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Abstract

Arctic coastal zones serve as a sensitive filter for terrigenous matter input onto

the shelves via river discharge and coastal erosion. This material is further

distributed across the Arctic by ocean currents and sea ice. The coastal regions

are particularly vulnerable to changes related to recent climate change. We

compiled a pan-Arctic review that looks into the changing Holocene sources,

transport processes and sinks of terrigenous sediment in the Arctic Ocean.

Existing palaeoceanographic studies demonstrate how climate warming and

the disappearance of ice sheets during the early Holocene initiated eustatic

sea-level rise that greatly modified the physiography of the Arctic Ocean.

Sedimentation rates over the shelves and slopes were much greater during

periods of rapid sea-level rise in the early and middle Holocene, as a result of

the relative distance to the terrestrial sediment sources. However, estimates of

suspended sediment delivery through major Arctic rivers do not indicate

enhanced delivery during this time, which suggests enhanced rates of coastal

erosion. The increased supply of terrigenous material to the outer shelves and

deep Arctic Ocean in the early and middle Holocene might serve as analogous

to forecast changes in the future Arctic.

To access the supplementary material for this article, please see supplementary

files under Article Tools online.

Rapid changes in the environmental conditions of the

Arctic have been observed over recent decades. These

include decreasing summer and winter sea-ice extent,

increasing annual river discharge, increasing areal extent

of open-water areas over the Arctic shelves and length-

ening of the open-water season (Peterson et al. 2002;

Serreze et al. 2007; Kwok et al. 2009; Wagner et al. 2011;

Stroeve et al. 2012; Fichot et al. 2013; Zhang et al. 2013).
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These changes will likely lead to important transforma-

tions in sedimentary environments and the pathways

and processes of terrigeneous particulate cycling. In par-

ticular, they could play a role in sediment resuspension

and coastal erosion (e.g., Atkinson 2005; Eicken et al.

2005; Carmack et al. 2006; Anisimov et al. 2007; Lantuit

et al. 2012).

The impact of increased export of turbid waters from

rivers and coastal regions on Arctic marine ecosystems

remains uncertain; it could either increase delivery of

nutrients and promote productivity or suppress photo-

synthesis in the light-limited algal populations by scatter-

ing absorbing sunlight (Retamal et al. 2008). An adequate

understanding of the pathways of terrigenous material is

needed to elucidate connections between sediment and

ecosystem dynamics under a changing climate. Research

efforts assessing recent trends and variability of terrige-

nous particulate matter inputs into the Arctic Ocean have

been carried out during the past decades and discussed in

reviews by Rachold et al. (2004), Macdonald et al. (2010),

Forbes (2011) and Goñi et al. (2013). However, the ability

to forecast the future significance of land-derived sedi-

mentary inputs into the Arctic Ocean also needs to

account for the natural baseline of sedimentary regimes

and their variability in the past (e.g., Darby et al. 2006;

Polyak et al. 2010).

The Quaternary history of the Arctic Ocean was marked

by repeated waxing and waning of large ice sheets and

associated sea-level fluctuations, causing repeated expo-

sure/inundation of shallow shelves and dramatic changes

in sedimentary environments, runoff and exchange with

the adjacent world’s oceans (Darby et al. 2006; Stein

2008; Jakobsson et al. 2011, 2014). Since the Last Glacial

Maximum (LGM) 21 thousand years ago (Kya) the Arctic

Ocean evolved towards its modern state, beginning with

a relatively isolated basin with exposed shelf seas and a

perennial ice pack with potentially very high thickness

locally (Bradley & England 2008). The inundation of the

shelves following the glacial sea-level lowstand, climati-

cally driven changes in freshwater delivery by major

rivers and variable sea-ice cover led to changes in terri-

genous input and patterns of productivity across the Arctic.

Understanding these dynamic processes is important for

assessing modern and future changes in the Arctic.

Parameters of past terrestrial input (e.g., past riverine

discharge, coastal erosion) can serve as boundary condi-

tions in models for a changing Arctic.

While regional data on the Arctic Ocean sedimentary

patterns exist (e.g., Stein & Fahl 2000; Stein, Schubert

et al. 2004; Yamamoto & Polyak 2009; Faux et al. 2011),

there is no comprehensive pan-Arctic summary of the

present state of knowledge about Holocene sediment

sources, transport mechanisms and deposition of terrige-

nous material in the Arctic Ocean. Variability through

the Holocene (last 11 700 years) provides a basic refer-

ence frame for modern observations because it tracks

a changing climate in the Arctic since the LGM and is

punctuated by intervals of warmer and colder climates

compared to those captured by modern observations (e.g.,

Łącka et al. 2015; this paper provides an overview focus-

ing on the variability of sediment transport processes on

the shallow shelf seas of the Arctic Ocean on different

time scales (present-day observations and palaeo-records),

as well as a summary focusing on the increasing extents

of shelf seas since the beginning of the Holocene on a

pan-Arctic scale with regard to the pathways of terrestrial

input. It presents a review and highlights how many of

the boundary conditions that are changing in the Arctic

today, also changed in a similar way during the early

Holocene. (Throughout this article we use early, middle

and late Holocene to denote times between 11.7 and 8.2

Kya, 8.2 and 4.2 Kya, and 4.2 Kya and the present,

respectively [Walker et al. 2012].)

