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Abstract. We show that unlikely to the single-valued case, the set-valued
orthogonally additive equation is unstable. After presenting an exam-
ple showing this phenomenon, we provide some special cases where a
set-valued approximately orthogonally additive function can be approx-
imated by the one which satisfies the equation of orthogonal additivity
exactly.

Mathematics Subject Classification. 41A65, 54C60, 26E25, 39B82.

Keywords. Orthogonally additive equation, approximately orthogonally
additive function, quadratic equation, set-valued function, stability.

1. Introduction

We call function f : X → Y orthogonally additive if it satisfies the conditional
functional equation

f(x + y) = f(x) + f(y) for all x, y ∈ X with x ⊥ y. (1)

In the standard settings X is a real inner product space with the orthogo-
nality relation given by means of the inner product and Y is an Abelian group.
However, we may introduce an abstract orthogonality relation in any at least
two-dimensional linear space, defining the so called orthogonality space (see
Gudder and Strawther [7], Rätz [12]).

Let X be a real linear space with dimX ≥ 2 and let ⊥ be a binary
relation on X such that
(01) x ⊥ 0 and 0 ⊥ x for all x ∈ X;
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(02) if x, y ∈ X\{0} and x ⊥ y, then x and y are linearly independent;
(03) if x, y ∈ X and x ⊥ y, then for all α, β ∈ R we have αx ⊥ βy;
(04) for any two-dimensional subspace P of X, for every x ∈ P and for every

λ > 0 there exists a y ∈ P such that x ⊥ y and x + y ⊥ λx − y.

An ordered pair (X,⊥) is called an orthogonality space.
An orthogonality space covers the case of an inner product space with the

classical orthogonality as well as an arbitrary real normed linear space with
the so called Birkhoff orthogonality. But it is also the case with the “trivial”
orthogonality defined on a linear space by (01) and the condition that two
nonzero vectors are orthogonal if and only if they are linearly independent.

Solutions of (1) are known (see Rätz [12], and also Baron and Volkmann
[2]). Before giving their form, we recall that a function q is called quadratic if
for all x and y from the domain, q(x + y) + q(x − y) = 2q(x) + 2q(y).

Theorem 1.1. Let (X,⊥) be an orthogonality space and (Y,+) be an Abelian
group. Every orthogonally additive function f : X → Y has the form f = a+q,
where a is additive and q is quadratic (and orthogonally additive).

The orthogonal additivity (1) has wide applications both inside and out-
side mathematics. With help of it we can give, e.g., several characterizations
of inner product spaces among normed spaces as well as of Hilbert spaces
among Banach spaces (see Rätz [13] or Sikorska [16] for more reference items).
Equation (1) has its applications in physics, in the theory of ideal gas (see,
e.g., Aczél and Dhombres [1], Truesdell and Muncaster [18]). In the three-
dimensional Euclidean space, by means of (1) we obtain the formula for the
distribution law of velocities in an ideal gas at a fixed temperature. There
are also applications of (1) in actuarial mathematics in a premium calcula-
tion principle (see Heijnen and Goovaerts [9]): it is shown, namely, that the
variance principle is the only covariance-additive premium principle.

The multi-valued analogue of (1) reads as follows

F (x + y) = F (x) + F (y) for all x, y ∈ X with x ⊥ y, (2)

where F maps an orthogonality space X into the family of non-empty subsets
of a topological space Y (for nonempty sets A and B, by A+B we understand
{a + b : a ∈ A, b ∈ B}, λA = {λa : a ∈ A} for any λ ∈ R and A − B =
A + (−1)B).

In what follows we will use the notations: for a metric linear space Y,
let c(Y ) denote the family of all nonempty compact subsets of Y, cc(Y )—
the family of all convex members of c(Y ), and bcl(Y )—the collection of all
nonempty, closed and bounded subsets of Y.

We know the solutions of (2) (see Sikorska [17]).

