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Tomasz Po�lacik A Semantic Approach
to Conservativity

Abstract. The aim of this paper is to describe from a semantic perspective the problem

of conservativity of classical first-order theories over their intuitionistic counterparts. In

particular, we describe a class of formulae for which such conservativity results can be

proven in case of any intuitionistic theory T which is complete with respect to a class of

T-normal Kripke models. We also prove conservativity results for intuitionistic theories

which are closed under the Friedman translation and complete with respect to a class

of conversely well-founded Kripke models. The results can be applied to a wide class

of intuitionistic theories and can be viewed as generalization of the results obtained by

syntactic methods.

Keywords: Classical and intuitionistic first order theories, Conservativity, Kripke models.

1. Introduction

Let Γ be a class of formulae of some first-order language. We say that a clas-
sical theory is conservative over its intuitionistic counter-part with respect
to Γ if both theories prove exactly the same formulae of this class. A typ-
ical example of a conservativity result states that Peano Arithmetic (PA)
is Π2-conservative over Heyting Arithmetic (HA). It can be proven in sev-
eral ways. For example, the so-called (Gödel-Gentzen) negative translation
together with the Gödel functional interpretation of HA or proof theoretic
analysis of HA can be used. This fact can be also proven by means of the
negative translation and the so-called Friedman translation. This approach
can be applied also to other theories including set theory. More recently,
new methods for proving conservativity were developed by T. Coquand and
M. Hofmann in [5] and J. Avigad in [2]. A generalization of conservativ-
ity theorem for PA and extensions of HA by adding restricted versions of
the Law of Excluded Middle was considered in [3]. All of the above papers
present a syntactic approach.

The aim of this paper is to describe conservativity of classical first-order
theories over their intuitionistic counterparts from a semantic perspective.
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In particular, we consider properties of a class of Kripke models for a given
intuitionistic theory that are sufficient to prove conservativity results. We
also describe a class of formulae for which such results can be proven. The
paper provides applications of main results.

2. Preliminaries

Let L be a fixed first-order language with logical symbols ⊥, ∧, ∨, → and
quantifiers ∀ and ∃. We consider a set T of sentences of L viewed as a set
of axioms. Then T gives rise to a classical theory T c, when closed under
consequences of classical logic, or an intuitionistic theory T i, when closed
under consequences of intuitionistic logic. Formally, the theories T c and T i

are defined as Tc = {A : T �c A} and Ti = {A : T �i A}, where �c and �i

are classical and intuitionistic consequence relations respectively. Sometimes
we will write also T c � A and T i � A instead of T �c A and T �i A. Let us
note that we say that a formula A is decidable in an intuitionistic theory T i

if T i � A ∨ ¬A.
As it was mentioned, in proving conservativity results, the syntactic

translations play an important role. The negative translation assigns to each
formula A the formula A− in such a way that for subformulae B and C of
A, we have B− = ¬¬B when B is atomic, (B ∨ C)− = ¬(¬B− ∧ ¬C−)
and (∃xB)− = ¬∀x¬B−; the negative translation commutes with conjunc-
tion, implication and universal quantifier. Obviously, in classical logic, A−

is equivalent to A for all formulae A. It is known that a sentence A is
classically provable from T then its negative translation A− is also intu-
itionistically provable from the set of negative translations of the formulae
from T. The Friedman translation was introduced in [7] to study conserva-
tivity of arithmetic and set theory. Let us recall that, for a fixed formula F ,
the F -Friedman translation is defined as follows: to any formula A (where no
free variable of F is quantified in A, otherwise we rename the free variables
of F ), we assign the formula AF obtained from A by replacing each atomic
subformula B of A with B∨F . In classical logic, AF is equivalent to A∨F for
all formulae A and F . The main feature of the Friedman translation states
that if a formula is intuitionistically derivable from T then its F -translation
AF is also intuitionistically derivable from the set TF of F -translations of
the formulae of T. We say that an intuitionistic theory T i is closed under
the given translation, if T i proves the translations of all its axioms. In [7]
H. Friedman used a combination of the two translations to prove that PA
is Π2-conservative over HA. Here we rephrase this result in the following
generalized form.



A Semantic Approach to Conservativity 237

Theorem 2.1. Let T i be an intuitionistic theory closed under the Friedman
and the negative translation and such that all atomic formulae are decidable
in T i. Then T c is ∀∃-conservative over T i.

The proof of Theorem 2.1 consists of two parts. First, we apply the neg-
ative translation to interpret T c within T i. Then, we use the Friedman
translation to restore the previous constructive meaning of the formulae
translated in the first step.