Overview of the history of the Arctic Ocean,
LGM�present

The formation of large ice sheets during the last glacial

event culminated in a reduction in global sea level by

about 120�140 m, as well as major regional isostatic ad-

justments (Fairbanks 1989; Lambeck et al. 2002; Peltier

& Fairbanks 2006). Consequently, the areas of the Arctic

Ocean and its shelf regions were reduced by ca. 50% and

ca. 80%, respectively (Fig. 1). The spatial reduction of the

shelves in combination with larger surrounding land-

masses, land-based ice sheets and glaciers, as well as

a perennial sea-ice cover had profound effects on the

Arctic hydrography, sediment fluxes, biogeochemical cy-

cling and biological productivity (e.g., Nørgaard-Pedersen

et al. 1998; Darby et al. 2006; Darby 2008; Jakobsson

et al. 2014). The transition from full glacial conditions of

the LGM to warmer, interglacial conditions during the

Holocene marked the most recent substantial reorganiza-

tion of the Arctic Ocean system.

The maximum insolation in the Northern Hemisphere

in the early Holocene (Berger 1978; Laskar et al. 2004)

was a primary driving force behind climatic warming that

led to the decay of large ice sheets and subsequent sea-

level rise. Rising seas inundated vast Arctic shelves and

eventually led to the resumption of Pacific inflow via

the shallow Bering Strait. While eustatic sea level had

risen by ca. 60 m from the LGM to the beginning of the

Holocene (11.7 Kya), it rose another ca. 60 m during the

early to mid-Holocene (until about 6 Kya) in response
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Fig. 1 (a) The modern Arctic Ocean and its constituent seas. Blue arrows indicate the surface circulation and red arrows show the flow of Atlantic

Water. Locations and names are given for sediment cores shown in Fig. 6. (b) Physiography of the Arctic with ice sheet extents and associated sea-level

lowering during the Last Glacial Maximum (LGM), 21�18 Kya, and (c) near the start of the Holocene, 10 Kya.
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to ongoing ice-sheet decay (Bard et al. 1998; Fairbanks

1989; Peltier & Fairbanks 2006; Carlson & Clark 2012;

Fig. 1). During this time, the depositional regime on

the shelves shifted from terrestrial�fluvial to marine as

coastlines retreated southwards as a result of the marine

transgression.

Changes in sedimentation rates on many of the Arctic

shelf seas, concurrent with changes of geochemical and

micropalaeontological environmental indicators, provide

evidence of rapidly southward-retreating coastlines until

near the end of the middle Holocene (ca. 5 Kya) (Bauch

et al. 2001; de Vernal et al. 2005; Keigwin et al. 2006;

Darby et al. 2009; Pieńkowski et al. 2013). This coincided

with the period of most rapid sea-level rise, which lasted

until 7 Kya. Both the reduced rate of sea-level rise and

the fact that most of the shallow Arctic shelves had

been inundated by this time contribute to the idea that

modern depositional environment on the shelves was

established by the end of the middle Holocene (Bauch

et al. 2001; Stein, Dittmers et al. 2004).

At present the shelf areas surrounding the Arctic

Ocean are characterized by high riverine input. Riverine

waters are not only a critical source for low salinity

waters, but they also carry high nutrient loads and fuel

biological production (e.g., Smith et al. 2003; Trimble

& Baskaran 2005). The terrestrial material delivered to

the Arctic Ocean by riverine input and coastal erosion

either accumulates on the shelf or is transported further

offshore by currents or sea ice (e.g., Stein 2000, 2008;

Wegner et al. 2005). Throughout the Holocene, as more

of the shelf seas were inundated, formation of shore-fast

sea ice and the incorporation of sediments into newly

formed sea ice became more widespread. These sedi-

ments were then transported by the prevailing sea-ice

drift systems: the Transpolar Drift and the Beaufort Gyre

across the Arctic Ocean (e.g., Stein 2008). As glaciers

retreated from shelf breaks and coastlines at the end of

the LGM, the origin of ice-rafted debris (IRD) in Arctic

sediments shifted from iceberg to sea-ice dominated

(Darby & Bischof 2004; Darby et al. 2006). The transport

of sediment-laden sea ice from the shelves to the Arctic

basins was likely enhanced by the onset of the present-

day activity of the Beaufort Gyre and the Transpolar

Drift.