Theorem 1.2. Let (X,⊥) be an orthogonality space and Y be a Fréchet space
(locally convex, complete metric linear space with an invariant metric). If
F : X → cc(Y ) satisfies (2), then there exist an additive function a : X → Y
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and a quadratic function Q : X → cc(Y ) such that F = a + Q. Moreover, such
representation is unique.

The main aim of this paper is to study approximately orthogonally ad-
ditive multi-valued functions. We will answer the question whether for an
approximately orthogonally additive function there exists a function which
satisfies the conditional Cauchy equation exactly and which is close (in the
sense of the Hausdorff distance) to the given function. In such a case we tell
that a (multi-valued) orthogonal Cauchy equation is stable.

Let us recall the stability result for the single-valued orthogonal Cauchy
equation (cf., Fechner and Sikorska [5], Ger and Sikorska [6]).

Theorem 1.3. Let X be an orthogonality space and let (Y, ‖ · ‖) be a (real or
complex) Banach space. Given an ε ≥ 0, let f : X → Y be a mapping such that
for all x, y ∈ X one has

‖f(x + y) − f(x) − f(y)‖ ≤ ε for all x, y ∈ X with x ⊥ y. (3)

Then there exists a mapping g : X → Y such that

g(x + y) = g(x) + g(y) for all x, y ∈ X with x ⊥ y, (4)

and
‖f(x) − g(x)‖ ≤ 5ε for all x ∈ X. (5)

Moreover, such mapping g, for which the difference f −g is bounded, is unique
and it is given by the formula

g(x) = lim
n→∞

(
2n + 1
2 · 4n

f(2nx) − 2n − 1
2 · 4n

f(−2nx)
)

for all x ∈ X.

In what follows we present some background for further considerations.

Lemma 1.1. (R̊adström [11]) Assume that A,B,C are subsets of a normed
linear space Y such that B is closed and convex, C is bounded, nonempty, and
A + C ⊂ B + C. Then A ⊂ B.

Let (Y, ‖ · ‖) be a normed linear space. On the set of all nonempty closed
and bounded subsets of Y we define the distance function, which is called the
Hausdorff distance, as follows. For any A,B ∈ bcl(Y ),

h(A,B) := max
{

sup
x∈A

d(x,B), sup
y∈B

d(A, y)
}

,

where d(x,B) = d(B, x) := inf
{‖x − y‖ : y ∈ B

}
. Or, equivalently,

h(A,B) = inf {ε > 0: A ⊂ B + K(ε) and ⊂ A + K(ε)} ,

where K(ε) is simply a closed ball of radius ε centered at the origin. Surely,
we have K(ε1) + K(ε2) = K(ε1 + ε2) and K(αε) = αK(ε) with any α > 0.

Space bcl(Y ) with the Hausdorff distance forms a metric space.
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It is known that if Y is complete, so is cc(Y ), if considered with the
Hausdorff metric (see, e.g., Castaing and Valadier [4, Chapter II] or Beer [3,
Section 3.2]).

Lemma 1.2. Assume that Y is a normed linear space and the considered sets
are from the family cc(Y ). Then

(i) h(A + C,B + C) = h(A,B);
(ii) h(αA) = αh(A) for any α > 0;
(iii) if An → A and Bn → B, then An + Bn → A + B;
(iv) if An → A and Bn → B then h(An, Bn) → h(A,B).

2. Main Results

Let (X,⊥) be an orthogonality space. In what follows we will study the con-
dition

h(F (x + y), F (x) + F (y)) ≤ ε for all x, y ∈ X with x ⊥ y. (6)

Mirmostafaee and Mahdavi [10] were studying stability of a set-valued
version of the equation of orthogonal additivity but only for even functions.
They have obtained a stability result in such a case. However, the problem
appears in the case where we consider odd mappings, or just arbitrary set-
valued functions. It seems to be a challenge. We may not treat separately the
odd and even parts of a function. Indeed, if for every x ∈ X we denote

G(x) :=
1
2
(F (x) + F (−x)) and H(x) :=

1
2
(F (x) − F (−x)),

then in general,

F (x) 	= G(x) + H(x).

