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Abstract

The effect of mechanical stress on the root apical meristem (RAM) organization of Zea mays was investigated. In the

experiment performed, root apices were grown through a narrowing of either circular (variant I) or elliptical (variant

II) shape. This caused a mechanical impedance distributed circumferentially or from the opposite sides in variant

I and II, respectively. The maximal force exerted by the growing root in response to the impedance reached the value

of 0.15 N for variant I and 0.08 N for variant II. Significant morphological and anatomical changes were observed. The

changes in morphology depended on the variant and concerned diminishing and/or deformation of the cross-section

of the root apex, and buckling and swelling of the root. Anatomical changes, similar in both variants, concerned
transformation of the meristem from closed to open, an increase in the number of the cell layers at the pole of the

root proper, and atypical oblique divisions of the root cap cells. After leaving the narrowing, a return to both typical

cellular organization and morphology of the apex was observed. The results are discussed in terms of three aspects:

the morphological response, the RAM reorganization, and mechanical factors. Assuming that the orientation of

division walls is affected by directional cues of a tensor nature, the changes mentioned may indicate that a pattern

of such cues is modified when the root apex passes through the narrowing, but its primary mode is finally restored.

Key words: Mechanical stress, root apical meristem organization, tiers of initials, Zea mays.

Introduction

The root apex, which consists of the root proper and the

root cap, is an organ responsible for growth and
development of the underground part of the plant, but its

functioning is crucial to the whole plant body. It comprises

the root apical meristem (RAM), where cells grow and

divide giving rise to all tissues of the apex (Cutter, 1971).

Two types of RAM organization can be distinguished—

closed and open (von Guttenberg, 1960). In the closed

organization there is a clear root–cap boundary and the cell

files can be traced to a few cells at the tip; such a situation
occurs in Zea mays (Fig. 1A), which is the subject of the

current study. In RAMs with an open organization there is

not a sharp boundary between the root cap and the root

proper (Clowes, 1976; Jiang and Feldman, 2005). The very

central region of the RAM of seed plants is the so-called
quiescent centre (QC; Clowes, 1961)—a zone of slowly

cycling structural initials (Barlow, 1997). On its proximal

face the QC neighbours functional initials (Barlow, 1997;

Jiang and Feldman, 2005) from which the cells of the root

proper are directly derived (Fig. 1A). According to the

description of von Guttenberg (1960), in root apices with

a closed organization the most distal cell layers of the QC

and adjoining initials of the root cap form the tiers of initial
cells. Each tier is specialized in forming particular tissues of

the root. For example, stele usually originates from

a separate tier while epidermis has a common origin with

Abbreviations: NPA, N-1-naphthylphthalamic acid; PAS, periodic acid–Schiff; PDGs, principal directions of growth; QC, quiescent centre; RAM, root apical meristem;
TIBA, 2,3,5-triiodobenzoic acid; UV, ultraviolet.
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the cortex or lateral root cap in monocots and dicots,

respectively (Rost, 1994). The number of tiers depends on

the plant species; in maize there are three such tiers (Fig. 1B).

The upper tier (I), formed by a group of cells at the pole of the

stele, gives rise to cells of the vascular cylinder, the middle tier

(II) consisting of a single cell layer (Barlow and Rathfelder,

1984) gives rise to cells of the cortex and epidermis, and
eventually the lower tier (III) comprising up to four cell layers

(Clowes, 1980) gives rise to cells of the root cap.

The size and shape of the RAM are different in various

species (Luxová, 1975; Rost and Baum, 1988). Although

the cell arrangement of the mature root apex growing in

more or less stable conditions usually remains relatively

constant, the RAM organization may undergo natural

changes during its lifetime (Seago and Heimsch, 1969;
Armstrong and Heimsch, 1976; Clowes and Wadekar,

1989; Baum et al., 2002; Chapman et al., 2003). Steadily

growing root apices exposed to physical stimuli (e.g. low

temperature, electric field, or X-rays) as well as chemical

stimuli [heavy metal treatment, inhibitors of gibberellin

biosynthesis, and 2,3,5-triiodobenzoic acid (TIBA) and

1-N-naphthylphthalamic acid (NPA) application] may also

show RAM rearrangement (Clowes, 1963; Barlow, 1992;
Kerk and Feldman, 1994; Jiang et al., 2003; Kozhevnikova

et al., 2007; Wawrecki and Zagórska-Marek, 2007).