Sediment sources

Riverine input

Surface waters of the Arctic Ocean only account for ap-

proximately 0.1% of the global ocean volume, but receive

11% of the modern global river discharge (Shiklomanov

2000; Fichot et al. 2013). This large freshwater supply is

essential for the stratification of the uppermost water

column (Steele & Boyd 1998). It is particularly important

for the maintenance of the Arctic Halocline, a water

layer, 100 to 200 m thick, in the central Arctic Ocean

characterized by a high salinity gradient which prevents

heat exchange between the convective mixed upper

layer and subsurface/intermediate Atlantic Water layer

(Bourgain & Gascard 2011). Rivers also transport parti-

culate and dissolved terrigenous material from large

continental drainage basins (Fig. 2). Modern riverine

sediment input is assumed to be the most important

source of sediment to the Arctic Ocean besides coastal

erosion (Stein 2008).

During the early and middle Holocene, warmer con-

ditions led to the riverine transport of large amounts

of glacial sediments towards the river deltas, onto the

shelves and into the deep Arctic basins. Evidence of

warmer conditions is supported by terrestrial and marine

changes across the Arctic (e.g., Kaufmann et al. 2004)

and reduced sea-ice conditions north of Greenland and

throughout the Canadian Arctic Archipelago (Jakobsson

et al. 2010). However, the palaeoceanographic data from

the Chukchi and Beaufort seas suggest that a strong

halocline and dense sea-ice cover persisted throughout

the early and middle Holocene (de Vernal et al. 2005;

Farmer et al. 2011; de Vernal et al. 2013). No evidence for

enhanced outflow from Arctic rivers has been iden-

tified in sediment records. Most recorded events occurred

during deglaciation and are associated with increased

outflow of the Eurasian (Lena) and North American

(Mackenzie) rivers before the Holocene (Rutter 1995;

Fisher et al. 1995; Fisher et al. 2002; Spielhagen et al.

2005; Murton et al. 2010). Evidence for a prominent

cooling event at the end of the early Holocene (8.2 Kya)

is found in Greenland ice core records and marine sedi-

ments from large regions of the northern North Atlantic.

Marine proxy data indicate that this event lasted ca. 150�
250 years (e.g., Alley et al. 1997; Kleiven et al. 2008;

Werner et al. 2013) and was triggered by the massive

outburst flood from the proglacial lakes Agassiz/Ojibway

during the final collapse of the Laurentide Ice Sheet (e.g.,

Stuiver et al. 1995; Barber et al. 1999; Rohling & Pälike

2005).

Reconstructions based on the coupled atmosphere�
ocean global climate model ECHO-G suggest that there

was a slight increase in total Arctic river discharge

(�0.35%90.45%), with an increase in the Eurasian

Arctic river discharge (�2.14%90.56%) but a decrease

in the North American river discharge between 7 Kya

and 1800 AD (�4.6290.64%; Supplementary Table S1;

Wagner et al. 2011). The increasing discharge trends
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from the Eurasian rivers Dvina, Pechora, Ob, Yenisei and

Lena are associated with a positive precipitation and

evaporation relation owing to decreased summer tem-

peratures, as well as an intensification of continental

high pressure cells, cloud formation and increased pre-

cipitation (Wagner et al. 2011). The strong decline in

river discharge of the Mackenzie River system during

the Holocene was associated with reduced atmospheric

moisture transport, sea-level pressure increase and de-

creasing continental precipitation during summer (Wagner

et al. 2011; Fig. 3).

Present-day trends in Arctic river discharge show an

increase in total river influx into the Arctic Ocean during

recent decades (Peterson et al. 2002; Zhang et al. 2013).

However, river discharge trends are not uniform between

the Eurasian and North American Arctic (Lammers et al.

2001; Peterson et al. 2002; Shiklomanov & Shiklomanov

2003; Shiklomanov & Lammers 2010).

A ‘‘back-of-the-envelope’’ estimate for changes in

Arctic Ocean sediment flux (Supplementary Table S1)

was calculated based on regression analysis for present-

day discharge values and sediment fluxes as provided

by Gordeev (2006). Using Shapiro-Wilks tests, we trans-

formed both total suspended matter (TSM) and discharge

by the natural log to follow a normal distribution. Although

not included in the summary results (Supplementary

Table S1), the Yukon River discharge and sediment record

was included in the non-linear regression, based on values

provided in Holmes et al. (2002). All rivers with a non-

linear relationship between their sediment and water

discharge were analysed using a third order polynomial

regression (n�13, adjusted R2 0.92, pB0.001), as:

f xð Þ ¼ 33:71099� 18:87968xþ 3:01744x2 � 0:14274x3

(1)

Rivers with a linear relationship between sediment and

water discharge were considered in a separate negative

regression model (n�15, adjusted R2 0.72, pB0.0001),

as follows,

f xð Þ ¼ �6:7130þ 0:9413x (2)

This simple approach allowed us to estimate Holocene

sediment flux using discharge values provided by Wagner

Fig. 2 Major oceanic basins, major rivers and watersheds corresponding to names and basins listed in Supplementary Table S1. The 50-, 100- and

1000-m bathymetric contour levels are shown (from the General Bathymetric Chart of the Oceans, one-minute grid, version 2 (Jakobsson et al. 2008).

