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Abstract. The theoretical analysis of the Cooper pair susceptibility shows the two-band Fe-based super-
conductors (FeSC) to support the existence of the phase with nonzero Cooper pair momentum (called the
Fulde-Ferrel-Larkin-Ovchinnikov phase or shortly FFLO), regardless of the order parameter symmetry.
Moreover this phase for the FeSC model with s± symmetry is the ground state of the system near the
Pauli limit. This article discusses the phase diagram h-T for FeSC in the two-band model and its physical
consequences. We compare the results for the superconducting order parameter with s-wave and s±-wave
symmetry – in first case the FFLO phase can occur in both bands, while in second case only in one band.
We analyze the resulting order parameter in real space – showing that the FeSC with s±-wave symmetry
in the Pauli limit have typical properties of one-band systems, such as oscillations of the order parameter
in real space with constant amplitude, whereas with s-wave symmetry the oscillations have an amplitude
modulation. Discussing the free energy in the superconducting state we show that in absence of orbital
effects, the phase transition from the BCS to the FFLO state is always first order, whereas from the FFLO
phase to normal state is second order.

1 Introduction

In type-II superconductors, the magnetic field destroys
the Bardeen-Cooper-Schrieffer (BCS) superconductivity
in two competitive ways – through orbital (diamagnetic)
or paramagnetic pair-breaking effects. The first one is re-
lated to the Abrikosov vortex state, and destroys the su-
perconductivity in external magnetic field Horb

c2 when the
vortex cores begins to overlap. The second one originates
from the Zeeman splitting of single electron energy lev-
els. The superconductivity is destroyed when the magnetic
field reaches the critical value HP

c2 due to polarization of
the electrons. The relative intensity of the effects would
be described by the Maki parameter α =

√
2Horb

c2 /HP
c2 [1].

Usually the critical field necessary for the orbital effects to
destroy superconductivity is lower than the one required
by the diamagnetic effect (α � 1). However, for some ma-
terials (e.g. heavy fermions systems), an increasing mag-
netic field would destroy superconductivity through para-
magnetic effects (α ≥ 1). In this case, in high magnetic
field (greater than HP

c2) Cooper pairs may be formed with
non-zero total momentum between Zeeman-split parts
of the Fermi surface. This gives rise to oscillations of
the superconducting order parameter in the real space.
This phase is called the Fulde-Ferrel-Larkin-Ovchinnikov
(FFLO) phase [2,3].

a e-mail: aptok@mmj.pl

There are strong indications that the FFLO phase can
be observed in heavy fermions systems [4–8], e.g. CeCoIn5

which is a strong candidate for exhibiting this state [9–13].
It is a clean system [14], with a layered structure sug-
gesting a quasi-2D nature of electrons [15] and the Maki
parameter is estimated to be α � 5 [16]. Moreover, the-
oretical works suggest that this phase can exist in the
presence of impurities [17–21] and incommensurate spin
density waves [22,23], which is consistent with the experi-
mental results [24–28]. Because Fe-based superconductors
(FeSC) also have some of these features (they are also
layered [29–34] clean [35,36] materials with relatively high
Maki parameter α ∼ 1−2 [36–40]) we can expect the ex-
istence of the FFLO phase [41–43].

The Fermi surfaces (FS) in FeSC are composed of
hole-like Fermi pockets (around the Γ = (0, 0) point)
and electron-like Fermi pockets (around the M = (π, 0)
or (0, π) point). By the analysis of the Cooper pair sus-
ceptibility in two-band model of FeSC, such systems are
shown to support the existence of a FFLO phase, re-
gardless of the exhibited order parameter (OP) symme-
try [43]. However theoretical results point to the presence
of s± ∼ cos(kx) cos(ky) pairing symmetry in FeSC [44–55].
In this case the OP exhibits a sign reversal between the
two FS sheets. It should be noted the state with nonzero
Cooper pair momentum, in superconducting FeSC with
s± symmetry, is the ground state of the system near the
Pauli limit [43]. Because of this, it seems reasonable to
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determine the influence of s± and s symmetry on the phys-
ical properties of the FFLO phase in multi-band systems.

