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Stability of functional equations connected with quadrature rules

Tomasz Szostok

Dedicated to Professor Roman Ger on the occasion of his 70th birthday

Abstract. We study the stability properties of the equation

F (y) − F (x) = (y − x)

n∑

i=1

aif(αix + βiy) (0.1)

which is motivated by numerical integration. In Szostok and Wa̧sowicz (Appl Math Lett
24(4):541–544, 2011) the stability of the simplest equation of the type (0.1) was investigated
thus the inequality

|F (y) − F (x) − (y − x)f (x + y)| ≤ ε

was studied. In the current paper we present a somewhat different approach to the problem
of stability of (0.1). Namely, we deal with the inequality

∣∣∣∣∣
F (y) − F (x)

y − x
−

n∑

i=1

aif(αix + βiy)

∣∣∣∣∣ ≤ ε.

Mathematics Subject Classification. 39B82, 39B22, 65Q20.

Keywords. Stability of functional equations, functional equations stemming from numerical

integration.

1. Introduction

In this paper we study the stability properties of the equation

F (y) − F (x) = (y − x)
n∑

i=1

aif(αix + βiy). (1.1)

Equation (1.1) is a profound generalization of the well known Aczél equation

F (y) − F (x) = (y − x)f
(

x + y

2

)
, (1.2)

which was motivated by the Lagrange mean value theorem (see [1]).
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Equation (1.1) was inspired by the quadrature rules of numerical inte-
gration. Functional equations inspired by numerical integration were studied
among others in [3–9].

It can be proved (under some assumptions) that solutions of (1.1) are
polynomial functions (see [4]). By a polynomial function of order n we mean
any solution of the functional equation Δn+1

h f(x) = 0, where Δn
h stands for

the nth iterate of the difference operator Δhf(x) = f(x + h) − f(x).
The stability of (1.2) was studied in [10] where the inequality

|F (y) − F (x) − (y − x)f (x + y)| ≤ ε

was considered.
In the current paper we present a somewhat different approach to the sta-

bility of (1.1). Equation (1.2) is known as the Aczél equation and was inspired
by the Lagrange mean value theorem. Therefore it is natural to write (1.2) in
the form

F (y) − F (x)
y − x

= f

(
x + y

2

)
, x �= y. (1.3)

Now, we may consider the following inequality
∣∣∣∣
F (y) − F (x)

y − x
− f

(
x + y

2

)∣∣∣∣ ≤ ε.

Moreover, we shall study in this setting the stability properties of the more
general equation (1.1).

2. Results

First we prove a technical lemma concerning a pexiderized version of (1.1)

F (y) − F (x)
y − x

=
n∑

i=1

fi(αix + βiy). (2.1)

Lemma 1. Let n ∈ N and let αi, βi ∈ R, i = 1, . . . , n. If functions F, f1, . . . , fn :
R → R satisfy the inequality

∣∣∣∣∣
F (y) − F (x)

y − x
−

n∑

i=1

fi(αix + βiy)
)
∣∣∣∣∣ ≤ ε (2.2)

then f1, . . . , fn satisfy the inequality
∣∣∣∣∣

n∑

i=1

fi((αi + βi)x + βih) +
n∑

i=1

fi((αi + βi)x + (αi + 2βi)h)

− 2
n∑

i=1

fi((αi + βi)x + 2βih))

∣∣∣∣∣ ≤ 4ε. (2.3)
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Proof. Taking x + h instead of y in (2.2), we get
∣∣∣∣∣
F (x + h) − F (x)

h
−

n∑

i=1

fi
(
(αi + βi)x + βih

)
∣∣∣∣∣ ≤ ε,

further, taking x + 2h, x + h in place of y, x resp. in (2.2), we get
∣∣∣∣∣
F (x + 2h) − F (x + h)

h
−

n∑

i=1

fi
(
(αi + βi)x + (αi + 2βi)h

)
∣∣∣∣∣ ≤ ε,

and these two equations give us
∣∣∣∣∣
F (x + 2h) − F (x)

h
−

n∑

i=1

fi((αi + βi)x + βih)

−
n∑

i=1

fi((αi + βi)x + (αi + 2βi)h)

∣∣∣∣∣ ≤ 2ε. (2.4)

On the other hand, taking x + 2h in place of y in (2.2), we get
∣∣∣∣∣
F (x + 2h) − F (x)

2h
−

n∑

i=1

fi((αi + βi)x + 2βih)
)
∣∣∣∣∣ ≤ ε.