Drainage areas are based on Vorosmarty et al. (2000a, b).
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et al. (2011; Supplementary Table S1). Generally esti-

mated Holocene riverine suspended matter discharge

trends are lower compared to modern-day (Supplemen-

tary Table S1), although results vary depending on

whether riverine discharge was increasing or decreasing.

The Mackenzie River, being somewhat of an outlier in

the data set, was slightly under-predicted by the regres-

sion approach.

Coastal erosion

Recent estimates of the sediment flux and organic carbon

(OC) flux from coastal erosion into the Arctic Ocean

are around 430 Tg sediment y�1 and 4.9�14 Tg OC y�1

(Fig. 4, Supplementary Table S2 and references therein).

This represents about twice the river sediment flux,

yet less than half of the river OC flux (Supplementary

Fig. 3 Trends in precipitation (mm/Ky) between the middle Holocene and 1800 AD (pre-industrial period) for (a) winter (December�January�February),

(b) spring (March�April�May), (c) summer (June�July�August) and (d) autumn (September�October�November). Source data from Wagner et al. (2011).

A coupled atmosphere�ocean general circulation model, ECHO-G (Legutke & Voss 1999), was used to produce the simulation. Trends are calculated

using a Mann Kendall Sen slope analytical approach (Yue et al. 2002). Trend strength is shown with colours ranging from negative values (brown/yellow

tones) to positive values (green/blue tones). Significance is denoted by black circles to represent the 95% confidence interval. Major basins as shown in

Fig. 2 are also illustrated.
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Table S1 and references therein). The coastal material

is probably mostly trapped within the nearshore area.

Regional estimates of sediment and OC release to the

Arctic Ocean are available from several places (Fig. 4). In

Alaska, Jorgenson & Brown (2005) and Ping et al. (2011)

provided updated calculations on the release of sedi-

ment (2.1�3.3 Tg y�1) and OC (0.15�0.18 Tg y�1) from

coastal erosion, based on their calculations on long-term

erosion rates (1950�2000) and field sampling. For the

Canadian portion of the Beaufort Sea Coast, Hill et al.

(1991) estimated a mean sediment input of 5.6 Tg y�1,

while Grigoriev & Rachold (2003) provided a mean sedi-

ment input for the Laptev Sea Coast to be 58.4 Tg y�1. In

the Kara Sea, Streletskaya et al. (2009) computed fluxes

of OC (0.40 Tg a�1) and re-estimated values published

earlier by Vasiliev et al. (2005) of 0.35 Tg a�1. In the

Laptev and East Siberian seas, Vonk et al. (2012)

calculated an annual coastal erosion flux of OC of 3.7

and 7.3 Tg y�1, respectively (Supplementary Table S2)

using new field-based measurements from the shelf,

instead of coastal exposures. There is evidence from

some areas for recent acceleration in the rate of coastal

erosion (Jones et al. 2009; Günther et al. 2013; Günther

et al. 2015), related in part to more open water and

higher wave energy, rising sea levels and more rapid

thermal abrasion along coasts with high volumes of

ground ice (Forbes 2011).

It is important to note that the fate of sediments and

OC once eroded from the cliff remains largely unknown

(Stein & Macdonald 2004) and that the release of

dissolved organic matter from melting ground ice in

permafrost has not been estimated (Fritz et al. 2015). The

estimated present-day range in OC release from erosion

of coastal permafrost (4.9�14 Tg y�1; Supplementary

Fig. 4 Modern sediment contribution (Tg y�1) from coastal erosion into the Arctic Ocean divided by marginal sea areas (after Brown et al. 2002).
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Table S2) is smaller than the annual carbon dioxide

emissions estimated from terrestrial permafrost (40.0�84.0

Tg C y�1; McGuire et al. 2009), although estimations

of OC release from coastal erosion generally refer to the

coasts directly facing the Arctic Ocean only, omitting

much of the Canadian Archipelago (consisting largely of

bedrock coasts). Coastal erosion is, however, expected to

accelerate due to increasing exposure to wave fetch and

storms caused by recent reductions in sea ice (Forbes

2011), which may increase the annual coastal delivery of

sediments, carbon and nutrients and may alter the bio-

geochemical setting on the upper shelves in the Arctic. In

some places, coastal erosion has been shown to increase

by a factor of three or four through a coupling with

reducing summer sea-ice extent (Barnhart et al. 2014).

This highlights the potential of coastal erosion to gen-

erate fluctuations in sediment supply of greater magni-

tude than rivers, which react to environmental forcing in

a much smoother way, as shown by the current trends in

river discharge constrained to a 95% window.

