrized momentum-momentum correlation func-

tion
〈
[p(t); p(u)]+

〉
. In the long time limit, the first two terms of Eq. (4.103) do not

contribute to it and only the last term contributes yielding

〈
[p(t); p(s)]+

〉
=

∫ t

0

dt1

∫ s

0

dt2 R11(t− t1)R11(s− t2)
〈
[η(t1); η(t2)]+

〉
. (4.104)

This corresponds to the earlier result (4.12) with R11 corresponding to the response

function R. Furthermore using Eq. (4.104) we can construct energy in the long time

limit:

Ek = lim
t→∞

1

2M
〈p2(t)〉 =

1

2M

∫ ∞
0

dω ĈF (ω)I1(ω), (4.105)

where:

I1(ω) =

∫ ∞
0

dτ

∫ ∞
0

du R11(τ)R11(u) cos [ω (τ − u)] (4.106)

which corresponds to equations (4.16) and (4.17). In Appendix D, this function is

alternatively calculated using the explicit form of the function R11(t) given by equation

(C.11) in Appendix C.

4.11 Discussion and remarks

As we wrote in the Introduction, various expressions for kinetic energy of a free Brow-

nian particle can be found both in original papers and the well-known books, e.g. Eq.

(83) in Ref. [1], Eq. (4.14) in Ref. [3], equation for the second moment of momen-

tum in Table 2 of Ref. [4] and Eq. (3.475) in Ref. [8]. The form of Ek can also

be deduced from the fluctuation-dissipation relation obtained in the framework of the

linear response theory which relates relaxation of a weakly perturbed system to the

spontaneous fluctuations in thermal equilibrium, see e.g. Eq. (124.10) in Ref. [6], Eq.

(17.19g) in Ref. [7] and Eq. (3.499) in Ref. [8]. All expressions for Ek should be

equivalent although they are written in different forms. However, our specific formula

(4.19) allows to reveal a new face of the old problem and formulate new interpretations:
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I. The mean kinetic energy Ek of a free quantum particle equals the average kinetic

energy 〈Ek〉 of the thermostat degree of freedom, i.e. Ek = 〈Ek〉. Mutatis mutan-

dis, the form of this statement is exactly the same as for classical systems, see

Eq. (2.9): The mean kinetic energy of a free classical particle equals the average

kinetic energy of the thermostat degree of freedom.

II. The function P(ω) is a probability density, i.e. it is non-negative and normalized

on the interval (0,∞). From the probability theory it follows that there exists

a random variable ξ for which P(ω) is its probability distribution. Here, this

random variable is interpreted as eigen-frequency of thermostat oscillators. In

the thermodynamic limit for thermostat, there are infinitely many oscillators of

various eigen-frequencies ω which contribute to Ek according to P(ω).

III. The last expression in Eq. (4.23) can be converted to the transparent form

P(ω) =
2

π

∫ ∞
0

dtR(t) cos(ωt). (4.107)

Thus the probability distribution P(ω) is a cosine transform of the response func-

tion R(t) which solves the generalized Langevin Eq. (4.1). It is amazing that for

so many years nobody has revealed this simple relation!

IV. Thermostat oscillators contribute to Ek in a non-uniform way according to the

probability distribution P(ω). The form of this distribution depends on the re-

sponse function in which full information on the thermostat modes and system-

thermostat interaction is comprised.

V. The probability density function P(ω) does not depend on temperature T . How-

ever, it depends on coupling between the Brownian particle and thermostat. There

is no restriction on the value of this coupling - it means that strong coupling is in-

cluded as well. It also depends on the memory time - it means that non-Markovian



Chapter 4 53

regime is included as well. And finally it depends on mass M of the Brownian

particle. Note that for classical systems, there in no mass-dependence.

4.11.1 High temperature regime

We focus now on the regime of high temperatures. In this case T →∞ and we use the

approximation

coth

(
~ω

2kBT

)
≈ 2kBT

~ω
. (4.108)

Then Eq. (4.19) can be approximated as follows

Ek = 〈Ek〉 =

∫ ∞
0

dω Ek(ω)P(ω) =

∫ ∞
0

dω
~ω
4

coth

(
~ω

2kBT

)
P(ω)

≈ 1

2
kBT

∫ ∞
0

dω P(ω) =
1

2
kBT, (4.109)

that is it takes the form for classical systems,

Ek =
1

2
kBT (4.110)

Note that (4.110) holds true for weak as well as strong system-thermostat interaction.

4.11.2 Low temperature regime

When temperature is low, T → 0, the following approximation may be applied

coth(x) = 1 + 2
e−2x

1− e−2x
≈ 1 + 2e−2x, x =

~ω
2kBT

. (4.111)

We insert this expression into Eq. (4.19) and obtain

Ek = E0 + E1(T ), (4.112)

where

E0 =
1

4

∫ ∞
0

dω ~ω P(ω) (4.113)

is the average kinetic energy at temperature T = 0, i.e. when the thermostat is in the

vacuum state and

E1(T ) =
1

2

∫ ∞
0

dω ~ω P(ω) exp
[
− ~ω
kBT

]
(4.114)

is the first correction for small temperature T > 0.
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From Fig. 8 one infers that the energy E0 is finite for all finite values of parameters

and behaves in the following way:

(i) E0 increases monotonically from zero to infinity when the coupling strength µ0 grows

from zero to infinity.

(ii) When the decay rate ε = 1/τc increases from zero to infinity E0 grows from zero

to infinity. It means that when the memory function tends to the Dirac delta function,

i.e. for quantum white noise, the average energy tends to infinity! It is not physical.

One can conclude that the white noise limit cannot be performed. In other words, the

Markovian limit does not exist and the process is non-Markovian.
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Figure 9: Panel (a): The normalized memory functions γ(t)/γ̃0 representing various

dissipation mechanisms. Panel (b): The dimensionless kinetic energy Ẽk = τcEk/~ of

the free Brownian particle presented versus dimensionless temperature T̃ = τckBT/~

and various forms of γ(t). Panel (c): The first moment 〈ξ̃〉 = τc〈ξ〉 and panel (d): the

second moment 〈ξ̃2〉 = τ 2
c 〈ξ2〉 depicted versus the dimensionless parameter α̃ = M/γ̃0τ

2
c

for different variants of the damping kernel γ(t).

4.11.3 Statistical moments of probability distribution P(ω)

Let us now discuss statistical moments of the random variable ξ distributed according

to the probability density P(ω):

〈ξn〉 =

∫ ∞
0

dω ωnP(ω). (4.115)

A caution is needed since not all moments may exist, e.g. for the distribution (4.35).

The first two of them have a clear physical interpretation. The first moment, i.e. the

mean value 〈ξ〉 of the random variable ξ is proportional to kinetic energy Ek of the
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Brownian particle at zero temperature T = 0, namely,

E0 = Ek(T = 0) =
~
4
〈ξ〉. (4.116)

The second moment 〈ξ2〉 is proportional to the first correction to kinetic energy Ek in

the high temperature regime,

Ek =
1

2
kBT +

~2

24kBT
〈ξ2〉. (4.117)

We note that averaged kinetic energy E0 at zero temperature T = 0 is non-zero for

all values of the system parameters. It is so because of intrinsic quantum vacuum

fluctuations. Moreover, Ek monotonically increases from some non-zero value to infinity

when temperature goes to infinity.

4.11.4 Comparison of mean energy for various dissipation mechanisms

If we want to compare impact of various dissipation mechanisms on Ek we have to

change the scaling of all dissipation functions γ(t). Now, we re-define γ(t) in such a

way that for all memory functions γ(0) = γ̃0, where γ̃0 still characterizes the particle-

thermostat coupling but now it has the unit [γ̃0] = [kg/s2]. E.g. for the Drude model

γD(t) = γ̃0 exp(−t/τc) or for the Lorenzian shape γL(t) = γ̃0/[(t/τc)
2 + 1], see panel

(a) of Fig. 9, where all γ(t) assume the same value for t = 0. In the classical case, it

would correspond to the fixing of the second moment of the random force η(t). In our

previous considerations, we define γ(t) in such a way that it tends to the Dirac delta

when the memory time τc → 0, which in the classical case corresponds to Gaussian

white noise of the random force η(t). Now, the scaling is different.

In Fig. 9(b) we compare kinetic energy Ek for different forms of the memory function

γ(t). The various curves Ek versus temperature never intersect each other for the

same set of parameters. Therefore it is sufficient to analyze the energy only at zero

temperature E0 ∝ 〈ξ〉. We present this characteristic in Fig. 9(c) where we depict

the dimensionless first moment 〈ξ̃〉 = τc〈ξ〉 of the probability density P(ω) versus the

dimensionless parameter α̃ = M/γ̃0τ
2
c . In calculations we scale ω = x/τc like in (4.36)

with fixed τc. First, we note that in all cases the averaged kinetic energy at zero
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temperature decreases when the parameter α̃ increases. We recall that it translates

to either (i) increase of the particle mass M or (ii) decrease of the coupling strength

γ̃0. Moreover, we can see that for the n-algebraic decay (n = 2 and n = 4 for red

and orange curve, respectively) kinetic energy at zero temperature E0 is smaller than

for other memory functions. The negligible difference is observed for the Drude and

Gaussian decay. The largest kinetic energy is induced by the Debye type dissipation

(anti-correlation and the compact support of the probability density). In the high

temperature regime (panel (d) of Fig. 9), the correction 〈ξ̃2〉 = τ 2
c 〈ξ2〉 depends very

weakly on the form of γ(t) and the differences are indistinguishable. Finally, at T = 0,

the energy E0 increases starting from zero for τc → 0 (it is not a limit to the Dirac

delta!) and saturates to a finite value as τc is longer and longer (not depicted).
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5 Partition of energy for quantum oscillator

5.1 Formulation of problem

The second (and the last) exactly solvable case of the Langevin equation defined by the

formula (3.14), i.e.,

Mẍ(t) +
i

~
[p, U(x)] = −

∫ t

0

dsγ(t− s)ẋ(s)− γ(t)x(0) + η(t) (5.1)

p(t) = Mẋ(t) (5.2)

is the case of a harmonic oscillator for which the potential U(x) ∝ x2. The correspond-

ing dynamics is determined by the linear integro-differential equation:

Mẍ(t) +Mω2
0x(t) = −

∫ t

0

γ(t− s)ẋ(s)ds− γ(t)x(0) + η(t) (5.3)

ẋ(t) =
1

M
p(t) (5.4)

Sometimes we will refer to this oscillator as a central oscillator to discriminate it from the

thermostat oscillators. Our goal is to find the solution of the above Langevin equation.