In this paper we consider a minimal two-band model
of FeSC to study physical properties of the FFLO phase,
such as the h-T diagram for the superconducting state
with s-wave and s±-wave symmetry and relevant phase
transitions, the different momentum of the Cooper pairs
in the bands and their influence on the OP in real space.

2 Two band model of iron-base
superconductors and theoretical method

In this part we set up the FeSC system using a minimal
two-orbital per site model, with hybridization between the
dxz and dyz orbitals. We adopt the band structure pro-
posed in reference [56]. The Hamiltonian takes the form:

H0 =
∑

kσ

∑

αβ

T αβ
kσ c†αkσcβkσ (1)

where c†αkσ (cαkσ) is the creation (annihilation) operator
of particles with momentum k and spin σ in the orbital α.
T αβ

kσ = T αβ
k − (μ + σh)δαβ is the kinetic energy term of a

particle with momentum k changing the orbital from β to
α and is given by:

T 11
k = −2 (t1 cos(kx) + t2 cos(ky)) − 4t3 cos(kx) cos(ky),

T 22
k = −2 (t2 cos(kx) + t1 cos(ky)) − 4t3 cos(kx) cos(ky),

T 12
k = T 21

k = −4t4 sin(kx) sin(ky). (2)

The hoppings have values: (t1, t2, t3, t4) = (−1.0, 1.3,
−0.85,−0.85), in units of |t1|. μ is the chemical potential
and h is the external magnetic field parallel to the lattice
plane, allowing us to neglect orbital effects. At half-filling,
a two electrons per site configuration requires μ = 1.54|t1|.
In this case we have two FSs – giving an electron-like band
(ε = +) and hole-like band (ε = −) – Figure 1b.

By diagonalizing the Hamiltonian (1), one obtains:

H ′
0 =

∑

εkσ

Eεkσd†εkσdεkσ (3)

with eigenvalues Eεkσ = Eεk − (μ + σh), where:

E±,k =
T 11

k + T 22
k

2
±

√(
T 11

k − T 22
k

2

)2

+ (T 12
k )2, (4)

d†εkσ is a new fermion quasi-particle operator in the band
ε = ±.

Here it should be noted that present model is insuf-
ficient to approximate the full band structure, especially
with regard to the correct orbital weights along the FS
sheets. Real pnictides FeAs layers are built by Fe ions
forming a square lattice surrounded by As ions which also
form a square lattice (Fig. 1a) [57–62]. As ions are placed
above or under the centers of the squares formed by Fe.

Fig. 1. (a) FeAs layer in pnictides. Fe (dark dot) and As
(green and red dot) ions form a quadratic lattice. As ions are
placed above (red dot) or under (green dot) the centers of the
squares formed by Fe. (b) Fermi surface in effective and (c) true
Brillouin zone for μ = 1.54|t1 | in minimal two-band models de-
scribing iron-base superconductors proposed by reference [56].

This leads to two inequivalent positions of Fe atoms, so
that there are two ions of Fe and As in an elementary cell.
If the primitive unit cell is taken to be a square containing
a single Fe atom, the effective Brillouin zone (BZ) is the
square shown in Figure 1b. The true primitive unit cell
contains two Fe ions – the true BZ is twice as small. The
FS around (0, 0) and (π, π) are hole pockets associated
with E−,kσ = 0 and the FS around (π, 0) and (0, π) are
electron pockets from E+kσ = 0. The FS around (π, π)
is an artifact of the two-orbital approximation. The true
BZ can be obtained by folding the effective BZ – the re-
sult of such downfolding is given in Figure 1c [62–64]. It
is evident that the FS obtained in this way are in qualita-
tive agreement with the result of LDA calculations (only
the third, less relevant, small hole-like pocket at the cen-
ter is absent) [29–34]. The comparison between two- and
more-bands model can be found e.g. in references [63,64].