Sediment supply from coastal erosion in the past, beyond

observational timescales, is difficult to quantify as it

depends on erosion of a coastline whose original config-

uration is not known (Hill et al. 1991), as well as a

variety of mechanisms that are difficult to assess in the

geological past. Large parts of the shallow circum-Arctic

shelves were subaerially exposed during the LGM

(Svendsen et al. 2004; Jakobsson et al. 2014) and became

flooded rapidly. This marine transgression came close

to the present level by the end of the middle Holocene

(Bauch et al. 1999). Before the Holocene sea-level high-

stand the coastal erosion fraction of the total sediment

input was probably much larger, because considerable

portions of sediments were released by coastal erosion

when large land areas were inundated with rising sea

level (Bauch et al. 2001).

Based on maximum sediment accumulation rates on

the Laptev Sea shelf between 9 and 10 Kya, Stein (1998)

and Bauch et al. (2001) concluded that climatic warming

in the early Holocene and post-glacial sea-level rise

caused enhanced coastal-/seafloor erosion and riverine

runoff. Large amounts of OC accumulated on the Laptev

Sea and eastern Kara Sea shelves, as documented by high

accumulation rates of TOC during the early Holocene,

probably derived from strong wave-based erosion and

thermoabrasion of the coastal permafrost deposits (Stein

1998; Müller-Lupp et al. 2000; Stein & Fahl 2000). With

retreating coastlines, the accumulation rates in the distal

shelf areas were reduced successively (Müller-Lupp et al.

2000).

In the middle Holocene sediment fluxes in the Laptev

Sea were more variable, partly due to rising sea level,

spatially variable timing for the flooding of bathymetric

features and coastline adjustments (Bauch et al. 2001).

Even though the modern sea-level highstand was ap-

proached around 5 Kya, the depositional systems on the

shelves probably took more time to become stable, which

might explain why relative constant sediment fluxes

onto the Laptev Sea shelf did not begin until about 4 Kya

(Bauch et al. 2001). It is challenging to identify dif-

ferent terrestrial sources of organic matter but stable and

radiocarbon isotope analyses can be used to trace and

identify terrestrial sources on the shelf. For example, in

the Laptev and East Siberian shelf seas, Vonk et al. (2012)

showed that the input of coastal erosion dominates these

shelf regions.

There are almost infinite possibilities to combine ex-

ternal factors determining the long-term pace of coastal

erosion with internal factors determining the vulner-

ability to coastal erosion. Only a few of them can be dir-

ectly measured or reconstructed throughout the Holocene.

Aré et al. (2002) pointed out that the shoreface B10 m

water depth is an additional source for sediment input to

the Laptev Sea. Comparing modern subaerial erosion

rates and nearshore sedimentations rates in the Laptev

and East Siberian seas, Vonk et al. (2012) suggested that

subsea erosion of the shoreface at water depths less than

30 m may transfer as much sediments and organic matter

to the sea as the subaerial erosion of the cliff. However,

the information available on seafloor erosion in shallow

water depths is still insufficient to be included into

sediment input calculations (Rachold et al. 2002). As

pointed out earlier, rates of erosion during rapid sea-level

rise must have been substantially higher than in the late

Holocene and in the modern setting. Within the last

11 000 years, the shoreline in the Laptev and East

Siberian seas has shifted its position southward by 300�
800 km (Overduin et al. 2007). Nevertheless, it is still

unclear how much of the formerly dry shelf areas

became subject to cliff and shoreface erosion or if they

were simply flooded. The most reasonable assumption,

though not quantitatively differentiated, is a combina-

tion of both processes. Erosional discordances between

late glacial terrestrial deposits and Holocene marine

sediments are as widespread as submarine permafrost

deposits dating into the LGM, which have not been

eroded (e.g., Mackay 1972; Romanovskii et al. 2004;

Overduin et al. 2007; Rachold et al. 2007).

Transport processes

Generally, along the outer parts of Arctic Ocean con-

tinental margins and across topographic highs in deep

basins, sea ice is assumed to be the main contributor
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to sediment transport (Polyak et al. 2009). The across-

shelf and slope transport of fine particles is additionally

affected by bottom currents associated with internal tides,

along-shelf flows, wind-forced upwelling- and downwel-

ling currents, eddies and density flows (e.g., Pickart 2004;

Davies & Xing 2005; Williams et al. 2008; Darby et al.

2009). On runoff-dominated shelf seas (Kara, Laptev and

Beaufort seas), currents only contributed to the transport

of sedimentary material with increasing sea level, in-

undation of the shelves and associated distance from

terrestrial sources, after an early fluvial phase dominated

by high terrestrial input from river discharge and coastal

erosion which was largely captured in delta systems

(Darby et al. 2006). However, unlike the Siberian shelf,

the Mackenzie River in the Beaufort Sea drains into a

deep glacially excavated cross-shelf trough. This con-

trasting physiography and isostatic adjustments in the

Beaufort Sea following the retreat of the Laurentide

Ice Sheet may have greatly influenced the timing and

transport pathway of riverine material during Holocene

transgression.