The root apices, like other plant organs, grow simplas-

tically (Erickson, 1986); that is, in a continuous and

coordinated way. Such growth is of a tensor nature (Silk

and Erickson, 1979; Hejnowicz and Romberger, 1984),

which is manifested in the property that the field of

growth rates of the organ is of the tensor type and, at

every point, unless growth is isotropic, three mutually

orthogonal principal directions of growth (PDGs) can be

recognized. These PDGs are postulated (Hejnowicz, 1989)

to affect the orientation of cell divisions. Computer

simulations have shown (Nakielski, 2008) that both
tensor field of growth rates and the PDGs are needed to

control cell growth and cell division at the organ level.

Only under such control are new cell walls formed

perpendicularly to the PDGs and the cell pattern of the

virtual root apex is self-perpetuating, otherwise the

pattern changes during development. In this approach

any instability in the cell pattern may be considered as

resulting from the growth disturbance at the tensor level.
A mechanical stress seems to be the most natural factor

that may cause such a disturbance.

In natural conditions a growing root needs to push

through soil particles, often experiencing mechanical imped-

ance from different directions. In experiments in which such

conditions are simulated, various effects have been

observed: an increase in the root diameter associated with

a change in the sizes of the cortex cells and an increase in
the number and diameter of the vessels (Wilson et al., 1977;

Bennie, 1996), a decrease in root elongation and/or changes

in root osmoregulation (Materechera et al., 1991; Bennie,

1996; Clark et al., 1996, 2001), and enhanced border cell

production (Iijima et al., 2000, 2003).

However, little is known about the RAM response to

mechanical treatment. In the studies carried out to date on

mechanically treated apices the RAM architecture has not
been described. As this region plays a crucial role in the

functioning of the whole root it seems important to learn

the possible influence of mechanical stress on it. The aim of

the present research is to determine whether mechanical

stimuli affect the root apex organization in Zea. The

experiment involved maize root apices being subjected to

grow through a narrow gap which caused mechanical

impedance. Depending on the shape of the narrowing, both
symmetrical and asymmetrical stress distribution within the

apex was generated. In both cases a significant deformation

of the root apex and a change in the meristem organization

from closed to open have been observed. The results are

discussed in relation to a possible mechanical stress

distribution in the root apex.

Materials and methods

Plant material

Seeds of maize (Z. mays L. cv. Z1ota Kar1owa) were soaked
overnight and germinated in rolls of moist filter paper in darkness
for 2d. Only the seedlings with straight roots 15–20 mm long were
selected for the experiments.

Experiments

Two variants of the experiment were performed. Variant
I involved a conical plastic tube. A root was introduced into

Fig. 1. Median longitudinal section through a Zea root apex. (A)

The root proper–cap boundary (arrow) indicates a closed organi-

zation of the root meristem; the approximate regions of functional

(dashed line) and structural initials (dotted line) are marked (after

Jiang and Feldman, 2005). (B) Magnification of the root pole

region, showing tiers of initials (arrows) I, II, and III (after von

Guttenberg, 1960). Scale bars: 100 lm (A), 20 lm (B).
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a plastic tube with a conical end. The upper part of the tube was
a cylinder 35 mm long of internal diameter 1.2 mm, while the
length of the conical end was 4.4 mm and its internal diameter at
the tip was 0.4260.01 mm (Fig. 2A). Variant II used a cylindrical
igelite tube plus a clip. A root was introduced into an igelite
cylindrical tube with an internal diameter of 2 mm. The tube was
clipped, which caused a local narrowing, so the cross-sectional
shape of the tube changed to elliptical (Fig. 2B). The major
diameter of the ellipse indicated the major axial plane of the tube,
while the minor diameter of the ellipse indicated the minor axial
plane of the tube (see cross-section of the tube in Fig. 2B). In order
to avoid complete closure of the tube, a piece of glass ;2 mm
thick was placed between the clip side parts, which made the tube
minor internal diameter 0.4160.06 mm wide. In both variants the
tubes were then filled with water and pinned vertically to a poly-
styrene board placed in a closed, humid chamber. The lower edge
of the board stood in the water, but the roots grew above the
water surface. The chamber was covered with a glass plate and the
culture was kept for 24 h in darkness, at 25 �C and 85% relative
humidity. In both variants the internal diameter of the cylindrical
parts of the tubes allowed free and straight growth of the root
apex. However, when the root apex reached the narrow zone
caused by the smaller diameter of the tube (variant I), or by the
clip (variant II), it encountered mechanical impedance, because the
diameter of the apex was larger than the diameter of the
narrowing. The root tip response was a force exerted back to the
obstacle. After 24 h of treatment the experiment was ended and all
the apices were photographed in their current positions within or
outside the tubes. Roots growing in cylindrical tubes without
narrowing served as controls.