To this aim we use the Laplace transformation method and our interest is to investigate

the second moment of both the position 〈x2(t)〉 and the momentum 〈p2(t)〉 operators
in the long time limit, when the stationary stated is reached. This procedure allows to

study both the potential and kinetic energy of the central oscillator, respectively.

5.2 Laplace transformation of Langevin equation

Applying the Laplace transformation to Eq. (5.3) we obtain for the left hand side

L
{
Mẍ(t) +Mω2

0x(t)
}

(z) = Mz2L{x(t)} (z)−Mx(0)−Mẋ(0) +Mω2
0L{x(t)} (z) ,

(5.5)
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and for the right hand side

L
{
−
∫ t

0

γ(t− s)ẋ(s)ds− γ(t)x(0) + η(t)

}
(z) = −zL{γ(t)} (z)L{x(t)} (z) (5.6)

+ x(0)L{γ(t)} (z)− x(0)L{γ(t)} (z)

(5.7)

+ L{η(t)} (z) . (5.8)

Using the shorthand notation we sumarize them as(
Mz2 + zγ̂L(z) +Mω2

0

)
x̂L(z) = Mẋ(0) +Mx(0)z + η̂L(z). (5.9)

We introduce two response functions defined by their Laplace transforms

L{Q(t)} (z) = Q̂L(z) =
1

Mz2 + zγ̂L(z) +Mω2
0

(5.10)

L{R(t)} (z) = R̂L(z) =
Mz

Mz2 + zγ̂L(z) +Mω2
0

(5.11)

Rewriting Eq. (5.9) in terms of these response functions we obtain the solution for the

position operator

L{x(t)} (z) = x(0)R̂L(z) +Mẋ(0)Q̂L(z) + Q̂L(z)η̂L(z) (5.12)

x(t) = x(0)R(t) + p(0)Q(t) +

∫ t

0

dsQ(t− s)η(s) (5.13)

Analogous calculations can be performed for the momentum operator with the results:

L{p(t)} (z) = Mẋ(0)R̂L(z) +Mx(0)zR̂L(z) + R̂L(z)η̂L(z) (5.14)

p(t) = Mx(0)Ṙ(t) + p(0)R(t) +

∫ t

0

dsR(t− s)η(s) (5.15)

We note that here the free particle case analyzed in the previous chapter can be retrieved

by putting ω0 = 0. Therefore we can interpret these calculations as a generalisation of

the specific case which we have dealt before with.

5.3 Potential energy

In Chapter 4, we have derived the relation for kinetic energy of a free quantum Brow-

nian particle in the long time-limit. For the quantum harmonic oscillator studied here
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analogous expression can also be derived for potential energy of the oscillator. The

latter is defined by the operator

Ep(x(t)) =
1

2
Mω2

0x
2(t) (5.16)

By using the solution for the position operator (5.13) we can write down formula for

potential energy explicitly. However, due to the properties of response functions R and

Q, which are discussed in detail in Appendix B, only a part of all terms for
〈
[x(t);x(t)]+

〉
is non-zero in the long time limit. Hence, for such a limit the expression is simplified

to the form:

lim
t→+∞

〈
[x(t);x(t)]+

〉
= lim

t→+∞

∫ t

0

∫ t

0

Q(t− τ1)Q(t− τ2)
〈
[η(τ1); η(τ2)]+

〉
dτ1dτ2 (5.17)

In the next step we present the noise correlation function
〈
[η(τ1); η(τ2)]+

〉
by its Fourier

cosine transform (3.27) and next utilise the fluctuation-dissipation relation (3.28), i.e.,

ĈF (ω) =
~ω
2

coth

(
~ω

2kBT

)
γ̂F (ω) (5.18)

By changing the integration variables τ = t−τ1 and u = t−τ2 we obtain the expression〈
x2(t)

〉
=

∫ ∞
0

dω ĈF (ω)

∫ t

0

dτ

∫ t

0

du Q(τ)Q(u) cos [ω (τ − u)] (5.19)

Now, we have to perform the limit t→∞ to get

Ep = lim
t→+∞

1

2
Mω2

0

〈
x2(t)

〉
=
Mω2

0

2

∫ ∞
0

dω ĈF (ω)

{∫ +∞

0

dτ

∫ +∞

0

du Q(τ)Q(u) cos [ω (τ − u)]

}
≡ Mω2

0

2

∫ +∞

0

dω ĈF (ω)Ip(ω). (5.20)

which has a similar form as Eq. (4.15) and therefore

Ep =

∫ +∞

0

dω Ep(ω)Pp(ω) (5.21)

where

Pp(ω) = Mω2
0 γ̂F (ω)Q̂L(iω)Q̂L(−iω) (5.22)

and

Ep(ω) =
~ω
4

coth

(
~ω

2kBT

)
(5.23)
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or in the equivalent form

Pp(ω) =
iMω2

0

πω

(
Q̂L(iω)− Q̂L(−iω)

)
. (5.24)

Theorem 2.

The function Pp(ω) is a properly defined probability density function, i.e.,

I. it it non-negative, Pp(ω) ≥ 0

II. it is normalized,
∫ +∞

0
dω Pp(ω) = 1

Proof. We start with the normalization condition

Pp(ω) =
iMω2

0

πω

[
Q̂L(iω)− Q̂L(−iω)

]
=
Mω2

0

ω
Q̃S(ω) (5.25)

where Q̃S(ω) is a sine transform, i.e.

Q̃S(ω) =
2

π

∫ ∞
0

dtQ(t) sin (ωt). (5.26)

Let us define an auxiliary function

Θ(t) =

∫ +∞

t

dτ Q(τ) (5.27)

obeying the equation
d

dt
Θ(t) = −Q(t). (5.28)

The cosine transform of Θ(t) reads

Θ̃C(ω) =
2

π

∫ +∞

0

dtΘ(t) cos(ωt) (5.29)

Integrating it by parts yields

Θ̃C(ω) =
2

π

∫ +∞

0

dtΘ(t) cos(ωt) =

∣∣∣∣∣∣ u = Θ(t) v′ = cos(ωt)

u′ = −Q(t) v = 1
ω

sin(ωt)

∣∣∣∣∣∣ (5.30)

=
2

π

1

ω
sin(ωt)Θ(t)

∣∣∣∣+∞
0︸ ︷︷ ︸

=0

+
2

π

∫ +∞

0

dtQ(t)
sin(ωt)

ω
=

1

ω
Q̃S(ω). (5.31)

Using Eq. (5.25) we immediately notice that

Pp(ω) = Mω2
0Θ̃C(ω). (5.32)
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Moreover, we calculate (see Appendix B)

Θ(0) =

∫ +∞

0

dtQ(t) = Q̂L(0) =
1

Mω2
0

. (5.33)

On the other hand

Θ(0) =

∫ +∞

0

dω Θ̃C(ω) =
1

Mω2
0

, (5.34)

and therefore finally we obtain∫ +∞

0

dω P(ω) = Mω2
0

∫ +∞

0

dω Θ̃C(ω) = Mω2
0Θ(0) = 1. (5.35)

In order to prove the non-negativity condition it will be easier to use another equivalent

form of Pp(ω), i.e.,

Pp(ω) =
2M

π

ω2
0A(ω)

ω2A2(ω) + [M(ω2
0 − ω2) + ωB(ω)]

2 (5.36)

where (cf. Sec. 4.3.1)

A(ω) =

∫ ∞
0

dt γ(t) cos (ωt), (5.37)

B(ω) =

∫ ∞
0

dt γ(t) sin (ωt). (5.38)

The denominator in (5.36) is always positive and it is sufficient to show that the numer-

ator A(ω) ≥ 0. From the definition of A(ω) it follows that A(ω) = (π/2)J(ω). Since

the spectral function J(ω) is non-negative the same holds true for A(ω) and therefore

Pp(ω) ≥ 0.

This result is very similar to the previous one for kinetic energy of a free Brownian

particle. Note that in the numerator the eigen-frequency ω0 of the oscillator occurs

and for ω0 → 0 also Pp(ω) → 0 (as it should be). Potential energy of the harmonic

oscillator in long time limit can be represented as an average of potential energy of the

thermostat particles. The averaging is two-fold:

I. over the thermal equilibrium Gibbs state for the thermostat oscillators resulting

in Ep(ω),

II. over frequencies ω of those thermostat oscillators which contribute to Ep according

to the probability distribution Pp(ω).
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5.4 Kinetic energy and total energy of quantum oscillator

The above reasoning can be repeated also for kinetic energy of the harmonic oscillator

leading to the previously introduced representation

Ek =

∫ +∞

0

dω Ek(ω)Pk(ω) (5.39)

where formula for Pk is identical to Eq. (4.21), i.e.

Pk(ω) =
1

M
γ̂F (ω)R̂L(iω)R̂L(−iω) =

1

π

[
R̂L(iω) + R̂L(−iω)

]
, (5.40)

The only difference is the form of the response function R(t) which now is given by Eq.

(5.11).

Thermal averages over the Gibbs state of kinetic and potential energy of the ther-

mostat oscillators are the same, i.e.,

Ek = Ep =
~ω
4

coth
~ω

2kBT
=

1

2
ET , (5.41)

where ET is total energy of the thermostat oscillator. Therefore total energy of the

central oscillator can be represented as

E = Ek + Ep =

∫ +∞

0

dω
1

2
ET (ω) (Pk(ω) + Pp(ω))

=

∫ +∞

0

dω ET (ω)PT (ω) (5.42)

where PT (ω) reads

PT (ω) =
Pk(ω) + Pp(ω)

2
. (5.43)

Thus the total averaged energy of the dissipative quantum oscillator is thermally av-

eraged energy of the thermostat oscillators additionally averaged over the distribution

(5.43). In the next sections we present explicit expressions for both probability den-

sities and analyze their properties. The aim of this detailed and tedious presentation

is three-fold. First, to compare properties of both distributions Pk(ω) and Pp(ω) to

reveal differences and similarities. Second, the potential readers can use these formu-

las. Third, in the future, one can test approximations for models which are not exactly

soluble.