In the orbital basis Ckσ = (c1kσ, c2kσ)T we are able
to consider interactions such as the Hubbard repulsion for
electrons in the same orbital, Hubbard-like repulsion be-
tween different orbitals, ferromagnetic Hund coupling and
a pair-hopping term [64–68]. However in the band basis
Dkσ = (d+,kσ, d−,kσ)T an effective superconducting pair-
ing can be set between only the quasi-particles inside each
band [47–49,69–74], if the intraband pairing interaction
dominates [54]. In this case the superconductivity in the
FFLO phase, assuming only one momentum in each band,
can be effectively expressed by the Hamiltonian:

H ′
SC =

∑

εk

(
Δεkd†εk↑d

†
ε,−k+qε↓ + H.c.

)
, (5)

where Δεk = Δεη(k) is the amplitude of the OP for
Cooper pairs with total momentum qε (in band ε with
symmetry described by η(k)). The structure factor is given
by η(k) = 1 for s-wave and η(k) = 4 cos(kx) cos(ky) for
s±-wave symmetry of the OP [43].

Using the Bogoliubov transformation we can find a
final fermion basis Γεk = (γεk↑, γε,−k↓)T , describing the
quasi-particle excitations in the superconducting state:

H =
∑

εkτ

Ēεkτ γ†
εkτγεkτ + const. (6)
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with

Ēεkτ =
Eεk↑ − Eε,−k+qε↓

2
(7)

+ τ

√(
Eεk↑ + Eε,−k+qε↓

2

)2

+ |Δεk|2

where τ = ±. The free energy is given by:

Ωε(qε, Δε) = −kT
∑

kτ

ln
(
1 + exp(−βĒεkτ )

)
(8)

+
∑

k

(
Eεk↓ − γ|Δεk|2

Vε

)
,

where Vε is the interaction intensity in band ε (γ = 1 for
s-wave and γ = 2 for s±-wave symmetry). The ground
state in band for fixed h and T is found by minimizing
the free energy w.r.t. the OPs and momentum qε.

The effective description of the superconducting state
is relatively simple, as a two-band model with gaps Δεk

and normal-state dispersion Eεkσ . We can see the ad-
vantages of this method when we rewrite equation (5) in
original fermion basis Ckσ . The transformation from the
orbital-basis Ckσ to the band-basis Dkσ is given by:

Dkσ = PkCkσ (9)

where Pk is the transformation matrix:

Pk =
1√

1 + ζ2
k

×
(

1 ζk

−ζk 1

)
, (10)

ζk =
T 12

k

(T 11
k − T 22

k ) /2 +
√

(T 11
k − T 22

k )2 /4 + (T 12
k )2

.

(11)

In the original basis (Ckσ) the Hamiltonian (5) can be
rewritten as:

HSC =
∑

αβεk

(
Δαβ

εk c†αk↑c
†
β,−k+qε↓ + H.c.

)
, (12)

where Δ11
εk and Δ22

εk are the intra-orbital OPs while Δ12
εk

and Δ21
εk are the inter-orbital OPs:

Δ11
εk =

Δ+,kδε,+ + Δ−,kζkζ−k+qεδε,−
√

1 + ζ2
k

√
1 + ζ2

−k+qε

, (13)

Δ12
εk =

Δ+,kζ−k+qεδε,+ − Δ−,kζkδε,−
√

1 + ζ2
k

√
1 + ζ2

−k+qε

, (14)

Δ21
εk =

Δ+,kζkδε,+ − Δ−,kζ−k+qεδε,−
√

1 + ζ2
k

√
1 + ζ2

−k+qε

, (15)

Δ22
εk =

Δ+,kζkζ−k+qεδε,+ + Δ−,kδε,−
√

1 + ζ2
k

√
1 + ζ2

−k+qε

, (16)

while in real space it can be written as:

HSC =
∑

ijαβ

(
Δαβ

ij c†αi↑c
†
βj↓ + H.c.