After reaching maximum Holocene sea level, modern

depositional processes developed on the shelf seas:

seasonal sea-ice formation, ice rafting, peak riverine input

shortly after spring break-up, pulsed productivity during

ice-free months and increased resuspension of bottom

sediments and current transport during ice-free condi-

tions and freeze-up (e.g., Macdonald 2000; McClimans

et al. 2000; Bauch et al. 2001; Sternberg et al. 2001;

Baskaran et al. 2003; Bauch et al. 2004; Stein, Schubert

et al. 2004; Wegner et al. 2005). Today, shelf currents

experience a strong seasonality with wind and ice as

limiting factors (e.g., Harms & Karcher 1999; McClimans

et al. 2000; Sternberg et al. 2001; Wegner et al. 2005;

Schulze & Pickart 2012). The surface distribution of

riverine water and river-derived material shows strong

interannual variability, mainly attributed to atmospheric

vorticity variations over the adjacent Arctic Ocean in

summer (Guay et al. 2001; Macdonald et al. 2002; Viscosi-

Shirley et al. 2003; Dmitrenko et al. 2005; Bauch et al.

2009; Yamamoto-Kawai et al. 2009; Wegner et al. 2013).

On the shelves and slopes, at water depth below 100 m,

currents do not show a seasonal cycle (e.g., Woodgate

et al. 2001). Sedimentary environments on the Barents

and Chukchi shelves are affected by the interaction of

sub-Arctic waters (Atlantic- and Pacific-derived waters,

respectively) and processes in the marginal ice zone

(Darby et al. 2006). Away from the continental shelves,

and on elevated ridges, sedimentation rates are low and

consistent throughout the Holocene, suggesting that no

changes in the dominant transport processes took place

and implying that sea ice was the dominant sediment

transport system (e.g., Darby et al. 2009).

Under modern conditions, sediment-laden sea ice

provides an important transporting agent for off-shelf

export of particulate material, particularly over the wide

and shallow Siberian shelves (Nürnberg et al. 1994;

Eicken et al. 1997; Pfirman et al. 1997; Eicken et al.

2000; Dethleff 2005), and to some extent also over the

narrow, deeper North American shelves (Reimnitz et al.

1993; Eicken et al. 2005; Darby et al. 2009). The total

sediment export from Arctic shelves via sea-ice drift pro-

vides a quantitatively important component to the Arctic

Ocean sediment (14�42 Tg/y [Eicken 2004; Stein 2008])

and OC (0.34 Tg/y total POC and DOC [Eicken 2004])

budget, with particularly high contributions from the

Laptev Sea shelf. Stein (2008) estimates that ca. 23% of

modern sediments in the central Arctic Ocean (from the

slopes to deep basins) were deposited from drifting sea

ice, while up to 85% of sediments on the elevated ridges

of the central Arctic are sea ice derived.

The source regions and drift patterns of terrigenous

IRD in the Arctic Ocean have been studied using sedi-

mentological proxy indicators such as detrital grain

size and mineral composition (Darby & Bischof 1996,

2004; Dethleff et al. 2000; Andrews 2009), in addition to

isotopic signatures of sediment inorganic matter such as

Pb, Sr, Nd (Eisenhauer et al. 1994; Peregovich et al. 1999;

Tütken et al. 2002; Maccali et al. 2013), and organic

biomarkers such as n-alkanes, glycerol dialkyl glycerol

tetraethers (Yunker et al. 1995; Fahl & Stein 1999;

Yamamoto & Polyak 2009; Yunker et al. 2011). Data

indicate that during the LGM the boundary conditions

(thick, perennial sea-ice cover, greatly reduced water

volume of the Arctic Ocean basin, surrounding conti-

nents characterized by vast ice sheets and permafrost)

only allowed for minimal sea-ice transport (Yunker et al.

2009). This is in contrast to the deglacial period when

disintegrating ice sheets discharged icebergs which dis-

located a major share of coastal sediments. During the

Holocene, iceberg rafting gradually became less impor-

tant while transport of terrigenous material by sea ice

became more dominant (Polyak & Jakobsson 2011).

Sea-ice transport away from the shelves today is driven

by the modern surface circulation in the Arctic Ocean

dominated by the Beaufort Gyre in the Amerasian Basin

and the Transpolar Drift flowing from the Siberian

shelves along the Lomonosov Ridge to Fram Strait (e.g.,

Aagaard et al. 1985; Sellén et al. 2010; Fig. 1).