Chapter 5 64

5.5 Drude model of dissipation

We recall the dissipation kernel γ(t) for this model,

γ(t) =
γ0

τc
e−

t
τc (5.44)

parametrized by two non-negative constants γ0 and τc. We again remind that γ0 is the

particle-thermostat coupling strength and τc is the characteristic time of system - it

characterizes memory of the system. The Laplace transform of the memory kernel is:

γ̂L(ω) =
γ0

ωτc + 1
(5.45)

and the response function for this memory kernel reads

Q̂L(ω) =
(ωτc + 1)

M (ω2 + ω2
0) (ωτc + 1) + γ0ω

(5.46)

The probability density for potential energy is

Pp(ω) =
2Mγ0ω

2
0 (ω2τ 2

c + 1)

π
(
γ2

0ω
2 + (M (ω2 − ω2

0) (ω2τ 2
c + 1)− γ0ω2τc)

2
) (5.47)

The probability density for kinetic energy takes the form

Pk(ω) =
2Mγ0ω

2 (ω2τ 2
c + 1)

π
(
γ2

0ω
2 + (M (ω2 − ω2

0) (ω2τ 2
c + 1)− γ0ω2τc)

2
) (5.48)

Note that difference between Pp(ω) and Pk(ω) is in the nominators: ω2
0 ↔ ω2. We should

rewrite this probability density functions in the rescaled, dimensionless form. As in the

previous case of the free Brownian particle, we could distinguish two characteristic

time scales defined by characteristic time τc and τv = 1/µ0 = M/γ0. We introduce the

notation

x = ωτc (5.49)

x0 = ω0τc (5.50)

and then the probability density can be presented in the form

PDp (x) =
1

τc
Pp
(
x

τc

)
=

2αx2
0 (x2 + 1)

π
(
x2 + (α (x2 + 1) (x2 − x2

0)− x2)
2
) (5.51)
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and

PDk (x) =
1

τc
Pk
(
x

τc

)
2αx2 (x2 + 1)

π
(
x2 + (α (x2 + 1) (x2 − x2

0)− x2)
2
) (5.52)

where

α =
M

τcγ0

=
1

µ0τc
=
τv
τc
, (5.53)

is the only dimensionless parameter on which the probability density functions depend.

This scaling can be used to examine impact of the characteristic frequency µ0 = γ0/M

while the second characteristic time scale τc is fixed in this scaling.
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Figure 10: The probability density functions for the Drude model of dissipation. The

memory kernel is γ(t) = (γ0/τc)e
−t/τc . In panels (a) and (b) the dimensionless oscillator

eigen-frequency is fixed x0 = ω0τc = 1.0 and impact of α = τv/τc is depicted (τc is fixed

and τv = M/γ0 is changed). In panels (c) and (d) the parameter α = 1.0 and impact

of x0 is shown.

In Fig. 10 we depict the probability density as function of x = ωτc for the Drude

model of dissipation. In the left panels ,i.e, (a) and (c) we present the probability
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density for potential energy and in the right panels we show probability density for ki-

netic energy. In particular, in panel (a) and (b) we present the influence of τv = M/γ0

via the parameter α = τv/τc - the memory time τc is fixed in this scaling - and the

rescaled oscillator eigen-frequency x0 = ω0τc = 1 for all cases. We can see in (a) that

for all shown parameters PDp (x) is non-zero for x = 0, in contrary to PDk (x) for which

PDk (0) = 0. We can observe that the thermostat oscillators contribute to Ep as well as

to Ek in a non-homogeneous way. There is the optimal thermostat oscillator frequency

xM which makes the greatest contribution to Ep. The similar observation is also for

Ek but in general these two optimal frequencies are different. Moreover the values xM

for Ep and Ek depend on the system parameters α and x0. One can easily note that in

all cases depicted in panels (a) and (b) the contribution is peaked in the region of low-

frequency modes and then it rapidly decreases to 0. In panels (c) and (d) we illustrate

the influence of the rescaled eigen-frequency x0 = ω0τc for the fixed parameter α = 1.

We can see here that the frequency of the local maximum xM depends strongly on x0

and for higher values of x0 it is shifted to the higher frequency modes of thermostat.
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Figure 11: A comparison of probability density functions for potential energy (solid

line) and kinetic energy (dash-dot line) for the Drude model of dissipation. Panel (a):

fixed x0 = 1.0 and different values of α = τv/τc (τc is fixed and τv is changed). Panel

(b): fixed α = 1.0 and selected values of x0 = ω0τc

In Fig. 11 we compare the probability densities PDp (x) and PDk (x). The functions

with the same values of parameters are drawn using the same color. The solid line
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depicts PDp (x) while the dash-dot line depicts PDk (x).

Now, we analyze impact of the memory time τc and use the scaling:

y =
ω

µ0

(5.54)

y0 =
ω0

µ0

(5.55)

which yields

P̃Dp (y) = µ0Pp(µ0y) =
2α2y2

0 (α2 + y2)

π
(
α4y2 + (αy2 − (α2 + y2) (y2 − y2

0))
2
) (5.56)

P̃Dk (y) = µ0Pk(µ0y) =
2α2y2 (α2 + y2)

π
(
α4y2 + (αy2 − (α2 + y2) (y2 − y2

0))
2
) (5.57)
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Figure 12: Probability density functions for the Drude model of dissipation. The mem-

ory kernel is γ(t) = (γ0/τc)e
−t/τc . In panels (a) and (b): the eigen-frequency is fixed

y0 = ω0τv = 1 and impact of α = τv/τc is shown (τv is fixed and τc is changed). In

panels (c) and (d): α = 1.0 and the dimensionless eigen-frequency y0 = ω0τv varies.

Note that in panels (c) and (d) there are the same probability distributions as in Fig.

10. We repeat them to compare with other panels.

In Fig. 12 the probability density functions for potential and kinetic energy are

shown. In left panels (a) and (c), the function P̃Dp (y) defined in (5.56) is presented

and in panels (b) and (d) the function P̃Dk (y) defined in (5.57) is shown. We use here

scaling y = τvω. In upper panels (a) and (b) we present influence of the memory time

τc via the parameter α = τv/τc. In lower panels (c) and (d) we present influence of the

rescaled eigen-frequency y0 = τvω0. We observe that with increasing y0 the frequency

yM of maximal contribution to energy is shifted to the higher frequency modes.
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Figure 13: A comparison of probability density functions for potential energy (solid

line) and kinetic energy (dash-dot line) for the Drude model of dissipation. Panel (a):

fixed y0 = ω0τv = 1.0 and different values of α = τv/τc (τv is fixed and τc is changed).

Panel (b): fixed α = 1.0 and selected values of y0.

Comparison of the probability density functions P̃Dp (y) and P̃Dk (y) is presented in

Fig. 13. In panel (a), the parameter y0 is fixed, y0 = 1, and influence of the parameter

α is depicted. We can see that P̃Dp (y) (solid line) has the non-zero value for y = 0 and

P̃Dk (y) drawn by dash-dot line has zero value for this argument. For both functions we

note that after reaching local maximum both functions rapidly decrease to 0.

5.6 Generalized Drude model of dissipation

The memory kernel for this model is reminded to be

γ(t) =
γ0

τc
e−

t
τc cos (Ωt) (5.58)

The Laplace transform of it reads

γ̂L(ω) =
γ0 (ωτc + 1)

Ω2τ 2
c + (ωτc + 1)2 (5.59)

Due to complexity we use functions A(ω) and B(ω) to represent probability density

functions for energies:

A(ω) =
γ0 (Ω2τ 2

c + ω2τ 2
c + 1)

(Ω2τ 2
c − 2Ωωτ 2

c + ω2τ 2
c + 1) (Ω2τ 2

c + 2Ωωτ 2
c + ω2τ 2

c + 1)
(5.60)

B(ω) = − γ0ωτc (Ω2τ 2
c − ω2τ 2

c − 1)

(Ω2τ 2
c − 2Ωωτ 2

c + ω2τ 2
c + 1) (Ω2τ 2

c + 2Ωωτ 2
c + ω2τ 2

c + 1)
(5.61)
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The probability density functions for energies are

Pp(ω) =
2M

π

ω2
0A(ω)

ω2A2(ω) + [M(ω2
0 − ω2) + ωB(ω)]

2 (5.62)

Pk(ω) =
2M

π

ω2A(ω)

ω2A2(ω) + [M(ω2
0 − ω2) + ωB(ω)]

2 (5.63)

There are four parameters Ω, τc, µ0 and the characteristic frequency ω0. Using appro-

priate scaling one can reduce a number of parameters. Let us introduce at this point

the following scaling:

x = ωτc (5.64)

x0 = ω0τc (5.65)

The corresponding probability density functions can be rewritten in the following way:

PEp (x) =
2αx20(Ω̂2+x2+1)(Ω̂2−2Ω̂x+x2+1)(Ω̂2+2Ω̂x+x2+1)

π
(
x2(Ω̂2+x2+1)

2
+(α(x2−x20)(Ω̂2−2Ω̂x+x2+1)(Ω̂2+2Ω̂x+x2+1)−x2(−Ω̂2+x2+1))

2
) (5.66)

PEk (x) =
2αx2(Ω̂2+x2+1)(Ω̂2−2Ω̂x+x2+1)(Ω̂2+2Ω̂x+x2+1)

π
(
x2(Ω̂2+x2+1)

2
+(α(x2−x20)(Ω̂2−2Ω̂x+x2+1)(Ω̂2+2Ω̂x+x2+1)−x2(−Ω̂2+x2+1))

2
) (5.67)

where:

Ω̂ = Ωτc (5.68)

α =
M

τcγ0

=
1

µ0τc
(5.69)
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Figure 14: Probability density functions for the generalized Drude model of dissipation.