Measurement of the force exerted by the root during passing

through the narrowing

Material Testing Machine Synergie 100 (MTS Systems Corpora-
tion), with a force sensor range of 610 N and accuracy of load
measurement 60.5% was applied to measure the force of the
growing root tip. Measurements were taken in a dark room at
25 �C. The tube with the sample was placed vertically between
supporting grips; the upper grip was joined to the force sensor of
the machine. Because of the specific conditions of each variant of
the experiment water was supplied in two different manners. In
variant I the tube ending with the apex was placed in a small water
container which might have influenced the unstable experiment
conditions in the very initial phase: casual factors, such as water
movement, etc., might have not been excluded. So although the
apex grew freely a slight increase in the force was observed. After

this initial phase the force attained ;0.10 N, determining the
reference value for the measurement in variant I. In variant II,
water was delivered to the apex through a plastic tube and this
method did not disturb the stability of the conditions. So the
reference value for the measurement in variant II was 0 N. The
force of the growing root apex exerted on the narrowing was
registered by the force sensor continuously for ;1400 min from
the time when the root apex grew freely above the narrowing until
the moment when it grew freely again below the narrowing.

Ten measurements of the force were performed for variant I,
and 17 for variant II. In order to compare the result of the force
measurement with data from the literature for both variants, the
mechanical stress of the root tips was calculated as a maximal
force divided by the root cross-sectional area (circular in variant I
and elliptical in variant II) at ;500 lm from the root tip passing
through the narrowing. Data analysis was performed by the use of
the TestWorks 4 Software and Microsoft Excel.

Light microscopy

At the end of the experiment the root tips were excised and fixed in
2.5% glutaraldehyde in 0.05 M sodium phosphate buffer (pH 7.0)
for 24 h, washed three times in buffer, dehydrated through an
acetone series and propylene oxide, and then embedded in Epon.
The samples were sectioned into longitudinal sections (2.5 lm
thick) and cross-sections (3.75 lm thick) using a Tesla BS 490A
ultramicrotome. In variant II, longitudinal sections were cut in
a plane parallel to the minor diameter of the ellipse (see Fig. 2B).
The sections were stained by the periodic acid–Schiff (PAS)
reaction and counterstained in toluidine blue (O’Brien and
McCully, 1981). Specimens were viewed and photographed using
an Olympus BX41 light microscope equipped with a CAMEDIA
C-3040ZOOM camera. The arrangements of cells in the initial tiers
within the root apex meristem (see Fig. 1B) were analysed.

In some of the untreated root apices as well as in those of
variant II, root caps were removed in order to observe the cell
arrangement at the root pole. In apices of variant I such surgery
appeared impossible; any trial resulted in damage to the apex.
Apical fragments (1 mm thick) of the root proper of the cap-less
apices were excised, and the samples were stained by the PAS
reaction and observed under UV light.

Results

Morphology and mechanical stress

In Fig. 3 roots at different stages of passing through the

narrowing in variant I are shown. Before reaching the

conical tube ending the roots grow freely within the tube,

and subsequently they adjust their geometry to the shape of

the conical ending. The apices that have not emerged from
the tube are tightly pressed against the interior of the tube

(Fig. 3A). Abundant mucilage and released peripheral root

cap cells are present on the tube’s wall (not shown), as well

as on the outside of the tube ending (Fig. 3B). Figure 3C

shows the cross-section of the root apex passing through the

narrowest part taken at the root–cap boundary level. The

shape of the section has not changed; however, the size is

smaller in comparison with the control roots. When the
root tip reaches the narrowest part, a slight root buckling

appears directly above the narrowing, and the buckling

becomes stronger when the root tip leaves the tube ending

(Fig. 3D). Shortly after leaving the tube (Fig. 3E), the root

apex usually changes its shape dramatically, taking on the

Fig. 2. Diagrams of the experimental set-up in which the root

apex is growing. (A) A tube with a conical end (variant I) and

(B) a locally clipped cylindrical tube (variant II). The right bottom

corners show cross-sections of the tubes at their narrowest part;

in (B) the major (dotted line) and minor (dashed line) axial planes of

the tube are indicated.
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form of a bulb. A bulb’s diameter at its widest part is about

the same as the diameter of a control root apex (600 lm on

average). Mucilage exudation is still very strong. When the

root apex has grown far from the tube ending (Fig. 3F) the

root geometry becomes more or less typical again. The only

visible change occurs in the part within the tube where

a root is still compressed. The mucilage secreted by the

roots is not as abundant as previously.
In Fig. 4 the results of variant II of the experiment are

shown. Before reaching the narrowing the roots have grown

vertically without morphological changes (not shown).