This, together with (2.4), yields
∣∣∣∣∣

n∑

i=1

fi((αi + βi)x + βih) +
n∑

i=1

fi((αi + βi)x + (αi + 2βi)h)

− 2
n∑

i=1

fi((αi + βi)x + 2βih))

∣∣∣∣∣ ≤ 4ε.

�

In the next part of the paper we are going to use a result proved by Baker
in [2]. For the sake of completeness we shall cite this theorem.

Theorem 2.1. (Baker [2]) Let V,B be real or complex vector spaces and assume
that B is a Banach space. Further suppose that the functions f0, . . . , fm : V →
B satisfy for all x, y ∈ V

∥∥∥∥∥

m∑

k=0

fk(αkx + βky)

∥∥∥∥∥ ≤ δ

for some δ > 0 and scalars αk, βk with

αjβk − αkβj �= 0 (2.5)

whenever j �= k. Then for each k ∈ {0, . . . , m}
‖Δhm

· · · Δh1fk(x)‖ ≤ 2mδ for all x, h1, . . . , hm ∈ V
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and there exists a polynomial function pk : V → B of order at most m− 1 and
a constant ck such that

‖fk(x) − ck − pk(x)‖ ≤ 2m+1δ for all x ∈ V.

Moreover
m∑

k=0

pk(αkx + βky) = 0.

Although Lemma 1 was stated for Eq. (2.1), in the remaining part of the
paper we shall work with (1.1) with an additional assumption that αk+βk = 1.
There are several reasons to restrict ourselves to this case. Our equations stem
from numerical integration and quadratures used to approximate the integral
take exactly the form used in (1.1) (with αk + βk = 1). Further if we want to
prove that functions satisfying our equations are continuous we have to make
some assumptions of this kind.

Now we shall state the main result of the paper.

Theorem 2.2. Let n ∈ N and let functions F, f : R → R satisfy, for all x �= y,
the inequality

∣∣∣∣∣
F (y) − F (x)

y − x
−

n∑

i=1

aif(αix + (1 − αi)y)
)
∣∣∣∣∣ ≤ ε (2.6)

with some ai ∈ R\{0} and pairwise distinct αi ∈ [0, 1], i = 1, . . . , n. Then there
exist a constant M > 0 and a polynomial function p of order at most 3n − 2
such that

|f(x) − p(x)| < Mε.

Further there exist a polynomial P of degree at most 3n − 1 and a constant
K > 0 such that

|F (x) − P (x)| ≤ Kε, (2.7)

the function x �→ (F (x) − P (x)) is Lipschitz continuous and functions P, p
satisfy (1.1).

Finally, if a1 + · · · + an �= 0 then also f must be continuous.

Proof. Using Lemma 1, we can see that f satisfies
∣∣∣∣∣

n∑

i=1

aif(x + (1 − αi)h) +
n∑

i=1

aif(x + (2 − αi)h)

− 2
n∑

i=1

aif(x + (2 − 2αi)h)

∣∣∣∣∣ ≤ 4ε. (2.8)

Values of f are here calculated at the points of the form x+γh for some values
of γ. First we add these values of f occurring in (2.8) which are calculated at
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the same point. As a result we obtain a sum of a similar form as in (2.8) but
with different coefficients of h. This means that now we have

∣∣∣∣∣

l∑

i=1

bif(x + γih)

∣∣∣∣∣ ≤ 4ε, (2.9)

for some l ∈ N, l ≤ 3n, some bi ∈ R and some γi ∈ R where γi �= γj , i �= j.
Consequently, condition (2.5) is satisfied. We only have to check that not all
numbers bi are zero.

To this end, we observe that points of the form x + (1 − αi)h belong to the
interval [x, x + h] and that points x + (2 − αi)h are in [x + h, x + 2h].