Let us observe that application of the negative translation affects the
meaning of the translated formula since all disjunctions and existential [4]
quantifiers are eliminated according to De Morgan’s Laws. In particular, the
translation of an axiom of a theory T i need not be provable in T i anymore.
For example, in the fragment iΣ1 of intuitionistic arithmetic in which the
induction schema is restricted to Σ1-formulae only, the negative translation
of an Σ1-induction axiom is not provable in iΣ1. Notice also that, in general,
the Friedman translation increases the complexity of translated formulae.
So, subtheories of intuitionistic arithmetic, such as iΔ0 are not closed under
the Friedman translation. Thus the method of proving conservativity by
means of the negative and Friedman translations cannot be applied in such
cases.

In this paper we focus on Kripke semantics for intuitionistic first-order
theories. In the context of conservativity, this choice seems to be natural,
since in this case we can observe an interplay between intuitionistic and
classical theories, and interplay between their models.

Now we recall basic notions and facts concerning Kripke models which
will be needed in the sequel. By a Kripke model M for the language L we
mean a tuple

M = (W,≤, {Mw : w ∈ W})

where W is a non-empty set of nodes partially ordered by ≤, and for every w,
Mw is a classical first-order structure for L called a world of the model M.
We assume that if w ≤ v then Mw is a weak substructure of Mv, i.e. the
domain Mw of the structure Mw is a subset of the domain Mv of Mv and
for all atomic formulae P (x1, . . . , xn) and all a1, . . . , an ∈ Mw,

if Mw |= P (a1, . . . , an) then Mv |= P (a1, . . . , an).

The pair (W,≤) is called the frame of the model M.
The intuitionistic forcing relation � in the model M is defined in terms of

the classical satisfaction relation |= considered locally for the worlds. More
precisely, for a formula A(a), with parameters a = a1, . . . , an from the world
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Mw, forcing of A(a) at the node w of the Kripke model M is defined in the
following way.

The constant falsum is not forced at any node

• (M, w) � ⊥.

If A(a) is an atomic formula, then

• (M, w) � A(a) iff Mw |= A(a).

Then forcing is extended inductively to all formulae in the following way
(for better readability, we omit unnecessary occurrences of variables and
parameters):

• (M, w) � A ∧ B iff (M, w) � A and (M, w) � B

• (M, w) � A ∨ B iff (M, w) � A or (M, w) � B

• (M, w) � A → B iff for all v ≥ w we have (M, v) � A or (M, v) � B

• (M, w) � ∃xA(x) iff there is a ∈ Mw such that (M, w) � A(a)

• (M, w) � ∀xA(x) iff for every v ≥ w and for every a ∈ Mv we have
(M, v) � A(a).

The forcing is monotone with respect to all formulae, i.e. if (M, w) � A and
w ≤ v then (M, v) � A.

As usual, we say that a formula A(x̄) is valid in M, which is denoted by
M � A(x̄), if (M, w) � A(ā) for any node w and any tuple of parameters
ā from Mw. If the context is clear and the model M is fixed, we will write
simply w � A instead of (M, w) � A.

Let us note that, in general, the relation between classical and intuition-
istic validity in a Kripke model M cannot be easily described. In particular,
the classical validity of a formula A at a world Mw coincides with intu-
itionistic forcing of A at the corresponding node w in the model M only
for formulae built up from atoms, conjunction, disjunction and existential
quantifier. Moreover, there is no straightforward correlation between the
(intuitionistic) theory of the Kripke model and the (classical) theories of its
worlds.

3. The Idea

In order to prove classically that a theory T c is Γ-conservative over its
intuitionistic counterpart T i, we may show that any formula from Γ which
is not derivable intuitionistically in T i is also not derivable classically in T c.
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From semantic point of view it means that if there is a model of T i which is
a counter-model of A, the we can find a model of T c, the classical counterpart
of T i, which is a counter-model of A. Our idea is to use Kripke semantics for
intuitionistic first order logic, and look for a suitable classical counter-model
of A among the worlds of a Kripke model which refutes A.

More precisely, assume that A ∈ Γ and T i
� A. So, by the strong com-

pleteness theorem for Kripke semantics, we can find a Kripke model M of
T i such that M refutes A. Thus, since M � A, we can find a node w of M,
such that w � A. In general, the world Mw corresponding to the node w
in M need not be a counter-model for A nor a model of T c. However, it is
enough to find some node u such that Mu �|= A and Mu |= T c, for the world
Mu corresponding to u in M. We show that under suitable assumptions
concerning models of the theory T i (and some assumptions on T i itself)
this can be done.