We start with a lemma, which we prove using (6) and properties of the
orthogonality relation (see [17, Theorem 2.1] for all ten suitable orthogonal-
ity relations between respective vectors), using properties of the Hausdorff
distance, and finally applying Lemma 1.1.

Lemma 2.1. Let (X,⊥) be an orthogonality space and (Y, ‖·‖) be a real normed
space. If F : X → cc(Y ) satisfies (6), then for every n ∈ N,

h

(
2n + 1
2 · 4n

F (2nx), F (x) +
2n − 1
2 · 4n

F (−2nx)
)

≤
(

5 − 5
2n

)
ε for all x ∈ X.

(7)

In an arbitrary normed space Y by use of (7) we are not able to define
any Cauchy sequence (as it is done in a standard procedure of a direct method
while proving the stability; see, e.g., [8]). In order to see a possible behaviour of
approximately set-valued orthogonally additive functions we restrict ourselves
to the case Y = R and we will consider the family cc(R) consisting of all
nonempty closed and bounded intervals.
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In what follows we will show that it is not caused only by a method of a
proof that by means of Lemma 2.1 we could not build an orthogonally additive
approximation. Namely, we will give an example showing that unlikely to the
single-valued case, the set-valued orthogonally additive equation is in general
unstable. However, later on we present some special cases where a set-valued
approximately orthogonally additive function can be approximated by the one
which satisfies the equation of orthogonal additivity exactly.

For two arbitrary sets A = [a1, a2] and B = [b1, b2] from cc(R) we have
now

h(A,B) = max{|a1 − b1|, |a2 − b2|}.

In our settings function F : X → cc(R) has now the form

F (x) = [a(x), b(x)] for all x ∈ X (8)

with some functions a, b : X → R, a ≤ b, and the fact that F satisfies (6) is
then equivalent to the fact that a and b satisfy system of conditions{∣∣a(x + y) − a(x) − a(y)

∣∣ ≤ ε for all x, y ∈ X with x ⊥ y∣∣b(x + y) − b(x) − b(y)
∣∣ ≤ ε for all x, y ∈ X with x ⊥ y.

(9)

Before proceeding with stability considerations we formulate two simple
lemmas concerning orthogonally additive functions.

Lemma 2.2. Function F : X → cc(R) of the form (8) is orthogonally additive
if and only if a : X → R and b : X → R are orthogonally additive and a ≤ b.

Lemma 2.3. If a, b : X → R are orthogonally additive and a ≤ b then odd parts
of these functions coincide.

Proof. If a and b are orthogonally additive, so is d := b−a ≥ 0. And since d is
orthogonally additive, d = h + q with some additive h and quadratic q. Then
for every x ∈ X and n ∈ N we have

h(x) +
1
2n

q(x) = 2nh
(
2−nx

)
+ 2nq

(
2−nx

)
= 2nd

(
2−nx

) ≥ 0,

that is, h ≥ 0 and consequently, the odd part of d, which is uniquely deter-
mined, is equal to zero. �

Remark 2.1. The result of the above lemma can also be shown by means of
Theorem 1.2, however we have done it directly.

We present now the announced already example.

Example 2.1. Consider Euclidean space R
2, some ε > 0 and F : R2 → cc(R)

of the form (8) with a(x1, x2) = 1
2ε

(
x2
1 + x2

2 + x1 + 1
) ≥ 0 and b(x1, x2) =

ε
(
x2
1 + x2

2 + x1 + 1
) ≥ 0. Then a ≤ b and functions a and b satisfy system (9).

Consequently, F satisfies (6).
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If F were stable, there would exist an orthogonally additive function
G : R2 → cc(R) such that

h
(
F (x), G(x)

) ≤ M for all x = (x1, x2) ∈ R
2

with some constant M (depending on ε).
Since G is orthogonally additive, by Theorem 1.2, G = g + Q with

g : R2 → R additive and Q : R2 → cc(R) quadratic. Then Q(x) = [q1(x), q2(x)]
with some quadratic functions q1, q2 : R2 → R, q1 ≤ q2, and G(x) = [g(x) +
q1(x), g(x) + q2(x)] for all x ∈ R

2.
It follows from (9) and Theorem 1.3 that there exist orthogonally additive

functions ã, b̃ : R2 → R such that

|a(x) − ã(x)| ≤ 5ε and |b(x) − b̃(x)| ≤ 5ε for all x ∈ R
2.