During the early Holocene, sea-level rise played a

considerable role governing the conditions for sediment

entrainment in ice. The generally cooler late Holocene

climate (Wanner et al. 2008), sea-level rise and the
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inundation of the broad shallow shelves likely facilitated

extensive suspension freezing processes to operate (Yunker

et al. 2009; Macdonald & Gobeil 2012; Werner et al.

2013). As shelf areas expanded, the amount of sea ice

formed on, and exported off, these shelves also increased,

as did, most likely, the magnitude of sea-ice transport

within the Beaufort Gyre and the Transpolar Drift. Both

the surface circulation and inflow of Atlantic Water have

changed since the LGM. The early Holocene strengthen-

ing of Atlantic Water inflow to the Arctic Ocean is

implicated in the increased influx of marine organic

matter to the Kara and Laptev continental slopes while

terrigenous material was the predominant material

source during the mid- and late Holocene (Stein et al.

2001). Atmospheric circulation patterns also played a key

role, especially once sea level approached its modern

level by the late Holocene (Fairbanks 1989; Bauch et al.

2001; Carlson & Clark 2012). It has been suggested that

during the positive Arctic Oscillation phase (AO�), a

strong Transpolar Drift sweeps closer to North America

and feeds sea ice into a weaker Beaufort Gyre while the

negative AO phase (AO�) results in a stronger Beaufort

Gyre (e.g., Funder et al. 2011). As a result, during AO�
IRD originating from the Siberian shelves may reach the

Chukchi and Beaufort shelves, while during AO� more

IRD from North American sources exits via Fram Strait

(Rigor et al. 2002). Darby & Bischof (2004) and Darby et al.

(2012) compared Fe-oxide mineral grains in sediment

cores from the Chukchi Sea shelf to a reference database

of about 300 surface sediment samples and proposed

millennial-scale patterns of AO-linked sea-ice transport.

Over the past ca. 8000 years, IRD from the Kara Sea was

deposited on the Chukchi shelf with a 1500-year peri-

odicity, suggesting millennial cyclicity in the AO phases

(Darby et al. 2012).

Other sea-ice transport records have been obtained

from Fram Strait, the main gateway of Arctic sea-ice

export to the Atlantic Ocean. Overall, the data in Fram

Strait and the Nordic seas indicate an increase in sea-ice

cover and export from the Arctic since 6 Kya based on

IRD, elemental and isotopic composition of sediment, as

well as the IP25 biomarker (e.g., Jennings et al. 2002;

Andrews 2009; Andrews et al. 2010; Müller et al. 2012;

Werner et al. 2013). However, large spatial variability in

the intensity of ice rafting and reconstructed persistence

of sea ice exists in records from this region (Moros et al.

2006; de Vernal et al. 2013). Based on elemental and

isotopic evidence from sediment leachates and residues

in central Fram Strait sediments, Maccali et al. (2013)

propose that most of the IRD reaching Fram Strait was

primarily derived from North American and possibly East

Siberian sources, while sea-ice sediments from the Laptev

Sea played a minor role.

Sinks

Sedimentation rates on continental shelves are generally

considerably higher than in the central basins, especially

in areas with high riverine inputs such as the Kara,

Laptev and Beaufort seas, and in marginal ice zones such

as the Barents Sea (Darby et al. 2006; Darby et al. 2009;

Fig. 5). During the Holocene, sedimentation rates on the

shelf seas varied considerably (Fig. 6). During the rapid

post-glacial sea-level rise in the early and beginning of the

middle Holocene, high sedimentation rates of ca. 350 cm/

thousand years (Ky) were recorded in the Laptev Sea

and OC accumulation of 150�700 g/cm2/Ky was esti-

mated from the Kara Sea. Thereafter sedimentation rates

on the outer Laptev Sea shelf dropped to ca. 14 cm/Ky

(Bauch et al. 2001) and decreased to ca. 3�5 cm/Ky

afterward (Bauch et al. 1999; Bauch et al. 2001). During

the last 2000 years, sediment accumulation on the Kara

Sea was about 75 g/cm2/Ky (Bauch et al. 1999; Stein &

Fahl 2000; Stein, Dittmers et al. 2004; Fahl & Stein 2007;

Supplementary Table S3). Sediment accumulation for the

entire Holocene was estimated to about 194 Tg/y for the

Kara Sea (Stein, Dittmers et al. 2004), which is about

20% of the average Holocene sediment accumulation for

the entire Arctic Ocean (1008) Tg/y, Stein & Macdonald

2004) and about 67 Tg/y (Stein & Macdonald 2004) for

the Laptev Sea (Supplementary Table S3).