The first case we consider in this paper is that when all the worlds of the
model M in question are classical models of the theory T c. In this case, the
model in question is called T c-normal, see [4], and [6] where this notion was
implicitly introduced for the first time.

But even if we do not know whether a Kripke model M of a theory
T i is T c-normal, we can sometimes prove that it contains a world which
is a model of the theory T c. We can show it using the method of pruning
introduced by D. van Dalen, H. Mulder, E.C.W. Krabbe and A. Visser in [6].
Essentially, Kripke models of intuitionistic theories which are closed under
the Friedman translation admit pruning.

In the following two sections we present details concerning both of the
methods sketched above.

4. Conservativity and T c-Normal Kripke Models

In this section we focus on T c-normal Kripke models and intuitionistic theo-
ries which are complete with respect to a class of T c-normal Kripke models.
We begin with recalling the following definition from [4].

Definition 4.1. Let T be a set of first-order sentences. A Kripke model
M = (W,≤, {Mw : w ∈ W}) is called T c-normal if for every w ∈ W ,
we have Mw |= T c, i.e. each world Mw of M is a model of the classical
theory T c.

Let us note that not every T c-normal Kripke model is a model of the
intuitionistic theory T i. Also, a Kripke model of a theory T i need not be
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T c-normal. We say that an intuitionistic theory T i is complete with respect
to the class of T c-normal models iff whenever a sentence A is true in every
T c-normal model then A is provable in T i.

Now we introduce a class of formulae which will be used in the sequel.

Definition 4.2. We say that a formula A is forcing-stable (f-stable for
short) in a theory T i iff for every Kripke model M of T i and every node w
in M we have

if w � A then Mw |= A.

A formula A is stable in a theory T i iff for every Kripke model M of T i and
every node w in M we have

w � A iff Mw |= A.

It is well-known that the class of formulae which are stable in IQC co-
incides with the set of positive formulae, i.e. the formulae built up from
atoms, by means of disjunction, conjunction and existential quantification
only, see [9]. Here we need a more general class of formulae possibly extend-
ing the class of positive formulae.

Definition 4.3. Let P(T i) be the smallest class such that P(T i) contains
all atomic formulae, all formulae which are decidable in T i and P(T i) is
closed under disjunctions, conjunctions and existential quantification.

Let us note the following fact.

Proposition 4.4. For every theory T i, if A ∈ P(T i) then A is stable.

Proof. An induction on the complexity of a formula.

Recall that a formula A is called semi-positive if each subformula of A of
the form B → C has B atomic. Note that the class of semi-positive formulae
is exactly the class of formulae which are preserved under taking submodels
of Kripke models resulting in restricting the frame of a given model, see [12].
Of course, classically every first-order formula is equivalent to a semi-positive
formula. Note that the semi-positive formulae are f-stable in any theory T i.
Also it is easy to see that if T i is an intuitionistic theory in which all atomic
formulae are decidable then every prenex formula is forcing-stable in T i.

We define a class of formulae which generalizes the class of semi-positive
formulae and show that it is contained in the class of f-stable formulae in
a theory T i.

Definition 4.5. Let T i be an intuitionistic theory. The class G(T i) of gen-
eralized semi-positive formulae in T i is the least class of formulae such that
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(i) ⊥ ∈ G(T i),

(ii) P(T i) ⊆ G(T i),

(iii) if B,C ∈ G(T i) then B ∧ C,B ∨ C,∃xB,∀xB ∈ G(T i),

(iv) if B ∈ P(T i) and C ∈ G(T i), then B → C ∈ G(T i).

In particular, if in T i all atomic formulae are decidable, then every for-
mula of the form ∃xA, where A is a quantifier-free formula, belongs to P(T i).
In consequence, all prenex formulae are members of G(T i).

We will show that the class of generalized semi-positive formulae has the
desired property.

Proposition 4.6. For every intuitionistic theory T i, every generalized semi-
positive formula in T i is forcing-stable in T i.

Proof. Let T i be an intuitionistic theory. It is clear that ⊥ and every
formula from P(T i) is f-stable. Moreover, it is easy to see that the class of
f-stable formulae is closed under disjunction, conjunction and quantification.
So, only the condition (iv) is to be checked.

Let us fix a model M and a node w of M and consider a formula A → B
where A ∈ P(T i) and B ∈ G(T i). First, assume that B �=⊥ and w � A → B.
Then, in particular, w � A or w � B. In the former case, Mw �|= A since
A∈P(T i). In the latter case, by inductive hypothesis for B, we have Mw |=B,
and consequently Mw |= A → B. Assume that B = ⊥, so A → B is
equivalent to ¬A. Since A is stable, whenever w � A then Mw �|= A. Hence,
in particular, if w � ¬A then Mw |= ¬A.