It is not difficult to verify that in our case ã(x1, x2) = 1
2ε

(
x2
1 + x2

2 + x1

)
and

b̃(x1, x2) = ε
(
x2
1 + x2

2 + x1

)
.

Since

h
(
F (x), G(x)

)
= max

{∣∣a(x) − g(x) − q1(x)
∣∣, ∣∣b(x) − g(x) − q2(x)

∣∣}
is bounded, by the uniqueness of ã and b̃, it follows that

ã(x) = g(x) + q1(x) and b̃(x) = g(x) + q2(x) for all x ∈ R
2.

This is impossible since odd parts of ã and b̃ equal 1
2εx1 and εx1, respectively,

are different (cf., Lemma 2.3).

We give now two stability results obtained in two particular situations.

Theorem 2.1. Let (X,⊥) be an orthogonality space and let F : X → cc(R) of the
form (8) satisfy (6) with some ε > 0. If b(x) − a(x) > 10ε for all x ∈ X\{0},
then there exists a unique orthogonally additive function G : X → cc(R) such
that

h
(
F (x), G(x)

) ≤ 5ε for all x ∈ X.

Proof. Functions a and b satisfy (9). By Theorem 1.3, there exist orthogonally
additive functions ã, b̃ : X → R such that∣∣a(x) − ã(x)

∣∣ ≤ 5ε and
∣∣b(x) − b̃(x)

∣∣ ≤ 5ε for all x ∈ X. (10)

We have

ã(x) ≤ a(x) + 5ε ≤ b(x) − 5ε ≤ b̃(x) for all x ∈ X\{0}.

Since ã(0) = b̃(0) = 0, we have

ã(x) ≤ b̃(x) for all x ∈ X.

On account of Lemma 2.2, function G : X → cc(R) defined by

G(x) :=
[
ã(x), b̃(x)

]
for all x ∈ X
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is orthogonally additive. Moreover,

h
(
G(x), F (x)

)
= max

{∣∣ã(x) − a(x)
∣∣, ∣∣b̃(x) − b(x)

∣∣} ≤ 5ε for all x ∈ X.

In order to prove the uniqueness, let G be another function such that the
(Hausdorff) distance between F and G is bounded, that is, h

(
F (x), G(x)

) ≤ M
for all x ∈ X and some M > 0. Hence,

h
(
G(x), G(x)

) ≤ 5ε + M for all x ∈ X.

By Theorem 1.2, G = a1 + Q1 and G = a2 + Q2 for some additive functions
a1, a2 : X → R and quadratic functions Q1, Q2 : X → cc(R), therefore

h
(
a1(x) + Q1(x), a2(x) + Q2(x)

) ≤ 5ε + M for all x ∈ X,

and

h
(
a1 (2nx) + Q1 (2nx), a2 (2nx) + Q2 (2nx)

)≤5ε + M for all x ∈ X, n ∈ N,

h
(
2na1(x) + 4nQ1(x), 2na2(x) + 4nQ2(x)

) ≤ 5ε + M for all x ∈ X, n ∈ N.

Dividing by 4n and letting n to infinity, yield Q1 = Q2. Now, it is already easy
to see that a1 = a2, and the proof is completed. �

Theorem 2.2. Let (X,⊥) be an orthogonality space and let F : X → cc(R) of
the form (8) satisfy (6) with some ε ≥ 0. If M := sup{|bo(x) − ao(x)| : x ∈
X} < ∞, where ao, bo stand for the odd parts of a and b, respectively, then
there exists an orthogonally additive function G : X → cc(R) such that

h(F (x), G(x)) ≤ 5ε for all x ∈ X.