)
(17)

where

Δαβ
ij =

1
N

∑

εk

Δαβ
εk exp(−ikRi) exp(−i(−k + qε)Rj).

(18)
In the Dkσ basis we have formally a two band system
with two independent bands ε = ±. However the effective
description (by H ′

0 + H ′
SC) of the system, corresponds to

a full description (by H0+HSC) with interactions between
electrons with opposite spins on sites i (in orbital α) and
j (in orbital β) of the lattice (intra-orbital α = β and also
inter-orbital α �= β pairing in real space – Eqs. (13)−(16)).
The transformation given by equation 9 can be treated as
a mapping from the orbital basis Ckσ to the band basis
Dkσ in which the Hamiltonian is tridiagonal [72,73], which
is exactly diagonalized by the Bogoliubov transformation
to equation (6) [69].

3 Numerical results and discussion

Consistently with the calculations presented we formally
consider the two bands ε = ± as independent. In this
case, in each of these bands there may be another effective
pairing potential Vε, which allows for a different value of
the amplitude Δε and values of the critical parameters
(e.g. hCε) in each band. However, experimental results
show the OP in both bands to vanish at the same critical
temperature [30]. Accordingly we adopted V+ = −2.69|t1|
and V− = −7.7|t1| for s-wave and V+ = −0.605|t1| and
V− = −1.44|t1| for s±-wave. Then Δ+ = Δ− = 0.2|t1|
for s-wave and Δ+ = Δ− = 0.1|t1| for s±-wave for h =
0|t1| and kT = 10−4|t1|. All numerical computations were
carried out for a square lattice NX × NY = 1200 × 1200
with periodic boundary conditions.

3.1 h-T phase diagram and phase transition

The phase diagram h-T (Fig. 2) was determined mini-
mizing the free energy Ωε w.r.t. Δε and qε. With our
choice of parameters, the BCS phase disappears in both
bands at the same magnetic field hBCS

C+ (T ) � hBCS
C− (T ).

For both analyzed symmetries, we can see three phase
transitions: the transition from the BCS phase to the nor-
mal phase or the FFLO phase (in magnetic field hBCS

Cε )
and the transition from the FFLO phase to the nor-
mal state (in magnetic field hFFLO

Cε ). Additionally the
FFLO phase can occur below a characteristic tempera-
ture T ∗ � 0.48T BCS

C (h = 0). At hBCS
Cε and above T ∗ we

observe the second phase transition. Below T ∗ this tran-
sition from the BCS phase to the FFLO becomes first
order, but from FFLO phase to normal state it is still sec-
ond order. This is typical of the FFLO phase in one-band
systems in absence of orbital effects, and was shown in
a number of theoretical [7,8,17,75–80] and experimental
works [9–12,16,81,82]. Moreover, in FeSC more than one
phase transition can be experimentally observed in the
FFLO phase regime – at low temperature and high mag-
netic field (LTHM) [40,83,84], however there is a lack of
clear evidence on the order of these transitions.

http://www.epj.org
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Fig. 2. h-T phase diagram. Color intensity is proportional
to the amplitude |Δε|. The results are for s-wave and s±-wave
symmetry of the order parameter in each band.

