
 

 

 

 

 

 

 

 

 

Molecular identification and chromosomal localization of new powdery mildew resistance 
gene Pm11 in oat 

 

 

Title: The Hyers theorem via the Markov-Kakutani fixed point theorem 
 

Author: Barbara Przebieracz 

 

Citation style: Przebieracz Barbara.(2012). The Hyers theorem via the 
Markov-Kakutani fixed point theorem. "Journal of Fixed Point Theory and 
Applications" (Vol. 12, iss. 1/2 (2012), s. 35-39), doi 10.1007/s11784-013-
0102-y 
 

https://link.springer.com/journal/11784
https://link.springer.com/journal/11784


The Hyers theorem via the
Markov–Kakutani fixed point theorem

Barbara Przebieracz

To Professor Bogdan Bojarski

Abstract. We present an application of the Markov–Kakutani common
fixed point theorem to the theory of stability of functional equation
by proving some version of the Hyers theorem concerning approximate
homomorphisms.
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1. Introduction

One of the most celebrated results of the theory of common fixed points is a
theorem proved independently by Markov [8] and Kakutani [7] (see also [9]
and [10]).

Theorem 1.1 (Markov–Kakutani fixed point theorem). Let Y be a linear
topological space and let K ⊂ Y be a nonempty convex compact subset of Y .
Let F be a family of affine continuous self-mappings of K such that F ◦G =
G ◦ F for F,G ∈ F . Then there is a common fixed point y ∈ K of family F ,
i.e., F (y) = y, for every F ∈ F .

The theorem of Hyers [5] was a partial answer to the problem posed
by Ulam (see [12] and [13]): does there exist for an approximate homomor-
phism ϕ a homomorphism which approximates ϕ? The result of Hyers ini-
tiated the works of many authors on the stability of functional equations
(see [6]); it suffices to mention that his paper was cited several hundred
times. The method used in [5], called the direct method or the Hyers se-
quences method, was applied in many papers; see the comments in [3]. The
second basic approach to the stability of Cauchy functional equation involves
the technic of invariant means and was introduced by Székelyhidi [11]. Let
us mention also the paper [1] in which the authors noticed the relationship
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between Hyers sequences and the sequence of iterates of Lipschitz operator,
therefore they proved the Hyers theorem via some generalization of the Ba-
nach contraction principle. Here we use the Markov–Kakutani fixed point
theorem to prove the following.

Theorem 1.2 (Hyers’ theorem). Let (S,+) be an abelian semigroup, ε ≥ 0
and ϕ : S → K, where K ∈ {R,C}. Assume that

|ϕ(x+ y)− ϕ(x)− ϕ(y)| ≤ ε, x, y ∈ S.

Then there exists an additive function a : S → K such that

|a(s)− ϕ(s)| ≤ ε, s ∈ S.

The original Hyers theorem involves approximate homomorphisms be-
tween two normed spaces (codomain complete). However, taking into account
the result of Gajda [4], it is sufficient to restrict ourselves to real or complex
functions.

2. Preliminaries

In this section we recall some results from functional analysis (see [2]) and
prove two lemmas.

For an arbitrary set E let X = �1(E) be the space of all summable
functions defined on E with values in K (that is, the functions f : E → K

such that the set E0 := {s ∈ E : f(s) �= 0} is at most countable and the
series

∑
s∈E |f(s)| := ∑

s∈E0
|f(s)| is convergent), endowed with the norm

‖f‖1 =
∑

s∈E

|f(s)|.

By �∞(E) we denote the space of all bounded functions defined on E with
values in K endowed with supremum norm; that is,

‖f‖∞ = sup
s∈E

|f(s)|.

For every h ∈ �∞(E) and f ∈ �1(E) we have fh ∈ �1(E). Moreover,
λh : �1(E) → K, defined by λh(f) =

∑
s∈E f(s)h(s), is a continuous lin-

ear functional on �1(E), i.e., λh ∈ �1(E)∗. We have also ‖h‖∞ = ‖λh‖∗ :=
sup‖f‖1=1 |λh(f)|. Conversely, for every λ ∈ �1(E)∗ there is exactly one

h ∈ �∞(E) such that λ = λh. The mapping

�∞(E) 
 h �→ λh ∈ �1(E)∗

is an isometric isomorphism, therefore we can identify the space �∞(E) with
the space �1(E)∗ and consider the space �∞(E) with the weak* topology;
that is, the weakest topology in which the mappings �1(E)∗ 
 λ �→ λ(f) ∈ K,
f ∈ �1(E), are continuous. To shorten the notation we will write Y = �∞(E)
and X = �1(E).
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Lemma 2.1. Let x ∈ E, where (E,+) is an abelian semigroup. The map
G : Y → Y (Y = X∗ is considered with the weak* topology) given by G(f) =
f(x+ ·) is continuous.