Proof. Consider function d := b − a. Then do = bo − ao on account of (9)
satisfies∣∣do(x + y) − do(x) − do(y)

∣∣ ≤ 2ε for all x, y ∈ X with x ⊥ y.

Moreover,
|do(x)| ≤ M for all x ∈ X. (11)

By Theorem 1.3, there exists an orthogonally additive function d̃o such that∣∣∣do(x) − d̃o(x)
∣∣∣ ≤ 10ε for all x ∈ X. (12)

In fact, function d̃o is given by

d̃o(x) = lim
n→∞

(
2n + 1
2 · 4n

do (2nx) − 2n − 1
2 · 4n

do (−2nx)
)

for all x ∈ X,

which on account of (11) yields d̃o = 0. This means that for orthogonally
additive approximations of ao and bo, we have ão = b̃o.
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Since a(x) ≤ b(x) for all x ∈ X, the even parts ae, be of a and b, re-
spectively, also satisfy ae(x) ≤ be(x) for all x ∈ X. Hence, their orthogonally
additive approximations ãe and b̃e are quadratic and satisfy

ãe(x) = lim
n→∞

1
4n

ae(2nx) ≤ lim
n→∞

1
4n

be(2nx) = b̃e(x) for all x ∈ X.

Therefore, function X � x �→ Q(x) :=
[
ãe(x), b̃e(x)

]
, is orthogonally additive

and quadratic.
Define G(x) := {ãe(x)} + Q(x) for all x ∈ X. Then G is orthogonally

additive and on account of the uniqueness of the orthogonally additive ap-
proximations, we have

h
(
F (x), G(x)

)
= h

(
[a(x), b(x)], [ão(x) + ãe(x), ão(x)

+b̃e(x)]
) ≤ 5ε for all x ∈ X.

For the uniqueness of G, we use the same argument as in the proof of the
previous theorem. �

Remark 2.2. By (12), the assumptions of Theorem 2.2 force M ≤ 10ε.

Consider now the following condition

h
(
F (x + y), F (x) + F (y)

) ≤ ϕ(x, y) for all x, y ∈ X with x ⊥ y, (13)

where F maps an orthogonality space (X,⊥) into the family of nonempty,
compact and convex subset of a real Banach space Y, and ϕ : X → [0,∞)
satisfies three conditions:
(a) for every x ∈ X the series

∑∞
n=1 4nϕ(2−nx, 2−nx) is convergent;

(b) for all x, y ∈ X such that x ⊥ y we have limn→∞ 4nϕ(2−nx, 2−ny) = 0;
(c) there exists an M > 0 such that for all x, y ∈ X, if x ⊥ y and x+y ⊥ x−y

then

max
{
ϕ
( ± x,±y

)
, ϕ

( ± (x + y),±(x − y)
)} ≤ Mϕ(x, x).

Considerations as for Lemma 2.1 lead to an approximation of the follow-
ing Hausdorff distance

h

(
F (x),

4n + 2n

2
F

( x

2n
)

+
4n − 2n

2
F

(
− x

2n
))

(14)

(see [14,15] for the single-valued case). By properties of the Hausdorff distance
and of function ϕ we may define function G : X → cc(Y ) by the formula

G(x) = lim
n→∞

[
4n + 2n

2
F

( x

2n
)

+
4n − 2n

2
F

(
− x

2n
)]

for all x ∈ X.

It turns out that G is orthogonally additive, and moreover,

h
(
F (x), G(x)

) ≤ ψ(x) for all x ∈ X,

with some function ψ : X → [0,∞) depending on ϕ.
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Of course, as one can easily check, function ϕ(x) ≡ ε does not satisfy
(a), (b). However, an example of ϕ that satisfies (a) and (b) is given, e.g., by
ϕ(x, y) = ε (‖x‖p + ‖y‖p) , (x, y) ∈ X2, with p > 2, ε > 0. For X it is enough
to take then an inner product space or a normed linear space with the Birkhoff
orthogonality.

Open Access. This article is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes
were made.
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