When a root tip reaches the narrow zone in a major axial

plane of the tube, a root buckling appears above the

narrowing and the root diameter increases in the region

behind the apex (Fig. 4A). The buckling grows stronger and

the root tip begins to move through the narrowest part
(Fig. 4B, C), usually near the ending of the major diameter

of the ellipse. The cross-section taken at the root–cap

boundary level from the root passing through the narrowest

part (Fig. 4D) shows how the root apex has adjusted its

shape to the elliptical narrowing. Root tips that have passed

through the narrow zone regain their typical geometry;

however, proximal parts of the roots are still deformed:

a flattened region in a place where the root has been

compressed as well as the buckling are still visible (Fig. 4E).

As in variant I strong mucilage exudation occurs (not

shown). Root hairs develop in a shorter distance in

comparison with the control. In Fig. 4A and E they

resemble cotton fluff forming ;1.5–2 mm above the root
tip.

Figure 5 shows a typical time dependence of force

exerted by an individual root during passage through

the narrow zone. In variant I (Fig. 5A) the apex initially

(0–500 min) grows freely within the tube and the observed

slight increase in the force leads to stabilization of the

experiment (see the Materials and methods). Then the

force rapidly increases (500–700 min) to the maximal
value of 0.30 N (0.20 N with respect to the reference value

for variant I) corresponding to the time when the root tip

is passing through the narrowest part of the tube. In the

last period (700–1400 min), which refers to the time when

the root tip has left the narrowing, the force decreases

Fig. 3. Morphology of the root apices in various stages of passing through the narrow zone in variant I. (A, B) Root apex in the tube,

(B, arrow) mucilage and loose cap cells outside the tube, (C) cross-section of the treated apex at the root–cap boundary level, (D) buckling

of the root body (arrow), (E) bulb-shaped root apex after leaving the tube, (F) root apex far from the tube ending slowly returning to its typical

morphology. White arrowheads in A and D–F indicate the tube end. Scale bars: 0.5 mm (A, B, E, F), 0.1 mm (C), 1 mm (D).

Fig. 4. Morphology of the root apices in various stages of passing through the tube in variant II. (A) The root apex has reached the

narrowest part; swelling is visible behind the tip. (B, C) The root apex pushing through the narrowest part and (E) after leaving the

narrowing. (D) Cross-section through the treated apex at the root–cap boundary level. In all the stages the root undergoes strong

buckling (arrows); the view is in the plane of the major (A, C, E) and minor (B) axial plane of the tube. White arrowheads (in A–C and E)

indicate the clipped region, dashed lines indicate the position of the root tip, and empty arrowheads (A, E) indicate root hairs formed right

above the RAM. Scale bars: 1 mm (A, C, E), 5 mm (B), 0.1 mm (D).
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more or less linearly. In variant II (Fig. 5B) the apex

initially also grows freely and does not exert any force

(0–350 min). When the root tip meets the narrowing, the

force rapidly increases, attaining its maximal value of

0.12 N at 550 min of the measurement. Then a sharp

decrease is observed (550–600 min), followed by a short

increase (600–700 min), and the force value stabilizes at

;0.07 N. In both variants the period of passing through
the narrowing is rather short; in variant I it takes on

average 400 min, while in variant II it takes on average

300 min (see dashed lines in Fig. 5A and B).

The maximal force exerted by the roots on the narrowing

depends on either the individual root or the variant of the

experiment. For variant I it ranges from 0.06 N to 0.26 N,

with a mean value of 0.15 N (60.07 N), and for variant II it

ranges from 0.04 N to 0.13 N, with a mean value of 0.08 N
(60.03 N). The calculated mechanical stress is 0.65 MPa for

variant I and 0.29 MPa for variant II.

The meristem organization

In all treated root apices, a disturbed cell pattern was

observed, yet only a few types of changes in the meristem
organization can be distinguished. The changes occur in

both variants of the experiment as well as in different stages

of pushing through the narrowing. The most significant

changes in the cell pattern appear within the middle and

lower tiers of initials; however, the changes seem to be

unique for every sample. In Figs 6 and 7, axial sections of

the root apices subjected to mechanical stress in variant I

and II of the experiment are shown, respectively.