Proof. Let (fα) be a net in Y convergent to f ∈ Y . Fix an arbitrary u ∈ X.
In the set E we consider an equivalence relation ∼ given by s ∼ t if and only
if x + s = x + t. Let [S]∼ = {Si, i ∈ I} be the set of all equivalence classes.
Let us choose an si ∈ Si, i ∈ I. Define v(t) :=

∑
s∈Si

u(s) if t = x + si,

for some i ∈ I, and v(t) := 0 if t �= x + si for every i ∈ I. It is easy to
observe that v ∈ X. We assume that the net (fα) is convergent to f , which
gives λfα(v) → λf (v). After some elementary calculations (using the form of
functionals in X∗), we get

∑

s∈S

G(fα)(s)u(s) →
∑

s∈S

G(f)(s)u(s).

Since u ∈ X is arbitrary, we proved that λG(fα) → λG(f) in the weak*
topology. Hence (G(fα)) tends to G(f), which ends the proof. �

Lemma 2.2. Let x ∈ E. The map G : Y → Y given by G(f) = f(x) is
continuous (with respect to the weak* topology in Y ).

Proof. Assume that a net (fα) is convergent to f with respect to the weak*
topology. In fact, this means that the net (λfα) converges weakly* to λf

which easily yields that (fα) is pointwise convergent to f , in particular, the
net (fα(x)) converges to f(x) in K. Hence we may infer that the net (G(fα))
is weakly* convergent to G(f) in Y . �

3. Proof of Theorem 1.2

Let (S,+) be an abelian semigroup, ε ≥ 0 and ϕ : S → K, where K ∈ {R,C}.
Assume that

|ϕ(x+ y)− ϕ(x)− ϕ(y)| ≤ ε, x, y ∈ S. (3.1)

Denote by Y the space �∞(S). Since Y = X∗, where X = �1(S), we can con-
sider Y with the weak* topology. With this topology Y is a linear topological
space.

For every x ∈ S we define a map Tx : Y → Y by the formula

Tx(f) := f(x+ ·) + ϕ(x+ ·)− f(x)− ϕ(x)− ϕ(·).
(We see that Tx(f) ∈ Y , since f ∈ Y and (3.1) holds.) Moreover, Tx are
affine, that is,

Tx(tf + (1− t)g) = t Tx(f) + (1− t)Tx(g), f, g ∈ Y, t ∈ [0, 1].
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Notice also that for x, y, z ∈ S and f ∈ Y we have

Tx(Ty(f))(z)

= Ty(f)(x+ z) + ϕ(x+ z)− Ty(f)(x)− ϕ(x)− ϕ(z)

= (f(y + x+ z) + ϕ(y + x+ z)− f(y)− ϕ(y)− ϕ(x+ z)) + ϕ(x+ z)

− (f(y + x) + ϕ(y + x)− f(y)− ϕ(y)− ϕ(x))− ϕ(x)− ϕ(z)

= f(y + x+ z) + ϕ(y + x+ z)− f(y + x)− ϕ(y + x)− ϕ(z),

which means that

Tx ◦ Ty = Ty+x, x, y ∈ S. (3.2)

Moreover, for every x ∈ S the map Tx : Y → Y is continuous with
respect to the weak* topology, since it is the sum of the mappings Y 
 f �→
f(x) ∈ Y , Y 
 f �→ f(x+ ·) ∈ Y , which are continuous (see Lemmas 2.1 and
2.2), and Y 
 f �→ (ϕ(x+ ·)− ϕ(x)− ϕ(·)) ∈ Y which is constant.

Now let us define the set

C := {f ∈ Y : ‖f‖∞ ≤ ε, ‖Tx(f)‖∞ ≤ ε, x ∈ S}.
Observe that 0 ∈ C, hence C is nonempty (cf. (3.1)). Moreover, C is convex.
Indeed, assume that f, g ∈ C and t ∈ [0, 1]. Then

‖tf + (1− t)g‖∞ ≤ t‖f‖∞ + (1− t)‖g‖∞ ≤ tε+ (1− t)ε = ε.

Similarly, since Tx are affine, we get

‖Tx(tf + (1− t)g)‖∞ = ‖tTx(f) + (1− t)Tx(g)‖∞
≤ t‖Tx(f)‖∞ + (1− t)‖Tx(g)‖∞
≤ tε+ (1− t)ε = ε.

Observe also that C is invariant under every Tx: fix x ∈ S and f ∈ C, then
‖Tx(f)‖∞ ≤ ε and ‖Ty(Tx(f))‖∞ = ‖Tx+yf‖∞ ≤ ε, y ∈ S (cf. (3.2)), hence
Tx(C) ⊂ C.

Let K be the weak* closure of the set C. Then K is nonempty, convex
(since C is nonempty and convex), Tx(K) ⊂ K, for every x ∈ S (since C
is invariant and Tx are continuous); moreover, K is compact, as a closed
subset of Bε := {f ∈ Y : ‖f‖∞ ≤ ε}, which is weak*-compact according
to the Banach–Alaoglu theorem. We have shown that all the assumptions of
Markov–Kakutani fixed point theorem are satisfied (with F := {Tx : x ∈ S}).
Thereby there exists an f ∈ K such that Tx(f) = f for every x ∈ S. This
means that

f(x+ y) + ϕ(x+ y)− f(x)− ϕ(x)− ϕ(y) = f(y), x, y ∈ S.

Put a := f + ϕ. It is easily seen that a : S → K is additive and ‖a− ϕ‖∞ =
‖f‖∞ ≤ ε, since f ∈ K ⊂ Bε. The proof is finished.
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