On the Canadian Beaufort shelf, substantial changes

in the freshwater flux and in surface and bottom water

conditions occurred in the early to middle Holocene

(Andrews & Dunhill 2004). The total sediment mass stored

in the delta regions with an average Holocene accumula-

tion rate in the Mackenzie Delta of ca. 136�163 Tg/y

(Lewis 1988) appeared to be three times higher than the

deposition on the shelf (Hill et al. 1991). In shelf areas

influenced by the Mackenzie outflow, sedimentation

rates have reached ca. 140 cm/Ky since 4 Ky (Bringue

& Rochon 2012). The Chukchi shelf, formed during the

Holocene as a marginal sea relatively distant from land,

was influenced by surface water inflow from the Pacific

Ocean through Bering Strait during most of the Holocene

(Yashin & Kosheleva 1996). Average sedimentation rates in

the Chukchi Sea were relatively high (ca. 60�220 cm/Ky)

during the early and middle Holocene (de Vernal

et al. 2005; Keigwin et al. 2006), suggesting a terrigenous

sediment source and an active sea-ice or water mass

system to carry the sediment material seaward. Shelf

sedimentation rates today are very low in the order of

1�2 cm/Ky (de Vernal et al. 2005; Keigwin et al. 2006).
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On the Chukchi slope, sedimentation rates were very low

(ca. 1 cm/Ky) throughout the Holocene (de Vernal et al.

2005).

Hein & Mudie (1991) investigated sediment cores from

the north-western shelf off Axel Heiberg Island (Cana-

dian Arctic Archipelago) and established a model for

the Holocene sedimentary environment. They show that

the Canadian Archipelago was characterized by rather

high sedimentation rates �134 cm/Ky during the early

Holocene contrasting with lower values thereafter ran-

ging up to 7.4 cm/Ky with a high component of coarse

IRD (Hein & Mudie 1991).

In the central Arctic, no clear change is observed

in sedimentation rates during the middle Holocene.

Generally they remained consistently low (Figs. 5, 6)

with average accumulation rates of about 1�1 cm/Ky

(Backman et al. 2004; Spielhagen et al. 2004). On the

Alpha and northern Mendeleev ridges, beneath areas

that are influenced by thick pack ice within the Beaufort

Gyre, sedimentation rates may be less than 1 cm/Ky

(Polyak et al. 2009) Across the Arctic Ocean, sedimenta-

tion rates generally increase towards the continental

margins, with high sedimentation rates on continental

slopes and on some shelves. Average Holocene rates vary

between 10 and 300 cm/Ky (Darby et al. 1997; Nørgaard-

Pedersen et al. 2003; Stein, Dittmers et al. 2004; Andrews

& Dunhill 2004; Polyak et al. 2004; Keigwin et al. 2006;

Rochon et al. 2006; Barletta et al. 2008; Darby et al.

2009; Lisé-Pronovost et al. 2009).

Conclusions and outlook

The input, distribution and fate of terrigenous sediment

and organic matter in this material changed through the

Holocene in response to sea-level rise, ice melt, rafting

rates, sea-ice transport, riverine input, coastal erosion

and current redistribution. During the early to middle

Holocene, between 8 and 7 Kya, the sedimentary regime

on the shelves shifted from dominant riverine input and

coastal erosion derived sediment to marine deposition

due to post-glacial sea-level rise and marine transgres-

sion. Currents on the shelves then became a determinant

factor after a fluvial phase dominated by riverine input

and coastal erosion. Even though the sedimentation rates

were higher during the early to mid-Holocene, major

Arctic rivers do not show enhanced delivery during this

time. This suggests that sediment delivery was in re-

sponse to enhanced rates of coastal erosion. However,

Fig. 5 Holocene sedimentation rates derived from 14C dated sediments and gridded in the Ocean Data View software package (www.odv.awi.de/).

The linear sedimentation rates were calculated without using a 0 age assumption for the seafloor.
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this remains to be confirmed. After the deglaciation,

terrigenous material transported by sea-ice drift became

more dominant while iceberg rafting gradually achieved

a less important role. However, the changes in sea-ice

cover and drift patterns are still poorly known and are

the topic of numerous ongoing research programmes.

Most of these studies have focused on sediments depos-

ited on elevated ridges in the central Arctic, intentionally

biasing the results towards understanding the sea-ice

rafted component of sediments. Therefore, balancing

terrigenous sediment and OC export from the shelf to

deep basins remains complicated. Budgets for sediment

and OC export from the shelves remain poorly con-

strained due to the lack of information on the contribu-

tion of coastal erosion. Its contribution to sediment input

needs to be better estimated.

Given the wide range of variation in suspended sedi-

ment supply, coastal erosion rates and sea-ice concentra-

tions during the Holocene, high-resolution continental

shelf and slope sediments spanning this interval could

provide a critical link for examining how these changing

boundary conditions will influence biogeochemical cy-

cling and ecosystem dynamics in the future. However,

only few high-resolution studies from the continental

slopes and shelves exist to establish feedbacks between

these processes and biogeochemical cycling and ecosys-

tem dynamics. Continental shelf and slope sediments

from the Holocene can be exploited in future studies to

more fully address these interactions.
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