The memory kernel is γ(t) = (γ0/τc)e
−t/τc cos(Ωt). Panels (a), (c) and (e) present the

probability density functions for potential energy. Panels (b), (d) and (f) are for kinetic

energy. Probability functions are scaled as functions of the dimensionless parameter

x = ωτc. In panels (a) and (b): Ω̂ = Ωτc = 1, x0 = ω0τc = 1 and lines are drawn for

different values of the parameter α = τv/τc (τv = M/γ0 is changed). In panels (c) and

(d): Ω̂ = 1, α = 1 and x0 varies. In panels (e) and (f): α = 1, y0 = 1 and Ω̂ varies. In

all panels τc is fixed.
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Fig. 14 shows the probability density functions for the generalized Drude model

of dissipation. In left panels we present PEp (x) defined in (5.66), in right panels PEk (x)

defined in (5.67) is shown. In all panels we use scaling x = τcω. The functions depend

on three parameters α = τv/τc, x0 = τcω0 and Ω̂ = Ωτc. To show influence of all

relevant parameters we use here six panels with every row depicting influence of different

parameters and fixed parameters are assumed to be 1.
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Figure 15: A comparison of probability density functions for potential energy (solid

line) and kinetic energy (dash-dot line) for the generalized Drude model of dissipation.

Panel (a): fixed x0 = Ω̂ = 1.0 and different values of α = τv/τc (τc is fixed and τv is

changed). Panel (b): fixed α = Ω̂ = 1.0 and selected values of x0 = ω0τc. Panel (c):

fixed α = x0 = 1.0 and selected values of Panel (b): fixed α = Ω̂ = 1.0 and selected

values of Ω̂ = Ωτc.

In Fig. 15 functions PEp and PEk are compared. In panel (a) impact of the system-
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thermostat coupling γ0 is shown via the parameter α = M/(τcγ0). We can see that

with increasing value of α (the weaker coupling) the half-with of the probability density

functions decreases. In panel (b) one can see the influence of rescaled eigen-frequency

x0 = τcω0. We can see that for all values x0 the equality PEp (x0) = PEk (x0) holds true.

To study impact of the memory time τc it is suitable to use the scaling:

y =
ω

µ0

(5.70)

y0 =
ω0

µ0

(5.71)

In this scaling, the probability density functions have the representation:

P̃Ep (y) =
2α2y20(α2+Ω̃2+y2)(α2+Ω̃2−2Ω̃y+y2)(α2+Ω̃2+2Ω̃y+y2)

π
(
α4y2(α2+Ω̃2+y2)

2
+(−αy2(α2−Ω̃2+y2)+(y2−y20)(α2+Ω̃2−2Ω̃y+y2)(α2+Ω̃2+2Ω̃y+y2))

2
)

(5.72)

P̃Ek (y) =
2α2y2(α2+Ω̃2+y2)(α2+Ω̃2−2Ω̃y+y2)(α2+Ω̃2+2Ω̃y+y2)

π
(
α4y2(α2+Ω̃2+y2)

2
+(−αy2(α2−Ω̃2+y2)+(y2−y20)(α2+Ω̃2−2Ω̃y+y2)(α2+Ω̃2+2Ω̃y+y2))

2
)

(5.73)

where:

Ω̃ =
Ω

µ0

(5.74)

α =
M

τcγ0

=
1

µ0τc
(5.75)

Their dependence on the system parameters is depicted in Figs. 16 and 17.
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Figure 16: Probability density functions for the generalized Drude model of dissipation

with the memory kernel defined as γ(t) = (γ0/τc)e
−t/τc cos(Ωt). Panels: (a), (c) and (e)

present probability density functions for potential energy. Panels: (b), (d) and (f) are

for kinetic energy. In panels (a) and (b) two parameter Ω̃ and y0 are fixed and equal

to 1 and impact of α = τv/τc is shown (τv is fixed and τc is changed). In panels (c) and

(d): Ω̃ and α are fixed and equal to 1 with selected values of y0 = ω0τv. Panels (e) and

(f): for different Ω̃ = Ωτv with fixed parameters y0 = 1 and α = 1. Note that again

there is a part of common distributions as in Fig. 14. We repeat them to compare with

other panels.
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Figure 17: A comparison of probability density functions for potential energy (solid

line) and kinetic energy (dash-dot line) for the generalized Drude model of dissipation.

In all panels the parameter τv is fixed. The remaining is the same as in the previous

figure.
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Figure 18: A comparison of probability density functions for potential energy (solid

line) and kinetic energy (dash-dot line) for the generalized Drude model of dissipation.

In this scaling, the parameter τc is fixed. Selected values of the special case y0 = Ω̃ is

depicted. In panels: (a) α = 1, (b) α = 3, (c) α = 5

In Fig. 18 we present interesting behavior for selected values of y0 and Ω̃ but for the

special case when both characteristic frequencies are the same, i.e. when y0 = Ω̃. We

can see that lines seemingly shifts to the higher frequency modes with increasing values

of the parameters y0 and Ω̃. In panel (a) for which parameter α = 1, the probability

density functions exhibit only one local maximum with the some optimal frequency yM

for P̃Ek higher than the optimal frequency for potential energy. In panel (b) for which

α = 3 and in panel (c) for which α = 5 the probability density functions exhibit two

local maxima. This behavior becomes more apparent for higher values of α.
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5.7 Algebralic decay of memory kernel

The algebraic memory decay is characterized by the function

γ(t) =
γ0

t+ τc
(5.76)

Its Laplace transform is

γ̂L(ω) = γ0e
ωτc E1 (ωτc) (5.77)

The functions A(ω) and B(ω) which enter to the probability densities take the form:

A(ω) =
γ0

2

(
e2iωτc E1 (iωτc) + E1 (−iωτc)

)
e−iωτc (5.78)

B(ω) =
iγ0

2

(
e2iωτc E1 (iωτc)− E1 (−iωτc)

)
e−iωτc (5.79)

Again, we introduce the scaling:

x = ωτc (5.80)

x0 = ω0τc (5.81)

in which the probability densities have the form

PAp (x) =
4αx20

(
e2ix E1 (ix) + E1 (−ix)

)
eix

π
(
x2 (e2ix E1 (ix) + E1 (−ix))2 + (2α (x2 − x20) eix − ix (e2ix E1 (ix)− E1 (−ix)))2

)
(5.82)

PAk (x) =
4αx2

(
e2ix E1 (ix) + E1 (−ix)

)
eix

π
(
x2 (e2ix E1 (ix) + E1 (−ix))2 + (2α (x2 − x20) eix − ix (e2ix E1 (ix)− E1 (−ix)))2

)
(5.83)

where:

α =
M

τcγ0

=
1

µ0τc
(5.84)



Chapter 5 78

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

0

1

2

3

4

5
A p
(x

)

(a)

= 0.5
= 1.0
= 1.5
= 2.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

0

1

2

3

4

A k
(x

)

(b)

= 0.5
= 1.0
= 1.5
= 2.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

0

2

4

6

8

A p
(x

)

(c)

x0 = 0.5
x0 = 1.0
x0 = 1.5
x0 = 2.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

0

1

2

3

4

5

A k
(x

)
(d)

x0 = 0.5
x0 = 1.0
x0 = 1.5
x0 = 2.0

Figure 19: Probability density functions for the algebraically decaying memory function

defined as γ(t) = γ0/(t + τc). Panels (a) and (c) depict probability density functions

for potential energy. Panels (b) and (d) are for kinetic energy. In panels (a) and (b):

x0 = 1 with selected values of α = τv/τc (τc is fixed and τv = M/γ0 is changed). In

panels (c) and (b): α = 1 and different values of x0 = ω0τc.
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Figure 20: A comparison of probability density functions for potential energy (with

solid line) and kinetic energy (dash-dot line) in the case of the algebraically decaying

memory. Panel (a) is for fixed x0 = 1.0 and different values of α = τv/τc. Panel (b) is

for fixed α = 1.0 and different x0 = ω0τc

For the second scaling

y =
ω

µ0

(5.85)

y0 =
ω0

µ0

(5.86)

the probability density functions read

P̃Ap (y) =
4y20

(
e

2i
α y E1

(
iy
α

)
+ E1

(
− iyα

))
e
iy
α

π

(
y2
(
e

2i
α y E1

(
iy
α

)
+ E1

(
− iyα

))2
+
(
−iy

(
e

2i
α y E1

(
iy
α

)
− E1

(
− iyα

))
+ 2 (y2 − y20) e

iy
α

)2)
(5.87)

P̃Ak (y) =
4y2

(
e

2i
α y E1

(
iy
α

)
+ E1

(
− iyα

))
e
iy
α

π

(
y2
(
e

2i
α y E1

(
iy
α

)
+ E1

(
− iyα

))2
+
(
−iy

(
e

2i
α y E1

(
iy
α

)
− E1

(
− iyα

))
+ 2 (y2 − y20) e

iy
α

)2)
(5.88)

Their graphical representation is shown in Figs. 21 and 22.
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Figure 21: Probability density functions for the algebraically decaying memory function

γ(t) = γ0/(t+ τc). Panels (a) and (c) depict probability density functions for potential

energy. Panels (b) and (d) are for kinetic energy. Panels (a) and (b) are for fixed y0 = 1

and selected values of α = τv/τc. Panels (c) and (b) are for α = 1 with selected values

of the dimensionless parameter y0 = ω0τv (τv = M/γ0 is fixed).
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Figure 22: A comparison of probability density functions for potential energy (with

solid line) and kinetic energy (dash-dot line) in the case of the algebraically decaying

memory kernel defined as γ(t) = γ0/(t + τc). Panel (a) is fixed y0 = 1.0 and different

values of α = τv/τc. Panel (b) is for fixed α = 1.0 and selected values of y0 = ω0τv

(τv = M/γ0 is fixed).