A group of apices shows a closed meristem (Figs 6A, D,

H, 7A, F); however, compared with controls a significant

rearrangement of the cell pattern is observed. For example,

in apices in Figs 6A, H, 7A resulting from periclinal

divisions, two or three cell layers appear between the tip of
the vascular cylinder and the root cap (in the middle tier of

initials), instead of one typically observed in control roots

(see Fig. 1B). In these apices the root–cap boundary

remains smooth and clear (Figs 6H, 7A) or it becomes

irregular (Figs 6D, 7F); sometimes an intrusion of the

middle tier cells into the root cap causes stronger de-

formation of the boundary (Fig. 6A).

In some apices the meristem has opened (Figs 6B, C, E–
G, 7B–E), and this happens in any stage of the root passing

through the narrow zone and attains different degrees. The

opening starts through the axial elongation of two neigh-

bouring undivided cells of the middle tier (Fig. 7C) or the

cells divided periclinally (Figs 6C, E, 7B) and their growth

continued into the cap side. In roots with clearly open

meristems these cells seem to form continuous files together

with columella cells (Figs 6B, G, 7D, E). Some of the open
meristems, as in the one shown in Fig. 6F, represent cell

patterns disturbed to such a degree that it is impossible to

distinguish the boundary of the root stele clearly. Moreover,

in such apices a group of cells intruding into the cap side

undergo oblique divisions. In the group of roots with open

meristems (Figs 6B, C, 7C–E) periclinal divisions in the

middle tier of initials usually take place in the lateral part of

the pole of the root proper, while in closed meristems they
most often happen in the central part (Figs 6A, H, 7A).

Another type of change observed in the treated apices

concerns the cells of the lower tier; that is, root cap initials.

In these cells, longitudinal, atypical divisions are observed

leading to a larger number of the cell files in the root cap

(Figs 6D, G, 7F). Sometimes the cells of the lateral parts of

the root cap undergo unusual oblique divisions (Fig. 6D).

Both longitudinal and oblique divisions occur in apices with
either an open or closed meristem.

Cell arrangement on the surface of the root pole

Figure 8 shows the surface at the pole of the root proper of

the control (Fig. 8A) and treated (Fig. 8B, C) roots after

removal of their caps. The cells in the control roots

(Fig. 8A) are larger and in this view they have shapes of

regular polygons. A group of cells at the top form a centre

in which files of epidermis meet. In the treated roots

(Fig. 8B, C) the cells are arranged irregularly and it is hard

to discriminate clear files of epidermis. The cells at the top
are smaller and they can form a centre-like pattern (Fig. 8B);

however, there is no radial cell arrangement typical for the

controls. In some root apices central cells have become

elongated and formed files in a plane of the major diameter

of the narrowing (Fig. 8C).

Fig. 5. Root force as a function of time for an individual root in

variant I (A) and variant II (B) of the experiment. The time of passing

through the narrowing (dashed lines) and the root tip position with

reference to the chosen times of the measurement (small schemes

above the curves) are shown.
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Fig. 6. Cell pattern at the pole of root apices in variant I seen in median longitudinal sections; the position of the root apex in the tube

is shown in the small insets in the upper right corners of the photographs. (A) Three cell layers (arrow) formed at the pole of the root

between the vascular cylinder and the cap. (B, C) Meristem opening starts (arrows) by breaking the root–cap boundary, with periclinal

divisions (arrowheads) finally leading to cell expansion towards the cap. (D) Atypical longitudinal (arrows) and oblique (arrowheads) cell

divisions in columella and the irregular line of the root-cap junction can be seen. (E) Meristem opening due to strong growth of the cell

at the pole on the cap side (arrow), with atypical periclinal divisions (arrowheads) in the neighbouring cells. (F) A greatly disturbed root–

cap boundary (arrow), with oblique divisions (arrowheads) in the cells protruding on the cap side. (G) The meristem organization is less

disturbed, with cells growing through the root–cap boundary on the cap side (arrow), and atypical oblique and longitudinal divisions

(arrowheads) both in the root proper and in the cap. (H) Closed meristem, with atypical periclinal divisions (arrowheads) in the middle

tier. Scale bar: 50 lm (A–H).
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Discussion

In the experiments presented here, root apices of Z. mays

were exposed to mechanical impedance causing deformation

of the organs as well as reorganization of the cell pattern.

While the first may be compared with data from the

literature (see below), the latter has not been the subject of

the studies to date. Thus this is the first case of a description

of the RAM organization changes under mechanical

stimulus. The results provide evidence of significant influen-

ces of mechanical stress on both the morphological and
anatomical features of the root apex in maize. Below they

are interpreted in terms of three aspects: morphological

response, RAM reorganization, and mechanical factors.