First we consider the case n = 1. In this case inequality (2.8) contains
values of f at the points: x + (1 − α1)h, x + (2 − α1)h, and x + (2 − 2α1)h.
At least one of these points is different from the others. Thus its term cannot
vanish after our simplification. Further if n = 2 and at least one of the numbers
α1, α2 is different from 0 and 1 then we have four different points of the forms
x + (1 − αi)h, x + (2 − αi)h, and only two of the shape x + (2 − 2α1)h. Like
before, it means that some of the values of f from (2.8) do not vanish. In the
case: α1 = 0, α2 = 1 we have a concrete form of (2.8) and it is easy to check
that the left-hand side of this inequality is nontrivial. To finish this part of the
proof assume that n ≥ 3. In this case the system

x + (1 − α1)h, . . . , x + (1 − αn)h, x + (2 − α1)h, . . . , x + (2 − αn)h

contains at least 2n−2 different points. Thus there must be an i0 ∈ {1, . . . , n}
such that

x + (1 − αi0)h �= x + (2 − 2αi)h for all i = 1, . . . , n

or

x + (2 − αi0)h �= x + (2 − 2αi)h for all i = 1, . . . , n.

In view of Theorem 2.1, this means that some function ai0f is close to a
polynomial function. Thus there exists p(x) = p0 +p1(x)+ · · ·+p3n−2(x) such
that functions pk are monomial of orders k and the inequality

|f(x) − p(x)| ≤ Mε

is satisfied with some M > 0. Therefore we may write

f(x) = p0 + p1(x) + · · · + p3n−2(x) + r(x) (2.10)

where |r(x)| ≤ Mε.
Now we shall use this equality in (2.6). Without loss of generality we may

assume that F (0) = 0 thus, taking y = 0 in (2.6), we may write
∣∣∣∣∣
F (x)

x
−

n∑

i=1

ai(p0 + p1(αix) + · · · + p3n−2(αix) + r(αix))

∣∣∣∣∣ ≤ ε.
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Using here the boundedness of r, we get for some K > 0
∣∣∣∣
F (x)

x
− (P0 + P1(x) + · · · + P3n−2(x))

∣∣∣∣ ≤ Kε

i.e.

F (x) = x(P0 + P1(x) + · · · + P3n−2(x) + R(x)), (2.11)

where P0 =
∑n

i=1 aip0 is a constant, Pk(x) =
∑n

i=1 aipk(αix) is a monomial
function of order k and |R(x)| ≤ Kε. Using (2.11), (2.10) and the boundedness
of r in (2.6), we get for some L > 0

∣∣∣∣∣
y(P0 +

∑3n−2
k=1 Pk(y) + R(y)) − x(P0 +

∑3n−2
k=1 Pk(x) + R(x))

y − x

−
n∑

i=1

ai(p0 + p1(αix + (1 − αi)y) + · · · + p3n−2(αix + (1 − αi)y))

∣∣∣∣∣ ≤ Lε.

(2.12)

Now we observe that yP0−xP0
y−x =

∑n
i=1 aip0 which, used in (2.12), gives us

∣∣∣∣∣
y(

∑3n−2
k=1 Pk(y) + R(y)) − x(

∑3n−2
k=1 Pk(x) + R(x))

y − x

−
n∑

i=1

ai(p1(αix + (1 − αi)y) + · · · + p3n−2(αix + (1 − αi)y))

∣∣∣∣∣ ≤ Lε.

(2.13)

In the next step of the proof we substitute 2x and 2y instead of x and y,
respectively, and we arrive at
∣∣∣∣∣
y(

∑3n−2
k=1 2kPk(y) + R(2y)) − x(

∑3n−2
k=1 2kPk(x) + R(2x))

y − x

−
n∑

i=1

ai(2p1(αix + (1 − αi)y) + · · · + 23n−2p3n−2(αix + (1 − αi)y))

∣∣∣∣∣ ≤ Lε.

(2.14)

Dividing both sides of (2.14) by 23n−2, we can see that the only terms which
remain unchanged are those of order 3n−2, all others are divided by powers of
two. If we repeat this operation then all expressions with orders smaller than
3n − 2 tend to zero. This yields

yP3n−2(y) − xP3n−2(x)
y − x

=
n∑

i=1

aip3n−2(αix + (1 − αi)y). (2.15)
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Now we may use a result from [5] which states that the mapping x �→ xP3n−2(x)
is an ordinary polynomial. This means that P3n−2(x) = b3n−1x

3n−1, for some
real number b3n−1.