5.8 Gaussian memory kernel

The last model of dissipation which we want to present is defined by the Gaussian decay

of the memory kernel:

γ(t) =
γ0e
− t2

τ2c√
πτc

(5.89)

The Laplace transform:

γ̂L(t) =
γ0

2

(
− erf

(ωτc
2

)
+ 1
)
e
ω2τ2c

4 (5.90)

where erf is the error function defined as:

erf(x) =
2√
π

∫ x

0

e−t
2

dt (5.91)

A(ω) =
γ0

2
e−

ω2τ2c
4 (5.92)

B(ω) = −iγ0

2
e−

ω2τ2c
4 erf

(
iτc
2
ω

)
(5.93)

Probability density functions:

Pp(ω) =
Mγ0ω

2
0e
−ω

2τ2c
4

π

(
γ20ω

2

4
e−

ω2τ2c
2 +

(
M (−ω2 + ω2

0)− iω
2
γ0e
−ω2τ

2
c

4 erf
(
iτc
2
ω
))2
) (5.94)
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Pk(ω) =
Mγ0ω

2e−
ω2τ2c

4

π

(
γ20ω

2

4
e−

ω2τ2c
2 +

(
M (−ω2 + ω2

0)− iω
2
γ0e
−ω2τ

2
c

4 erf
(
iτc
2
ω
))2
) (5.95)

Furthermore if we introduce scaling:

x = ωτc (5.96)

x0 = ω0τc (5.97)

the rescalled probability density functions are:

PGp (x) =
4αx2

0e
x2

4

π

(
x2 +

(
2α (x2 − x2

0) e
x2

4 + ix erf
(
ix
2

))2
) (5.98)

PGk (x) =
4αx2e

x2

4

π

(
x2 +

(
2α (x2 − x2

0) e
x2

4 + ix erf
(
ix
2

))2
) (5.99)

where:

α =
M

γ0τc
=

1

µ0τc
(5.100)

These distributions are depicted in Figs. 23 and 24.
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Figure 23: Probability density functions for the Gaussian model of dissipation. Memory

kernel in this model is γ(t) = γ0 exp (−t2/τ 2
c ) / (

√
πτc). Panel (a) is for potential energy

with fixed x0 = 1.0 and for different α. Panel (b) corresponds to kinetic energy. In

panel (c) α = 1.0 and x0 is changed. Panel (d) is for kinetic energy with fixed α = 1.
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Figure 24: A comparison of probability density functions for the Gaussian model of

dissipation: The probability density for potential energy is depicted by solid line and

dash-doted line corresponds to kinetic energy. In panel (a) x0 = 1.0 and impact of α is

shown. Panel (b) is for fixed α = 1 with different x0.

For this rescaling parameter τc is fixed. If we are interested on the impact of the

memory time τc upon behavior of probability density function we ought to use different

rescaling with fixed parameter µ0. For the this type of rescaling:

y =
ω

µ0

(5.101)

y0 =
ω0

µ0

(5.102)

the dimensionless probability density functions are:

P̃Gp (y) =
4y2

0e
y2

4α2

π

(
y2 +

(
iy erf

(
iy
2α

)
+ 2 (y2 − y2

0) e
y2

4α2

)2
) (5.103)

P̃Gk (y) =
4y2e

y2

4α2

π

(
y2 +

(
iy erf

(
iy
2α

)
+ 2 (y2 − y2

0) e
y2

4α2

)2
) (5.104)

They are shown in Figs. 25 and 26.
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Figure 25: Probability density functions for the Gaussian model of dissipation with the

frequency scaling y = τvω.
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Figure 26: A comparison of probability density functions for the Gaussian model of

dissipation. The remaining is the same as in the previous figures.

Fig. 26 illustrates comparison between the probability density function for potential

energy with the probability density function for kinetic energy. In the panel (a) we can

observe influence of the memory time τc via parameter α = τv
τc

with fixed parameter
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y0 = τvω0. The functions P̃Gp (y) and P̃Gk (y) are defined in (5.103) and in (5.104). It

is interesting to note that for this scalling the value of P̃Gp (0) does not depend on the

parameter α as it was in previously considered models, like in figure 17. The value of

P̃Gp (0) depends only on the value of parameter y0 as can be seen in the panel (b).

5.9 Discussion and remarks

In literature, one can find various expressions for potential and kinetic energy of the

dissipative quantum harmonic oscillator. Nonetheless, the formulas introduced in this

chapter for potential energy:

Ep =

∫ +∞

0

dω Ep(ω)Pp(ω) (5.105)

and kinetic energy:

Ek =

∫ +∞

0

dω Ek(ω)Pk(ω) (5.106)

are similar as in the case of a free Brownian particle and their interpretation, mutatis

mutandis, is also similar. Nevertheless, we summarize main results to make this chapter

to be independent on Chapter 4. Let us list:

I. In the equilibrium state, the mean potential energy Ep of the central oscillator

equals averaged potential energy 〈Ep〉 of the thermostat degree of freedom, i.e.

Ep = 〈Ep〉

II. The mean kinetic energy Ek of the central oscillator equals the mean kinetic en-

ergy 〈Ek〉 of the thermostat degree of freedom, i.e. Ek = 〈Ek〉. The form of this

statement is similar as for classical systems, see Eq. (2.9): The mean kinetic en-

ergy of a free classical particle equals the average kinetic energy of the thermostat

degree of freedom.

III. The functions Pp(ω) and Pk(ω) are probability density functions, i.e. they are

non-negative and normalized on the interval [0; +∞). From probability theory

it follows that there exist random variables ξ1 and ξ2 for which Pp and Pk are
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their probability distributions. These random variables can be interpreted as

frequencies of thermostat oscillators. In the thermodynamic limit for thermostat,

there are infinitely many oscillators of various frequencies ω which contribute in

a various way to Ep and Ek according to Pp(ω) and Pk(ω), respectively. It is

worth to stress that in general, the same thermostat oscillators of frequencies in

the interval (ω1, ω2) contribute to Ek in a different way than to Ep.

IV. The thermostat oscillators contribute to Ep and Ek in a non-uniform way ac-

cording to the probability density functions Pp(ω) and Pk(ω). The form of these

distributions do not depend on temperature T . However, they depend on cou-

pling between the Brownian particle and thermostat. There is no restriction on

the value of this coupling - it means that strong coupling is included as well.

They also depend on the memory time - it means that non-Markovian regime

is included as well. And finally, it depends on mass M of the central oscillator

and its frequency. Note that for classical systems, there is no mass and frequency

dependence.

5.9.1 Remarks on mean energy

We show how energy of a quantum oscillator depends on some parameters of the model.

The results presented here are published in our paper [21]. In Fig. 27, we illustrate

the mean kinetic and potential energy for the Drude model, see Eqs. (5.47) and (5.48)

with (5.105) and (5.106), as a function of temperature for selected values of the model

parameters. In particular, in panel (a) we present the influence of the memory time τc

via the parameter α = τv/τc with fixed τv = M/γ0 and the oscillator eigenfrequency

ω̃0 = 1. We note that regardless of the value of the memory time for this set of

parameters the potential energy is always smaller than the kinetic one. Moreover,

when the memory time decreases (i.e. α increases) the kinetic energy increases whereas

the potential one is decreasing. On the other hand if time τc increases (i.e. α decreases)

then the difference between the kinetic and potential energy is getting smaller and

smaller and in the limit of infinitely long memory time it tends to zero.
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Figure 27: Harmonic oscillator with Drude dissipation. The dimensionless mean kinetic

energy Ẽk = τvEk/~ (red) and mean potential energy Ẽp = τvEp/~ (blue) versus

dimensionless temperature T̃ = τvkBT/~, where τv = M/γ0 is fixed. Panel (a): Solid

line α = τv/τc = 0.1, dashed line: α = 1, dotted line α = 10; all for the fixed

eigenfrequency ω̃0 = ω0τv = 1. Panel (b): Solid line ω̃0 = 1, dashed line ω̃0 = 2 and

fixed α = 1. The exception here is the green solid line which shows the mean kinetic

energy Ẽk for the free Brownian particle with ω̃0 = 0. Panel (c): The total energy

Ẽ = Ẽk + Ẽp corresponding to the regime of panel (a). Panel (d): The total energy

corresponding to the regime of panel (b).

Alternatively, if the memory time τc is fixed and we change τv = M/γ0 in α = τv/τc

we observe that the kinetic and potential energy approaches the same value in the limit

of large values of α (not depicted). It implies that either:

(i) the mass M of the particle is large or

(ii) the coupling γ0 between the system and thermostat is weak.
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In the latter situation one could say that the system may be approximated by a free

harmonic oscillator, which especially in the low temperature limit approaches a coher-

ent state, where the position and momentum variances (proportional to kinetic and

potential energy) match. The problem of relation between the kinetic and potential

energy is discussed also in Ref. [43]. In panel (b) of Fig. 27 we present the same

characteristics but now depicted for the fixed memory time α = 1 and different values

of the oscillator eigenfrequency ω̃0. The observation is that for increasing values of

the latter parameter both the kinetic and potential energy is growing. However, still

the kinetic one is larger than the potential energy. The reader should note there also

the interesting comparison with the case of a free quantum Brownian particle ω̃0 = 0

which is marked by the green colour. It turns out that the kinetic energy of a quantum

harmonic oscillator is always greater than in the corresponding case of the free particle.

In panels (c) and (d) of Fig. 27 we analyse the dependence of the total averaged en-

ergy E = Ek+Ep of the quantum oscillator versus the previously discussed parameters.

It is instructive to observe in the panel (c) that when the memory time τc decreases

(i.e. α increases) the total energy of the system increases to infinity. It means that

the limiting case of vanishing memory is non-physical for quantum systems. Since the

time scale τc can be viewed also as the leading correlation time of the quantum thermal

fluctuations one would say in analogy to classical physics that there is no limit of white

noise in the quantum realm. In other words it implies that quantum thermal fluctua-

tions are always correlated. Qualitatively, the dependence of the kinetic, potential or

total energy on temperature is robust with respect to changes of the model parameter

values. For high enough temperature it always tends to the classical limit kBT/2 while

in the regime of low temperature it is higher than the corresponding classical value.

Note that all curves are monotonically increasing functions of temperature which never

intersect each other. Due to this fact for a qualitative analysis it is sufficient to study

the oscillator energies corresponding to zero temperature limit T = 0.

Here, we mention two recent papers [10, 18] where similar problems are studied.