Morphological response

During plant growth in natural soil conditions the root is

exposed to mechanical stress from various directions. Yet,

under laboratory conditions when the influence of mechan-

ical stress on the root apices is studied the external stimulus

is usually delivered from one or more chosen directions. For

example, in the experiment by Bengough et al. (1994) pea

roots grew towards a fixed obstruction and the mechanical

pressure reached the apex from the tip. Clark et al. (1996)

and Clark and Barraclough (1999) used a special shear

beam apparatus to measure a force exerted on a completely

impeded pea root fixed in a ceramic cone so the stimulus

was also delivered from the side of the tip. A good way to

simulate field conditions was to use glass beads as a medium

for growing roots (Wilson et al., 1977; Veen, 1982), sand

with different levels of compaction (Iijima et al., 2000,

2003), or mesh with pore sizes smaller than the root

diameter (Scholefield and Hall, 1985) because the external

mechanical stimulus reached the apex from various sides

and randomly.

Fig. 7. Cell pattern at the pole of root apices in variant II seen in median longitudinal sections; the position of the root apex in the tube is

shown in the small insets in the upper right corners of the photographs. (A) Atypical periclinal cell division (arrow) in the middle tier. (B, C)

The root–cap boundary is broken (arrows) and the cells of the middle tier grow into the cap. (D) Open meristem; the root–cap boundary is

difficult to determine. (E) Meristem opening (arrow); the large anticlinal dimension of epidermis cells (asterisk) and periclinal divisions (B–E,

arrowheads) in the middle tier can be seen. (F) Closed meristem with a disturbed root–cap boundary and cell arrangement at the pole of the

root proper (arrow), with longitudinal cell divisions in the columella (arrowheads). Scale bar: 50 lm (A–F).

Effect of mechanical stress on the RAM organization in Zea | 4589

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article-abstract/62/13/4583/490900 by Politechnika G

danska Biblioteka G
low

na user on 23 April 2019



In the studies presented herein, Zea root apices experi-

enced stimuli of a mechanical character delivered from the

organ’s flanks. This caused significant changes in the apices

as shown in the Results. One may ask the question of why

two variants of the experiment needed to be performed.

There are two main reasons. First, the applied variants were
the only ones possible in order to consider stimulus delivery

from the flanks. In variant I the apex was stressed circum-

ferentially in the narrowing and the force was uniformly

distributed around the organ, while in variant II the root

was stressed from two opposite sides. Such an application

of the mechanical stimulus had not been used before. It

enabled simulation of the soil conditions giving a short-term

stress. This allowed the return of the RAM organization to
its previous character after the apex had left the narrow

zone. Applying another variant, for example growing the

root tip into a blocked passage, would give a long-term

stimulus and so it would not allow recovery of the cell

pattern. Secondly, the two variants resulted in different root

apex deformation related to geometry of the narrowing.

Namely, in variant I only a change of the size of the

circumference occurred (smaller cross-section, see Fig. 3C),

while in variant II a change in the cross-section shape to

elliptical was observed (Fig. 4D). So in both variants the

root diameter was in some way diminished which made
unimpeded growth of the root difficult. However, it is

variant II which better resembles natural conditions: in soil

the roots more often need to push their way through the

surrounding particles pressing on it from the sides than to

grow into a tiny hole of a regular circular shape.

Except for diminished (in variant I) or changed (in

variant II) shape of their cross-sections there were other

morphological changes in the treated Zea root apices. The
most significant were an increase in root diameter just

behind the apex (Fig. 4A, C), buckling (Figs 3D, 4A–C, E)

which appeared stronger in variant II because of a larger

diameter of the tube (there was more space for the root to

buckle), or ectopic root hair formation in the region close to

the meristem zone (Fig. 4A, E) where they normally do not

occur. Similar changes had been described before, for

example swollen regions forming behind the apex in re-
sponse to high medium strength (compact soil, glass beads,

etc.) were observed in barley and lupin roots (Goss and

Russell, 1980; Atwell, 1988) and buckling in roots of grasses

penetrating wire mesh (Scholefield and Hall, 1985). Ectopic

root hair formation was observed in barley roots growing

between glass beads (Goss and Drew, 1972; Goss and

Russell, 1980) and in roots of Arabidopsis thaliana seedlings

grown horizontally on a dialysis membrane-covered agar
plate (Okamoto et al., 2008).