Let us note the following direct consequence of Proposition 4.6.

Corollary 4.7. If T is a set of semi-positive sentences, then every Kripke
model of T i is T c-normal. In particular, T i is complete with respect to a class
of T c-normal Kripke models.

We will need the following fact.

Lemma 4.8. Assume that T i is an intuitionistic theory and M is a Kripke
model such that M � T i. Then, for every formula D(x̄, y) ∈ P(T i) and for
every world w of M, the following conditions are equivalent

(i) w � ∀yD(ā, y)

(ii) Mv |= ∀yD(ā, y) for all v ≥ w,

where ā are parameters from Mw.
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Proof. The condition (i) implies (ii) by Proposition 4.4 and properties
of forcing. For the converse implication, assume that w � ∀yD(ā, y). This
happens if and only if there is v ≥ w such that v � D(ā, b) for some element
b of Mv. Since D ∈ P(T i), we get Mv �|= D(ā, b) and, consequently, Mv �|=
∀y∃zD(ā, y).

Let us define a class of formulae.

Definition 4.9. For a given theory T i we define

A(T i) = {∀x̄(
C(x̄) → ∀yD(x̄, y)

)
: C ∈ G(T i) and D ∈ P(T i)}.

We can prove the main result of this section.

Theorem 4.10. Assume that T i is complete with respect to a class of T c-
normal Kripke models. Then T c is conservative over T i with respect to the
class A(T i).

Proof. Let us fix a theory T i as above, and a formula C(x̄) → ∀yD(x̄, y),
where C ∈ G(T i) and D ∈ P(T i). Assume that T i

� C(x̄) → ∀yD(x̄, y).
Then we can find a T c-normal Kripke model M and a node w of M such
that

w � C(ā) (1)
and

w � ∀yD(ā, y), (2)
for some sequence ā of elements of Mw. From (2), by Lemma 4.8, there is
v ≥ w such that

Mv �|= ∀yD(ā, y).
On the other hand, (1) implies that v � C(ā) and hence, since C is forcing-
stable, we get

Mv |= C(ā).
Hence

Mv �|= C(x̄) → ∀yD(x̄, y).
Finally, Mv |= T c since M is T c-normal, and so we have a desired counter-
model for the formula in question. Thus, by completeness theorem for T c,
we get T c

� ∀x̄(
C(x̄) → ∀yD(x̄, y)

)
.

We can state the following direct consequences of Theorem 4.10. Note
that Corollary 4.11 and Corollary 4.12 hold for IQC and all theories that are
axiomatized by a set of generalized semi-positive axioms.

Corollary 4.11. Let the theory T i be complete with respect to a class of
T c-normal Kripke models. Then T c is conservative over T i with respect to
the class {∀xA : A ∈ P(T i)}.
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It is known that, although HA is not sound with respect to the class of
PA-normal Kripke models, HA is complete with respect to it. This fact fol-
lows from the properties of axiomatization of the class of T c-normal Kripke
models and was proven in [4]. For details, see also [13]. Now, since in HA all
atomic formulae are decidable, P(HA) is exactly the set of Σ1 formulae of
the language of arithmetic. Hence Π2-conservativity of PA over HA follows.

We can also consider fragments of arithmetic that are not closed under
syntactic translations. Recall that iΔ0 is the fragment of HA in which in-
duction is restricted to bounded formulae only. By a direct verification we
can check that M � iΔ0 iff M is IΔ0-normal, for every Kripke model M.
So, in particular, iΔ0 is complete with respect to IΔ0-normal models, where
IΔ0 is the classical counterpart of iΔ0. Since atomic formulae are decidable
in iΔ0, we get Π2 conservativity of IΔ0 over iΔ0.

Corollary 4.12. Let the theory T i be complete with respect to a class of
T c-normal Kripke models. Then T c is conservative over T i with respect to
the class {¬A : A ∈ G(T i)}.

Note that the class {∀xA : A ∈ P(T i)} which occurs in Corollary 4.11 can
be slightly enlarged by all intuitionistic consequences of formulae classically
equivalent to positive ones. The reason is that we only need to know that
A is forced at the node w whenever A is satisfied in some world Mw. The
negations of generalized semi-positive formulae that occur in Corollary 4.12
have also this property.