In the LTHM regime we observe the FFLO phase in
bands ε = ± for s-wave symmetry (Fig. 2a), but only
in band ε = − for s±-wave (Fig. 2b). Since we formally
describe two independent bands, the phenomenological
Ginzburg-Landau theory applies to each, allowing to write
the free energy (for band ε with momentum qε) as a func-
tion of the amplitude of the OP Δε [6]:

δΩε = Ωε(qε, Δε) − Ωε(qε, 0)

� a1|Δε|2 + a2|Δε|4 + a3|Δε|6 + a4|Δε|8
+ O(|Δε|10), (19)

where the coefficients ai depend on the external magnetic
field h and temperature T . As we see in Figure 3 (Ωε for
s±-wave symmetry), ai also strongly depend on qε and
type of band. The profile of the free energy for the BCS
state (red lines) point to a first order transition near hBCS

C
for the both bands. On the other hand, the minimum en-
ergy landscape has a different character for states with
non-zero momentum qε. In the case of ε = + (Fig. 3a) the
global energy minimum Ω+ in a superconducting phase
is always attained by a BCS state (for q+ = 0 – red dot
in Fig. 4d). In the second case for band ε = − (Fig. 3b)
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Fig. 3. Free energy Ωε(qε, Δε)/N in case of s± symmetry,
for different qε = (qx, 0) growing from the right to the left of
the plot, near the critical magnetic field h � hBCS

C and kT =
10−4|t1|. Red line corresponds to the BCS state qε = (0, 0)
while the green line to the FFLO state with q− = ( 18π

500
, 0),

which is the ground state above hBCS
C in ε = −.

the function Ω− in an external magnetic field h > hBCS
C

for q− ∼ ( 20
500π, 0) (FFLO phase) has a typical form with

first order transition to the normal state (global minimum
shown by the blue dot in Fig. 4d). This case also occurs
in both bands for s-wave symmetry (Fig. 4c).

For the BCS state the phase diagram takes its typical
form for both symmetries. The initial slope of hBCS

C (T )
at TC is infinite and at temperature T ∗ we should ob-
serve a discontinuity of dhC/dT . This follows from the
fact that the upper magnetic critical field above T ∗ is
equal to hBCS

Cε (T ), while below T ∗ is equal to hFFLO
Cε (T ).

In the present model we found hFFLO
Cε � 1.22hBCS

Cε
(1.55hBCS

Cε ) for s (s±) symmetry at T → 0. It should
be noted that this result concerns the case of Cooper
pairs having a single momentum qε. The analysis for a
larger number of allowed Cooper pairs momenta can lead
to much higher values of Hc2 [3,20,85–88]. However, this
does not qualitatively affect the results presented.

3.2 Momentum of the Cooper pairs and order
parameter in real space

For s-wave symmetry, the Cooper pairs have greater mo-
mentum in band ε = + than in band ε = −. The re-
sults are consistent with previous data obtained using the
static Cooper pairs susceptibility [43]. This is due to the
construction of the bands in our model (Fig. 4a). The ex-
ternal magnetic field causes a narrower splitting of the
FS for wide bands, as band ε = + (ε = −) has width
δE+ ≈ 3|t1| (δE− ≈ 12|t1|). Thus, the critical magnetic
field splits the band ε = + more (Fig. 4b). Numerical
results indicate that the ground state corresponds to four
equivalent momenta ±(qε, 0) and ±(0, qε) [43]. This is also
observed in one-band systems [75].

At the critical magnetic field hBCS
C Cooper pairs dis-

continuously acquire a non-zero total momentum qε. In-
creasing the external magnetic field, the total momentum
|qε| in the FFLO phase also increases while the amplitude
Δε decreases (Figs. 4c and 4d), as reported also in the
one-band systems [75].

http://www.epj.org
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Fig. 4. (a) Density of states for μ = 1.54|t1| for the dis-
cussed minimal two-band model in absence of external mag-
netic field. (b) Splitting of the Fermi surface for electron with
spin ↑ and ↓ in band ε = + (red and orange line) and ε = −
(green and azure line) in presence of external magnetic field
h = 0.15|t1|. (c (resp. d)) Free energy difference δΩε between
the (superconducting) ground state and normal state in band
ε for given external magnetic field h and momentum of Cooper
pairs qε = (qx, 0), for s-wave (resp. s±-wave) symmetry. Red
and blue dots show the place of the global ground state for the
superconducting state.