RAM reorganization

In both variants of the experiment, thus independently of
the manner of deformation, there is a strong rearrangement

of the RAM architecture. It begins to be visible as the root

tip grows into the narrow zone, then develops while it

pushes through the tightest part. Eventually the cell pattern

seems to recover when the root apex leaves the narrow

zone. The general sequence of events would be the

following: the first noticeable change takes place in the

middle tier of initials (Figs 6A, 7A) where some cells
undergo periclinal divisions which hardly ever occur in this

region. Next, most distal cells of the root proper begin to

grow into the cap side (Figs 6C, E, 7B) and the root–cap

boundary becomes more or less irregular (Fig. 6C, E); in

variant II it even remains smooth (Fig. 7B). Finally the

border breaks and the typical closed RAM organization

turns to open (Figs 6B, G, 7E), which is the most noticeable

change in the cell pattern. At the same time periclinal
(Figs 6B, 7D, E) and oblique (Figs 6F, G) divisions in cells

located between the pole of the stele and the cap initials

take place. In some apices oblique divisions also occur in

the root cap (Fig. 6D). These atypical divisions may suggest

an enhanced axial growth within this area and a change in the

Fig. 8. Surface view of the cell pattern at the root pole after cap

removal in a typical control root (A) and the treated roots in variant II

(B, C). (A) Regular pattern with clearly recognizable distal most cells

of the QC (asterisk) and the radial cell arrangement. (B, C) Disturbed

patterns with significantly smaller cells, a recognizable centre with

numerous irregularly arranged cells (B, asterisk), atypical cell files

near the centre (C). The distal most cells are distinguished by the

darkest walls. White arrowheads in B and C indicate the major axial

plane of the narrowing. Scale bar: 20 lm (A–C).
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stress distribution within the apex (Lynch and Lintilhac,

1997); the latter will be considered below. When only the root

apex leaves the narrowing, the RAM organization seems to

turn back to its typical closed character. The root–cap border

line becomes recognizable, although still irregular (Fig. 7F);

longitudinal divisions in root cap cells (Figs 6D, G, 7F) are

observed, leading to the enhanced radial growth in this

region. The observed changes may suggest that the root apex
tries to restore its typical organization. Up to the end of the

experiment the root meristem organization had not returned

to the typical organization occurring in control roots.

However, on the basis of the observed processes it can be

postulated that the changes in the RAM organization may be

reversible. This hypothesis can be supported by previous

studies in which the transformation from an open to a closed

meristem took place in Zea during root apex regeneration
after removal of the cap and the QC (Feldman, 1976) as well

as in roots recovering from low temperature conditions

(Kerk and Feldman, 1994).

The above-mentioned changes in meristem organization are

in fact the changes in the QC itself, as it is the distal part of

the zone that undergoes the most noticeable rearrangement. It

concerns diminishing of the mitotically inactive region

through divisions of the most distal cells of the QC (Figs 6A,
H, 7A, 8B, C) as well as through rupture of the root–cap

boundary (Figs 6B, G, 7D, E). Thus what is observed is an

activation of the QC cells due to the mechanical stimulus

leading to the RAM opening through the root–cap boundary

rupture. Such activation of the QC was also observed in

response to other kinds of stimuli. For example, both an

increase and a decrease in temperature resulted in additional

divisions in the distal cells of the QC of maize roots and
opening of the RAM (Clowes and Wadekar, 1989; Kerk and

Feldman, 1994). Application of NPA to the root of this

species caused a decrease in the size of the QC, and affected

growth of the QC cells into the root cap and the production

of several new layers of cells in the region between the root

cap and the tip of the procambial cylinder (Jiang et al., 2003).

The zone size may also alter naturally during plant ontogen-

esis. For example, in maize a 36% reduction in the size of the
QC is observed as the root grows from 30 mm to 100 mm

long (Clowes and Wadekar, 1989), while in Sinapis alba as the

root grows the QC increases in size (Clowes, 1958).

A question arises as to what could be the reason for the

rupture of the root–cap boundary after activation of the

QC. As shown by Clowes and Steward (1967) and Barlow

and Rathfelder (1985), the root cap cells are sensitive to

stress of various kinds and the zone activation results from
their injury. According to Clowes (1982), in roots of

Helianthus annuus and Cucurbita pepo the columella initials

become temporarily quiescent which may induce the cell

proliferation in the QC. Barlow (2003) suggests that this

may not be sufficient for RAM opening, indicating a weak-

ening of the root–cap boundary a condition sine qua non. If

the above remarks are put in the context of the present

experiments, it can be seen that during passage of the root
tip through the narrowing the cap cells are the first to be

exposed to the mechanical stimulus; however, neither

significant damage nor quiescence of these cells is observed.

However, a possible communication between the cap and

the QC cells, which may enable the quiescent zone

activation, cannot be excluded.