Further, using (2.15) in (2.13), we get
∣∣∣∣∣
y(

∑3n−3
k=1 Pk(y) + R(y)) − x(

∑3n−3
k=1 Pk(x) + R(x))

y − x

−
n∑

i=1

ai(p1(αix + (1 − αi)y) + · · · + p3n−3(αix + (1 − αi)y))

∣∣∣∣∣ ≤ Lε.

(2.16)

Repeating this procedure sufficiently many times, we show that F is of the
form (2.7). Moreover, we have

bky
k+1 − bkx

k+1

y − x
=

n∑

i=1

aipk(αix + (1 − αi)y), k = 1, . . . , 3n − 2

i.e

bk(yk + yk−1x + · · · + xk) =
n∑

i=1

aipk(αix + (1 − αi)y), (2.17)

for all x �= y. Note also that the last inequality which we obtain is of the form
∣∣∣∣
yR(y) − xR(x)

y − x

∣∣∣∣ ≤ Lε.

Now let A be a k-additive and symmetric function such that

pk(x) = A(x, . . . , x︸ ︷︷ ︸
k

),

then (2.17) may be rewritten in the form

bk(yk + yk−1x + · · · + xk) =
n∑

i=1

ai(A(αix, . . . , αix)

+ · · · + A((1 − αi)y, . . . , (1 − αi))y).

(2.18)

Now, let qj be a sequence of rational numbers tending to 1 and different from
1. Then, taking y = qjx in (2.18), we get

bkx
k(qkj + · · · + 1) =

n∑

i=1

ai(A(αix, . . . , αix)

+ · · · + qkj A((1 − αi)x, . . . , (1 − αi))x).

(2.19)
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Tending here with j to infinity, we get

kbkx
k =

n∑

i=1

aipk(x)

thus also pk is continuous, provided that
∑n

i=1 ai �= 0. �
Remark 1. A careful inspection of the proof of Theorem 2.2 shows that it is
possible to obtain the exact values of M and K but the formulas expressing
them would be very complicated. Moreover these values rely strongly on our
method and, therefore, they are probably far from being optimal.

The following corollary will show that the degrees of f and F obtained in
Theorem 2.2 may, in the case of concrete equations be lower. The inequality
considered in this corollary is motivated by the Simpson quadrature rule.

Corollary 1. If functions f, F satisfy the inequality
∣∣∣∣
F (y) − F (x)

y − x
−

(
1
6
f(x) +

2
3
f

(
x + y

2

)
+

1
6
f(y)

)∣∣∣∣ ≤ ε

then there exist a, b, c, d ∈ R and M,K > 0 such that

F (x) = ax3 + bx2 + cx + d + R(x)

and

f(x) = 3ax2 + 2bx + c + r(x),

where |r(x)| ≤ Mε, |R(x)| ≤ Kε and
∣∣∣∣
yR(y) − xR(x)

y − x

∣∣∣∣ ≤ ε.

Proof. Using Theorem 2.2 we can see that there exist functions r and R such
that

F (x) = P (x) + R(x)

where P is a polynomial of degree at most 5 and

f(x) = p(x) + r(x)

where p is a polynomial of degree at most 4. However from Theorem 2.2 we
know that functions P, p satisfy the equation

P (y) − P (x)
y − x

=
1
6
p(x) +

2
3
p

(
x + y

2

)
+

1
6
p(y).

It is well known (see for example [7]) that in such a case the degree of p is not
greater than 3. Further using the continuity of p and tending with y to x, we
get that P ′ = p, as claimed. �

The next example will show that it is impossible to get the superstability
result (as it was the case in the paper [10]).
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Example. Assume that
∑n

i=1 ai = 1, take function F as any function satisfying
the Lipschitz condition with constant ε/2 and f as a function bounded by ε/2.
Then functions F, f satisfy inequality (2.6).

Remark 2. As it is easy to observe, inequalities considered in [10] and in the
present paper have a joint generalization which is given by

|F (y) − F (x) − (y − x)
n∑

i=1

aif(αix + βiy)| ≤ ε|x − y|p. (2.20)

In view of results contained in [10] and of Theorem 2.2, we may say that the
stability problem posed in this way has a satisfactory solution for p = 1 and a
partial solution for p = 0.

Open Access. This article is distributed under the terms of the Creative Commons Attribut-
ion 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided you give appropri-
ate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made.
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