Our proposed method to represent the FFLO phase in
multi-band systems is an extension of the original method
proposed by Linder and Sudbø in reference [89], used to
describe the BCS phase in FeSC. They show that in case
of the BCS phase (qε = 0), the inter-orbital pairing van-
ishes when Δ+ = Δ− and the OPs in both bands ε have
the same symmetry. This corresponds to a situation where
only the intra-orbital pairing with symmetry η(k) exists
in the system. It effectively describes interactions between
electrons on one (for s-wave symmetry) or two (for other
symmetries like s±, dx2−y2 , dx2y2 , etc.) sites of the lattice
in real space. Also for our choice of Vε, for both symme-
tries of the OP in the BCS state we have Δ+ = Δ−. It is
consistent with experimental data, in which the hole FS
and electron FS pocket gaps are the same [30,90]. How-
ever in general this is not required. When Δ+ �= Δ− a
non-zero inter-band OP arises, but smaller in amplitude
than the intra-band OP. The situation is more difficult
in the FFLO phase case, when q+ �= q− �= 0 and in both
bands ε the symmetry can be different, leading to Δαβ

ij �= 0
for any band and site of the lattice, and the appearance of
a non-zero inter-band OP (Eqs. (14) and (15)). Addition-
ally the FFLO phase in either band is sufficient to break
translational symmetry in real space.

For one band systems (or multi-band systems) with a
FFLO phase (in one selected band), in which the Cooper
pairs have one non-zero total momentum q, the OP has
constant amplitude in real space. The situation looks

different in the case of multi-band systems, when Cooper
pairs with different non-zero momenta q+ �= q− exist. As
we wrote, such systems can be described as a set of in-
dependent Bogoliubov bands ε (in basis Dkσ), in which
the Cooper pairs can have total momentum qε and corre-
sponding characteristic length scale ζε ∼ 1/|qε|. However,
in the original momentum space (with basis Ckσ), this
situation corresponds to different momenta of the Cooper
pairs for intra- and inter-band paring (Eqs. (13)−(16)),
and corresponding modulation amplitude of the OP in
real space (from the non-equal characteristic length ζ+ �=
ζ−.) These results are consistent with other theoreti-
cal works [91]. Numerical results obtained indicate that
states with s±-wave symmetry retain features of one-band
systems.

4 Summary

The existence of s± symmetry in FeSC can have a mea-
surable effect on the experimental results [48,49]. In the
Pauli limit it can be a stabilizing factor for unconven-
tional superconductivity with non-zero total momentum
of the Cooper pairs (the FFLO phase). We show that
compared to s-wave symmetry, in FeSC with s±-wave the
FFLO phase occurs for a wider range on the h-T phase
diagram. Moreover in absence of orbital effects we deter-
mine the order of phase transitions for states with Cooper
pairs with one momentum from the free energy – the tran-
sition from the BCS phase to the FFLO phase is always
first order, while it is second order from the FFLO phase
to the normal state. States with one non-zero momentum
of Cooper pairs are more stable in low temperature and
high magnetic field than states with multiple-momenta
in disordered systems [17]. However in absence of inhomo-
geneities, phases with linear combinations of Cooper pairs
with different momentum can strongly affect the shape of
the free energy and the order of the phase transitions [88].

In the considered model for s±-wave symmetry, at
low temperature and above the BCS critical magnetic
field, the FFLO phase occurs only in one band leading
to a phase with oscillating order parameter in real space
with constant amplitude. Whereas for s-wave symmetry
it is the preferred state in both bands, causing the order
parameter to display an additional oscillation amplitude
modulation. For this reason the FFLO phase in FeSC with
s±-wave symmetry has behavior analogous to one-band
systems. The presented results are consistent with other
theoretical works [91].

I am grateful to Dawid Crivelli for insightful discussions, com-
ments and help in preparing this paper.
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