Mechanical factors

Although the manner of the application of the force was

different in the two variants of the experiment a character

of the time dependence of the force (Fig. 5A, B) is similar in

both. Namely, when the root tip reaches the narrow zone

the force increases rapidly to attain its maximal value at the

moment of passing through the narrowest part. Interest-
ingly, in experiments in which the force exerted by pea roots

growing into plastic cones with their bases blocked was

measured (Bengough et al., 1994), the graph (Fig. 3 in the

cited paper) showing the change in force versus time

resembles the present results (Fig. 5A). This shows that

although a living tissue is examined a mechanical response

of the material appears repeatable, thus the applied method

may be regarded as appropriate to studies in the field.
The time of passing through the narrowest part is

relatively short in both variants (300–400 min). It is worth

emphasizing how such a short-term stimulus appeared

sufficient to cause the spectacular changes in the RAM

organization described above. The value of the maximal

force and consequently the stress exerted by the root tip is

greater in variant I which shows that such conditions

produced a higher impedance for the growing apices. If the
values of mechanical stress obtained in the present experi-

ment (0.65 MPa in variant I and 0.29 MPa in variant II) are

compared with the results of other authors, it can be seen

that they are similar. For example, a completely impeded

maize root exerts the maximum growth pressure of 0.43 MPa

(Clark and Barraclough, 1999), while the stress estimated for

elongating maize roots is between 0.26 MPa and 0.47 MPa

(Bengough and Mullins, 1991). The slight differences may
result from differing methods of measurement.

It was mentioned in the Introduction that the plant organ

growth as well as the stability of the cell pattern are

controlled on the tensor level. Growth can be treated as an

irreversible deformation of the cell wall system (Nakielski

and Hejnowicz, 2003), and there is a direct relationship

between stress and strain (Fung, 1981), so it can be assumed

that the field of growth rates is a function of tensile stress in
the cell walls. The stress, similarly to the growth rate, is the

second rank tensor quantity (Nakielski and Hejnowicz,

2003) that defines their own principal directions. Accord-

ingly, the directional cues included in PDGs may be related

to the principal directions of stress. Mechanical experiments

(Lynch and Lintilhac, 1997; Zhou et al., 2007) support this

view. In the light of the above tensor-based relationship, the

present results may be interpreted as follows.
During undisturbed growth in the root apex there is

a steady tensor field of growth rates related to unknown

mechanical stress distribution, which can be called primary.

The primary distribution is probably steady and well

adjusted to the root geometry (the cell pattern is typically
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self-perpetuating). While growing into the narrow zone the

apex encounters stronger and stronger impedance. This

results in additional stress distribution, which can be called

secondary. The secondary stress distribution, of the radial

symmetry in variant I and asymmetry in variant II, is

unsteady because it depends on the current position of

the apex in the narrowing. In spite of the difference in

the narrowing shapes (circular and elliptical) the result was
the same, namely the boundary between the root proper and

the cap was broken. This suggests that such an effect depends

mainly on the magnitude of the mechanical impedance. It

probably takes place before the moment when the narrowest

zone is reached (see insets in Figs 6B, C, 7B), which indicates

its correspondence to the increasing part of the plot in Fig. 5.

Notice that in the apices where the boundary has been

broken the cell pattern near the break is evidently disturbed
compared with the control (Fig. 6F), while in the apices

where the boundary has remained unbroken there are only

a few oblique cell walls in the root cap (Fig. 6D). If the

PDGs result from the stress (a possible relationship was

suggested by Nakielski, 2008), this disturbance may indicate

that the stress distribution changes when the apex passes

through the narrowing. The return to the typical cell pattern

observed after leaving the narrowing (Figs 6H, 7F) is a good
support for this hypothesis—the primary stress distribution

has eventually been restored.

A question arises as to whether the described root

meristem reorganization is adaptive or a simple conse-

quence of mechanical stress. Too little is known about the

stress distribution in roots to give a clear answer to this

question. On the one hand, the time period during which

the apex passes through the narrowing appeared sufficient
to cause disturbances in the root–cap border and to

generate oblique cell walls within the RAM. On the other

hand, it seems too short to observe significant long-term

effects of the adaptation. It is also short enough to let the

root geometry and the cell pattern finally become restored.

Knowing that the tensile stresses in cell walls of a turgid

organ depend on the existing geometry of the organ

(Nakielski and Hejnowicz, 2003), the observed reorganiza-
tion may well be adaptive.

This study shows the effect of the mechanical stimulus on

the RAM organization in Z. mays. More results of the same

experiment relating to deformation of the root apex as well

as of the cell wall system have been obtained; they will be

presented in a forthcoming paper.
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Pflanzen. I. Die Angiospermen. Berlin: Gebrüder Borntraeger.
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