There the variance of the position of the quantum Brownian particle is studied as a

function of temperature and the system-thermostat coupling strength. One of the main
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results of analysis performed there is the particle position squeezing as temperature

decreases and the interaction strength increases. For our system we observe a similar

effect (not depicted). The potential energy Ep (the particle position variance) decreases

for fixed temperature T and growing of the coupling constant γ0. It then translates to

the fact that the probability distribution Pp(ω) corresponding to the mean potential

energy rapidly decays meaning that relatively only the oscillators of low frequency

bring the contribution to the average potential energy. Under this assumption they

have small kinetic energy and therefore can transfer only little amount of it to the

system. Consequently, the variance of the particle position is limited. In contrast, for

weak system-thermostat coupling oscillators of high frequency dominate the probability

distribution for the potential energy (position variance). Then they are allowed to have

much larger kinetic energy and may transfer much bigger portion of it to the system

resulting in increase of the particle position variance. Therefore the theorem of quantum

partition of energy turns out to be quite helpful in qualitative interpretation of the

mentioned particle position squeezing effect.
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Figure 28: Panel (a): the mean value 〈ξ̃k〉 = τv〈ξk〉 of the random variable distributed

according to the probability distribution P̃k(x) = (1/τv)Pk(x/τv) corresponding to the

mean kinetic energy of the quantum harmonic oscillator is shown as the function of the

parameter α = τv/τc, where τv = M/γ0 is fixed, and different values of eigenfrequency

ω̃0 = ω0τv. Panel (b): the first statistical moment of the probability density P̃p(x) =

(1/τv)Pp(x/τv) for the potential energy of the quantum harmonic oscillator. Solid lines

correspond to the Drude (exponential) model and dashed lines to algebraic decay of

γ(t).

The case of zero temperature T = 0 is analysed in Fig. 28 where the impact of the

memory time τc as well as the eigenfrequency ω̃0 is shown. Now additionally we compare

the two mentioned mechanisms of dissipation. Panel (a) of this figure shows that

when the memory time τc decreases (i.e. α increases) the kinetic energy monotonically

increases. The opposite effect is for the potential energy: it slowly decreases as the

memory time is shorter. One can note that kinetic energy for Drude model is greater

than for the algebraic decay of γ(t). For the potential energy it is opposite sequence: Ep

is greater for the algebraic decay of γ than for the exponential one. Moreover, both the

kinetic as well as potential energy grows as the eigenfrequency ω̃0 is increased. Finally,

the influence of the coupling strength γ0 should be pointed out (not shown in figures).

It seems to be rather obvious that if the coupling is stronger then more channels are

open to transmit energy from environment to the central system S and therefore its

energy is greater.
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5.9.2 High temperature regime

As it was done in the previous chapter, one can investigate some special cases or inter-

esting specific regimes. One of such a regime is the high temperature regime T → +∞
and the approximation

coth

(
~ω

2kBT

)
≈ 2kBT

~ω
(5.107)

can be utilized. Then

Ep = 〈Ek〉 =

∫ ∞
0

dω Ek(ω)Pp(ω) =

∫ ∞
0

dω
~ω
4

coth

(
~ω

2kBT

)
Pp(ω)

≈ 1

2
kBT

∫ ∞
0

dω Pp(ω) =
1

2
kBT, (5.108)

Ek = 〈Ek〉 =

∫ ∞
0

dω Ek(ω)Pk(ω) =

∫ ∞
0

dω
~ω
4

coth

(
~ω

2kBT

)
Pk(ω)

≈ 1

2
kBT

∫ ∞
0

dω Pk(ω) =
1

2
kBT, (5.109)

This lead to classical relations for the harmonic oscillator.

5.9.3 Low temperature regime

For low temperature, T → 0, the following approximation can be applied

coth(x) = 1 + 2
e−2x

1− e−2x
≈ 1 + 2e−2x, x =

~ω
2kBT

. (5.110)

We insert this expression into the formula for potential energy:

Ep =

∫ +∞

0

dω Ep(ω)Pp(ω) (5.111)

and kinetic energy:

Ek =

∫ +∞

0

dω Ek(ω)Pk(ω) (5.112)

We obtain:

Ep = E(0)
p + E(1)

p (T ), (5.113)

and:

Ek = E
(0)
k + E

(1)
k (T ), (5.114)
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where

E
(0)
i =

1

4

∫ ∞
0

dω ~ω Pi(ω) (5.115)

with i = p for potential energy or i = k for kinetic energy. It is average potential and

kinetic energy for temperature T = 0, i.e. when the thermostat is in the vacuum state

and

E
(1)
i (T ) =

1

2

∫ ∞
0

dω ~ω Pi(ω) exp
[
− ~ω
kBT

]
(5.116)

is the first correction for small temperature T > 0.
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6 Method via Callen-Wellton fluctuation-dissipation

relations

Up to now, we have considered two physical systems: the free Brownian particle and

oscillator. The natural question is whether the relation for energy partition is valid for

arbitrary quantum systems. The answer is only partial. In this section, we show that

a formal relation similar to that for two above mentioned examples can be obtained

from the fluctuation-dissipation relation of the Callen-Welton type [44, 5, 6, 8]. We

recall that in this theory the quantum system is characterized by the Hamiltonian H̃

and is in a thermal equilibrium state at temperature T defined by the Gibbs canonical

statistical operator ρ ∝ exp[−H̃/kBT ]. Next, the external force F (t) is applied to

the system which develops in time under the perturbed time-dependent Hamiltonian

H = H̃−F (t)Y , where Y is a hermitian operator. In the linear response approximation,

one can calculate fluctuations of the operator Y . For a special choice of Y one can get

Eq. (4.19). One can exploit the results contained in the Zubarev book [7] [see Eq.

(17.19g)] or the Landau-Lifshitz book [6] [see Eq. (124.10)]. We apply Eq. (17.19g),

namely, the mean square deviation or variance of the operator Y is given by the relation

〈(Y −〈Y 〉)2〉 =
~
2π

∫ ∞
−∞

dω coth

[
~ω

2kBT

]
χ′′(ω) =

~
π

∫ ∞
0

dω coth

[
~ω

2kBT

]
χ′′(ω), (6.1)

where the odd function χ′′(ω) is the imaginary part of the generalized susceptibility,

χ(ω) = χ′(ω) + iχ′′(ω). (6.2)

The generalized susceptibility χ(ω) is a Fourier transform

χ(ω) =

∫ ∞
−∞

dt eiωtGr(t) (6.3)

of the response function Gr(t) (sometimes unfortunately denoted as χ(t)) which is in

fact the retarded thermodynamic Green function [7]:

Gr(t− s) =
i

~
θ(t− s)〈[Y (t), Y (s)]〉, (6.4)

where θ(t) is the Heaviside step function and

Y (t) = exp(iH̃t/~)Y (0) exp(−iH̃t/~). (6.5)
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is the Heisenberg operator corresponding to Y (0). The averaging is over the Gibbs

canonical statistical operator ρ ∝ exp[−H̃/kBT ].

Let Y = p be a momentum operator of the Brownian particle and the Hamiltonian

H̃ is given by Eq. (3.2). Then Eq. (6.1) takes the form

〈p2〉 =
~
π

∫ ∞
0

dω coth

[
~ω

2kBT

]
χ′′(ω), (6.6)

where now the response function reads

Gr(t) =
i

~
θ(t)〈[p(t), p(0)]〉, (6.7)

and the average momentum 〈p〉 = 0 at the equilibrium state. If we compare Eqs. (6.6)

and (4.19) then it follows that formally

P(ω) =
2

πMω
χ′′(ω). (6.8)

The question is whether this expression fulfils the property for the probability den-

sity. Its positivity follows from the spectral representation of χ′′(ω), see the equation

just above Eq. (124.9) in the Landau-Lifshitz book [6]. The problem is to prove the

normalization of (6.8): ∫ ∞
0

P(ω)dω =
1

M

2

π

∫ ∞
0

χ′′(ω)

ω
dω. (6.9)

According to the Kramers-Kronig dispersion relation

χ′(ω) =
2

π
P

∫ ∞
0

uχ′′(u)

u2 − ω2
du, (6.10)

the integral in (6.9) is related to the real part of the susceptibility, namely,

χ′(0) =
2

π
P

∫ ∞
0

χ′′(u)

u
du, (6.11)

where P denotes the principal value of the integral. Alternatively, we can apply Eq.

(123.19) in the Landau-Lifshitz book [6] which reads

χ(iω) =
2

π

∫ ∞
0

uχ′′(u)

ω2 + u2
du. (6.12)

For ω = 0 it takes the form

χ(0) =
2

π

∫ ∞
0

χ′′(u)

u
du. (6.13)
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On the other hand, from Eqs. (6.3) and (6.4) it follows that

χ(0) =

∫ ∞
−∞

Gr(t)dt =
i

~

∫ ∞
0

〈[p(t), p(0)]〉dt. (6.14)

We see that the problem of normalization of P(ω) in Eq. (6.8) can be converted to the

problem:

χ(0) = M ??? (6.15)

For two cases considered in previous sections, it can be proved. Indeed, we know the

form of the momentum operator at time t [see Eqs. (4.9) or (5.15)], namely,

p(t) = R(t)p(0)−
∫ t

0

du R(t− u)γ(u)x(0) +

∫ t

0

du R(t− u)η(u),

In literature, one can note confusion because R(t) is also called the response function.

The commutator in (6.7) can be easily calculated yielding

Gr(t) = θ(t)

∫ t

0

du R(t− u)γ(u) (6.16)

The Fourier transform χ(ω) in Eq. (6.3) is a Fourier transform of the convolution in

Eq. (6.16) and as a result we obtain

χ(ω) = R̂L(−iω)γ̂L(−iω), (6.17)

i.e., it is expressed by the Laplace transforms of the response function R(t) and the

dissipation function γ(t). For the free Brownian particle it takes the form (see Eq.

(4.11)),

χ(ω) =
Mγ̂L(−iω)

−iωM + γ̂L(−iω)

and it is seen that χ(0) = M .

We can exploit representation (4.11) for R̂L(z) and (4.28a) for γ̂L(iω) to get another

form of the generalized susceptibility,

χ(ω) = M
A(ω) + iB(ω)

−iMω + A(ω) + iB(ω)
(6.18)

The imaginary part of it reads

χ′′(ω) =
M2ωA(ω)

A2(ω) + [B(ω)−Mω]2
(6.19)
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and the relation (6.8) assumes the form

P(ω) =
2M

π

ωA(ω)

A2(ω) + [B(ω)−Mω]2
(6.20)

which is the same as Eq. (4.29). It shows the equivalence of both approaches. We can

quote the next example. In Ref. [3], the authors have obtained Eq. (4.14) therein:

Ek =
~
2π

∫ ∞
0

dω coth

[
~ω

2kBT

]
Mω2 Im[α(ω + i0+)]. (6.21)

By comparing this equation with our formulas we see that P(ω) = (2/π)Mω Im[α(ω +

i0+)], where α(ω) is also called susceptibility.

Applying this fluctuation-dissipation relation (6.1) we see that Eq. (4.19) is valid

for arbitrary systems in contact with bosonic thermostat. It means that Eq. (4.19)

holds true for any potential U(x) in the Hamiltonian (3.2). For this class of systems,

the quantum partition of kinetic energy (4.19) is universal and the probability distribu-

tion is of the form (6.8), where the susceptibility χ(ω) is the Fourier transform of the

retarded thermodynamic Green functions.

REMARKS: If H̃ = H with the total Hamiltonian H in Eq. (3.2) then all regimes,

from weak to strong coupling with thermostat, can be analyzed. However, if H̃ = HS =

p2/2M + U(x) (there is no interaction with thermostat) then it means that only the

weak coupling limit can be considered because averaging is over the Gibbs canonical

density operator ρ ∝ exp(−HS/kBT ) valid for the weak coupling limit.

The above mentioned formula (6.8) establishes the relation between the probability

distribution P(ω) and the generalized susceptibility χ′′(ω). It means that properties

of the quantum environment and its coupling to a given quantum system which are

characterized by P(ω) may be experimentally inferred from the measurement of the

linear response of the system to an applied perturbation, for instance, electrical or

magnetic. Consequently, the latter quantity may open a new pathway to study quantum

open systems



Chapter 7 98

7 Summary and discussion

In this dissertation analysis of some aspects of energetics of quantum Brownian motion

is presented. This is by no means a new problem - quite the contrary - this is a well-

known problem and as such has been investigated for many decades by scientists and

there are hundreds of papers devoted to this very issue. Nevertheless, this old problem

has proven to be worthy of investigation. We have proposed a new relation for kinetic

energy of quantum systems named as the theorem on quantum partition of energy. The

main result summarized in this form has been studied and described in a series of our

papers [19, 20, 21, 22]. The relation for kinetic energy can be interpreted as long-

awaited quantum counterpart of the classical energy equipartition theorem introduced

by the founders of classical statistical physics - John James Waterston, James Clerk

Maxwell and Ludwig Boltzmann in XIX century.

In Chapter 2, I have presented n two different methods of derivation of energy

equipartition theorem: firstly I consider the standard Gibbs canonical distribution ap-

proach and next I have shown how this theorem can emerge by means of the Langevin

equation methods.

In Chapter 3, I formulate a problem of dissipative quantum systems in terms of

a generalized Langevin equation. In this chapter, the reader can find the step-by-step

derivation of formulas and partial analysis of this problem. In the following two chapters

I consider two exactly solvable models of dissipative quantum systems - that is a free

Brownian particle coupled to the quantum thermostat (Chapter 4) and the harmonic

oscillator interacting with its environment (Chapter 5). For these two cases, I have

rigorously formulated the energy partition theorem.

In Chapter 6, I discuss a partially solved problem of such a theorem for arbi-

trary quantum systems. This topic is presented in the context of the Callen-Welton

fluctuation-dissipation theorem. The challenge is to obtain the value of the momentum-

momentum susceptibility at zero frequency, cf. Eq. (6.14). It is the inverse problem to

the sum rules for thermodynamic Green functions which give the value of the integral

of the susceptibility (a Fourier transform of the Green function) over all frequencies.



Chapter 7 99

Another open problem is to derive similar results for the case of fermionic or spin

thermostats.

For the sake of self-containment, this work includes a set of various appendices in

which I present formulas and more detailed analysis for some specific topics which were

dealt with in this dissertation.

Remark on the white noise limit: We have considered such a class of memory

kernels γ(t− s) that it tends to the Dirac delta δ(t− s). Then the integro-differential

Langevin equation (4.1) becomes local in time (as for classical Markovian processes).

It is similar to a classical Newton equation with noise η(t) . However, we should also

consider the correlation function C(t) of noise η(t). If γ(t) = δ(t) then the spectral

function J(ω) = const.. From the fluctuation-dissipation relation it follows that when

J(ω) is constant then

C(t) ∝
∫ +∞

0

dω
~ω
2

coth

(
~ω

2kBT

)
cos(ωt) (7.1)

We see that it does not tend to white noise as in the classical case. It is even worse: the

integral diverges! We refer the interested reader to Ref. [45] for a more detailed analysis

and to Ref. [4] for discussion on the ohmic dissipation and Markovian limit. Another

aspect of the short memory time limit has been discussed for dynamics of solitons in

superfluids [46]. This formal limit and the corresponding Markovian approximation

gives rise to the Abraham-Lorentz force (i.e., a term proportional to the derivative

of the soliton’s acceleration) which results in breaking of causality. The next issue is

related to averaged kinetic energy. From Fig. 8 we infer that kinetic energy tends to

infinity when τc → 0. It is also physically incorrect. The above non-physical effects

lead to the conclusion that the limiting case of vanishing memory time is not allowable

for quantum systems. In other words, quantum noise is always correlated.

Interpretation revisited: Finally, I have to explain and discuss in detail the

interpretation of the basic relation for the partition of energy. Let us remind that we

assume the factorized initial state of the composite system, i.e.,

ρ(0) = ρS ⊗ ρE, (7.2)
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where ρS is an arbitrary state of the Brownian particle and ρE is the equilibrium

canonical state of the thermostat of temperature T , namely,

ρE = exp(−HE/kBT )/Tr[exp(−HE/kBT )], (7.3)

where:

HE =
∑
i

[
p2
i

2mi

+
1

2
miω

2
i q

2
i

]
(7.4)

is the Hamiltonian of the thermostat. The factorization means that there are no initial

correlations between the particle and thermostat. In the gedankenexperiment we can

assume the following situation: there is thermostat which is in the Gibbs state (7.3) for

(−∞, 0). At some moment, say t = 0, we throw the Brownian particle into thermostat.

Then we can realize the factorization state. At equilibrium determined by Eq. (7.3),

the expression

Ek(ω) =
~ω
4

coth

(
~ω

2kBT

)
(7.5)

is thermal kinetic energy per one degree of freedom of the thermostat consisting of free

harmonic oscillators. It is true for time t ≤ 0. For time t > 0, the statistical operator

ρ(t) of the composite system S+E evolves according to the von Neumann equation, i.e.,

ρ(t) = e−iHt/~ [ρS ⊗ ρE] eiHt/~ (7.6)

The stationary state (which is a new thermodynamic equilibrium state) is determined

as

ρ(∞) = lim
t→∞

e−iHt/~ [ρS ⊗ ρE] eiHt/~ (7.7)

In the relation

Ek =

∫ ∞
0

dω Ek(ω)P(ω). (7.8)

the term

Ek(ωl) = Tr
{
p2
l

2ml

ρE

}
(7.9)

is the value for t ≤ 0 while the term P(ω) is an exact probability density for t → ∞
(conventionally we write t =∞). We could say that the system at t =∞ remembers its

initial state via Ek(ω) valid for t ∈ (−∞, 0]. So, the averaging in Eq. (7.8) is averaging
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of the random variable at t = 0 over the probability density at t = ∞. The averaged

value of kinetic energy Est(ω) of the thermostat oscillator in the stationary state for

t =∞, i.e.,

Est(ωl) = Tr
{
p2
l

2ml

ρ(∞)

}
(7.10)

is different from Ek(ω) at t = 0, i.e., Est(ωl) 6= Ek(ωl). To the best of my knowledge,

Est(ω) is not known (although in principle it could be calculated). We suppose and

expect that the difference between Ek(ω) and Est(ω) should be extremely small in the

thermodynamic limit for thermostat but nevertheless, it is not zero. So, we treat it as

an open and unsolved problem.
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Appendix A Mean values of boson operators

To investigate properties of quantum thermal noise it is convenient to work in the

second quantization framework and rewrite operators qk and pk in terms of creation

and annihilation operators. Thermostat consists of non-interacting quantum harmonic

oscillators which can be described by creation and annihilation bosonic operators:

qk =

√
~

2mkωk

(
ak + a†

k

)
(A.1)

pk =
1

i

√
mkωk~

2

(
ak + a†

k

)
(A.2)

The Hamiltonian of thermostat in this notation reads:

H =
∑
k

~ωk
(
nk +

1

2

)
(A.3)

where:

nk = a†
kak (A.4)

The commutation relations for creation and annihilation operators are :

[ak; ak] =
[
a†
k; a

†
k

]
= 0[

ak; a
†
j

]
= δkj

(A.5)

We need mean values of operators:

〈qk〉 =

√
~

2mkωk

(
〈ak〉+

〈
a†
k

〉)
= 0 (A.6)

〈pk〉 =
1

i

√
mkωk~

2

(
〈ak〉+

〈
a†
k

〉)
= 0 (A.7)

〈qkqj〉 =
~

2
√
mkωkmjωj

(
〈akaj〉+

〈
a†
kaj

〉
+
〈
aka

†
j

〉
+
〈
a†
ka

†
j

〉)
(A.8)

〈pkpj〉 = −~√mkωkmjωj

2

(
〈akaj〉 −

〈
a†
kaj

〉
−
〈
aka

†
j

〉
+
〈
a†
ka

†
j

〉)
(A.9)

〈qkpj〉 =
~
2i

√
mkωk
mjωj

(
〈akaj〉+

〈
a†
kaj

〉
−
〈
aka

†
j

〉
−
〈
a†
ka

†
j

〉)
(A.10)

〈pkqj〉 =
~
2i

√
mjωj
mkωk

(
〈akaj〉 −

〈
a†
kaj

〉
+
〈
aka

†
j

〉
−
〈
a†
ka

†
j

〉)
(A.11)
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Using commutation relations (A.5) we get:

〈akaj〉 =
〈
a†
ka

†
j

〉
= 0 (A.12)〈

aka
†
j

〉
= nkδjk (A.13)

where

n̄i = 〈ni〉 =
〈
a†
iai

〉
=

1

e
~ωk
kT − 1

(A.14)

and

〈qkqj〉 =
~

√
mkωkmjωj

δkj coth

(
~ωk
2kT

)
(A.15)

〈pkpj〉 = ~√mkωkmjωjδkj coth

(
~ωk
2kT

)
(A.16)

〈qkpj〉 = − ~
2i

√
mkωk
mjωj

δkj (A.17)

〈pkqj〉 =
~
2i

√
mjωj
mkωk

δkj (A.18)
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Appendix B Properties of response functions

Response functions are defined by theirs Laplace transforms:

L{Q(t)} (z) = Q̂L(z) =
1

Mz2 + zγ̂L(z) +Mω2
0

(B.1)

L{R(t)} (z) = R̂L(z) =
zM

Mz2 + zγ̂L(z) +Mω2
0

, (B.2)

where to obtain proper definitions for the case of free Brownian particle it is sufficient

to substitute ω0 with 0.

I would seem that for this kind of general and implicit definition for the response

functions, there is not much information that can be learned for properties of the

functions themselves. Nonetheless using the theorems from the integral transforms

theory we can gain some understanding concerning the initial and final behavior.

For the sake of later reasoning it is useful to recall the Tauberian theorems[36]:

Theorem 3 (Initial value theorem).

If L{f(t)} (z) = f̂L(z) exists, then:

lim
z→+∞

f̂L(z) = 0 (B.3)

Moreover if f(t) and its derivatives exist as t→ 0, we obtain The Initial Value Theorem:

1.

lim
z→+∞

zf̂L(z) = lim
t→0

f(t) = f(0) (B.4)

2.

lim
z→+∞

[
z2f̂L(z)− zf(0)

]
= lim

t→0
f ′(t) = f ′(0) (B.5)

3.

lim
z→+∞

[
zn+1f̂L(z)− znf̂L(z)− . . .− zf(0)

]
= f (n)(0) (B.6)

Theorem 4 (The Final Value Theorem).

If f̂L(z) = p̂L(z)
q̂L(z)

, where p̂L(z) and q̂L(z) are polynomials in z, and the degree of p̂L(z) is

less than that of q̂L(z), and all roots of q̂L(z) have negative real parts with the possible

of one root at z = 0, then:
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1.

lim
z→0

f̂L(z) =

∫ +∞

0

f(t)dt, (B.7)

2.

lim
z→0

zf̂L(z) = lim
t→+∞

f(t) (B.8)

Using theorem 3 we can deduce the initial value of responses functions.

Q(0) = lim
z→+∞

zQ̂L(z) = lim
z→+∞

z

Mz2 + zγ̂L(z) +Mω2
0

= 0 (B.9)

R(0) = lim
z→+∞

zR̂L(z) = lim
z→+∞

Mz2

Mz2 + zγ̂L(z) +Mω2
0

= 1 (B.10)

using the theorem 4 we can deduce value of integrals of response functions as well as

their behavior at the infinity:∫ +∞

0

Q(t)dt = lim
z→0

1

Mz2 + zγ̂L(z) +Mω2
0

=
1

Mω2
0

(B.11)

lim
t→+∞

Q(t) = lim
z→0

z

Mz2 + zγ̂L(z) +Mω2
0

= 0 (B.12)

lim
t→+∞

R(t) = lim
z→0

Mz2

Mz2 + zγ̂L(z) +Mω2
0

= 0 (B.13)
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Appendix C Putzer algorithm

In the relation (4.101), the exponential of the matrix At is needed. We calculate it

applying the Putzer method [42]. The exponential can be presented in the form

eAt = R(t) = r1(t)I + r2(t)P1 + r3(t)P2, (C.1)

where I is the identity matrix, the matrices P1 and P2 are determined by the relations

P1 = A− λ1I, P2 = (A− λ2I)P1 (C.2)

and λj (j = 1, 2, 3) are the eigenvalues (in any order and not necessarily distinct) of the

matrix A. The functions rj(t) takes the form

r1(t) = eλ1t, (C.3)

r2(t) = eλ2t
∫ t

0

e−λ2u r1(u) du =
eλ1t − eλ2t
λ1 − λ2

, (C.4)

r3(t) = eλ3t
∫ t

0

e−λ3u r2(u) du =
1

λ1 − λ2

[
eλ1t − eλ3t
λ1 − λ3

− eλ2t − eλ3t
λ2 − λ3

]
. (C.5)

The eigenvalues λj are the roots of the characteristic polynomial |A − λI| = 0 which

explicitly reads

λ3 + 2ελ2 + (µ+ ε2 + Ω2)λ+ εµ = 0. (C.6)

All eigenvalues have negative real parts, i.e., Reλj < 0. The necessary and sufficient

conditions for this to hold are the Routh-Hurwitz conditions which for the cubic equa-

tion

λ3 + a2λ
2 + a1λ+ a0 = 0 (C.7)

take the form

a2 = 2ε > 0, a0 = εµ > 0, a2a1 − a0 = 2ε(ε2 + Ω2) + εµ > 0. (C.8)

In consequence, all functions rj(t) are decreasing functions of time.

The explicit forms of the matrices in (C.1) read
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P1 = −


λ1 1 0

−µ λ1 + ε Ω

0 −Ω λ1 + ε

 , (C.9)

P2 =


λ1λ2 − µ λ1 + λ2 + ε Ω

−µ (λ1 + λ2 + ε) (λ1 + ε) (λ2 + ε)− µ− Ω2 Ω (λ1 + λ2 + 2ε)

µΩ −Ω (λ1 + λ2 + 2ε) (λ1 + ε) (λ2 + ε)− Ω2

 .
(C.10)

What we need in Eq. (4.17) is the first element R11(t) of the matrix R(t). We exploit

the above formula (C.1)-(C.10) and get

R11(t) = (λ2λ3 − µ) b1e
λ1t − (λ1λ3 − µ) b2e

λ2t + (λ1λ2 − µ) b3e
λ3t, (C.11)

where

b1 =
1

λ1
2 − λ1λ2 − (λ1 − λ2)λ3

, (C.12)

b2 = − 1

λ1λ2 − λ2
2 − (λ1 − λ2)λ3

, (C.13)

b3 =
1

λ1λ2 − (λ1 + λ2)λ3 + λ3
2 . (C.14)
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Appendix D Calculation of I1(ω)

In this Appendix, we calculate the function I1(ω) defined by Equation (4.106). The

integrand R11(t) is the sum of exponential functions (C.11) and the double integral in

(4.106) can easily be calculated. The result reads:

I1(ω) =
(λ2λ3 − µ)2b2

1

λ1
2 + ω2

+
(λ1λ3 − µ)2b2

2

λ2
2 + ω2

+
(λ1λ2 − µ)2b2

3

λ3
2 + ω2

− 2 (λ1λ2 + ω2)(λ1λ3 − µ)(λ2λ3 − µ)b1b2

λ1
2λ2

2 + ω4 +
(
λ1

2 + λ2
2
)
ω2

+
2 (λ1λ2 − µ)(λ1λ3 + ω2)(λ2λ3 − µ)b1b3

λ1
2λ3

2 + ω4 +
(
λ1

2 + λ3
2
)
ω2

− 2 (λ1λ2 − µ)(λ1λ3 − µ)(λ2λ3 + ω2)b2b3

λ2
2λ3

2 + ω4 +
(
λ2

2 + λ3
2
)
ω2

(D.1)

Inserting the coefficients bj (j = 1, 2, 3) from Equations (C.12) - (C.14) and using the

Vieta’s formulas for the roots of the polynomial (C.6), we obtain the final expression

I1(ω) =
[(ω + Ω)2 + ε2][(ω − Ω)2 + ε2]

ω6 + 2ω4 (ε2 − Ω2 − µ) + ω2 (µ2 + 2µΩ2 − 2µε2 + Ω4 + 2Ω2ε2 + ε4) + µ2ε2

(D.2)

This function occurs in Equation (4.105) for average kinetic energy.
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Appendix E Series expansion for kinetic energy

We will present Eq. (4.19) in the form of a series. To this aim, we introduce the

dimensionless integration variable θ and dimensionless parameters,

θ = τTω, τT =
~

kBT
(E.1)

µ̂0 = τTµ0, ε̂ = τT ε, Ω̂ = τTΩ (E.2)

Next, we exploit the series expansion [36]

θ coth

(
θ

2

)
= 2 + 4

∞∑
n=1

θ2

θ2 + 4π2n2
(E.3)

Using the above expansion we obtain the integrand of (4.19) in the form of uniformly

convergent series. Therefore we can utilise the Weierstrass theorem [47] and integrate

term by term as follows

2Ek
kT

= I0 +
∞∑
n=1

In (E.4)

I0 =
2

π

∫ ∞
0

µ̂0ε̂2(θ2+Ω̂2+ε̂2)
θ6−2θ4(Ω̂2+µ̂0ε̂−ε̂2)+θ2(Ω̂4+2Ω̂2µ̂0ε̂+2Ω̂2ε̂2+µ̂20ε̂

2−2µ̂0ε̂3+ε̂4)+µ̂20ε̂
4
dθ (E.5)

In =
1

π

∫ ∞
0

µ̂0ε̂2(θ2+Ω̂2+ε̂2)
θ6−2θ4(Ω̂2+µ̂0ε̂−ε̂2)+θ2(Ω̂4+2Ω̂2µ̂0ε̂+2Ω̂2ε̂2+µ̂20ε̂

2−2µ̂0ε̂3+ε̂4)+µ̂20ε̂
4

4θ2

4π2k2+θ2
dθ (E.6)

For all cases the integrands are rational functions. The polynomial degrees of denom-

inators are higher by 4 than a degree of polynomials in numerators and therefore all

integrals exist. We can use an elegant method of the residue theorem to calculate the

integrals [48]. Manual calculations are long and tedious, but nowadays this problem

can be overcome by using any computer algebra system. We used SymPy (the Python

library) for symbolic mathematics.

The zero-th term is the same as (4.21) and therefore I0 = 1. For remaining terms

we obtain the expression for In in the following form

In =
2µ̂0ε̂ (ε̂+ 2πn)

µ̂0ε̂ (ε̂+ 2πn) + 2πn (ε̂+ 2πn)2 + 2πΩ̂2n
. (E.7)

Finally,

2Ek
kBT

= 1 +
∞∑
n=1

2µ̂0ε̂ (ε̂+ 2πn)

µ̂0ε̂ (ε̂+ 2πn) + 2πn (ε̂+ 2πn)2 + 2πΩ̂2n
. (E.8)
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Using this method we obtain a form which is more convenient for discussion on general

properties of kinetic energy with respect to system parameters.
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