5. Conservativity and Pruning

The technique of pruning was introduced in [6] to prove that all finite models
of HA are PA-normal. We recall here from this paper the definition of pruning
and the most important fact.

Definition 5.1. Let M = (W,≤, {Mw : w ∈ W}) be a Kripke model and
let w ∈ W . Assume that F is a sentence, possible with parameters from Mw,
such that (M, w) � F . We define the Kripke model

MF = (WF ,≤F , {Mv : v ∈ WF })

such that WF = {v ∈ W : v ≥ w and (M, v) � F} and ≤F is the restriction
of ≤ to the set WF . The forcing relation of the model MF is denoted by
�F .

The key result concerning the method of pruning is the following.
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Lemma 5.2. (First Pruning Lemma) Let M be a Kripke model and w be
a node of M such that (M, w) � F for some sentence F with parameters
from Mw. Then

(M, w) � AF iff (MF , w) �F A,

for every A.

Let us state other properties of the Friedman translation which will be
used in the sequel.

Lemma 5.3. Let us fix a formula F . Then, for every formula A,

(1) �i F → AF ,

(2) if A is atomic or decidable in T then T �i (∃xA)F ↔ (∃xA ∨ F ),

(3) if T �i A then TF �i AF , where TF = {BF : B ∈ T}.

As a consequence of the above we get that if an intuitionistic theory T i

is closed under the F -Friedman translation then, whenever T i � A, we have
also T i � AF for every formula A.

Definition 5.4. A formula is called positive quantifier-free if it is built from
atoms by means of disjunctions and conjunctions only. Formula of the form
∀x∃yA, where A is a positive formula is called a positive ∀∃-formula.

We note the following variant of Friedman’s lemma.

Lemma 5.5. Consider a theory T i. Let a formula A be positive or decidable
in T i. Then

T i � ∃xA∃xA → ∃xA.
Moreover, if additionally the theory T i satisfies the formula

CD = ∀x(C(x) ∨ D) → (∀xC(x) ∨ D),

where the variable x is not free in D, then for any sequence of quantifiers Qi

T i � Q1x1 . . . QnxnA
Q1x1...QnxnA → Q1x1 . . . QnxnA.

Proof. It is easy to check, by the complexity of the formula A, that for
any formula A satisfying each of the assumptions of the theorem and for
any formula F we have

T � AF ↔ (A ∨ F ). (3)
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Now let us consider the formula Qnxn . . . Q1x1A, where Qi are alternating
quantifiers and put

F = Qnxn . . . Q1x1A(x1, . . . , xn).

Assume that

T i � (Qnxn . . . Q1x1A(x̄))F .

Then, by (3)

T i � Qnxn . . . Q1x1

(
A(x̄) ∨ F

)
.

Whence we get

T i � Qnxn . . . Q2x2

(
Q1x1A(x̄) ∨ F

)
,

by IQC when Q1 = ∃, and by CD when Q1 = ∀. Finally, after n steps, we
get

T i � Qnxn . . . Q1x1A(x̄) ∨ Qnxn . . . Q1x1A(x̄),

and consequently, T i � Qnxn . . . Q1x1A(x̄).

The next results presented in this section concern theories that are closed
under the Friedman translation.

Recall that P(T i) is the smallest class that contains all atomic formulae,
all formulae which are decidable in T i and P(T i) is closed under disjunc-
tions, conjunctions and existential quantification.

Theorem 5.6. Assume that the theory T i is closed under the Friedman
translation and complete with respect to a class of conversely well-founded
Kripke models. Then T c is conservative over T i with respect to the class of
formulae of the form ∀x∃yA where A belongs to P(T i).

Proof. Let A be a formula as in the assumption of the Theorem and such
that T i �� ∀x∃yA. Then we find a conversely well-founded Kripke model M
of T i such that M � ∀x∃yA. In particular, there is a node w of M and
an element a ∈ Mw such that

(M, w) � ∃yA(a, y).

By Lemma 5.5,

(M, w) � ∃yA(a, y)∃yA(a,y).

We prune the model M with respect to the formula F := ∃yA(a, y). By the
Pruning Lemma, in the pruned model MF we have

(MF , w) �
F ∃yA(a, y).
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Since the model M is conversely well-founded, there is a maximum world
v ≥ w in MF . We have

(MF , v) �
F ∃yA(a, y) and (MF , v) �F T i,

since T i is closed under the Friedman translation. Moreover, since v is a ter-
minal node in MF , we get

Mv �|= ∀x∃yA(x, y) and Mv |= T c

and hence, we get a desired counter-model. In particular,

T c �� ∀x∃yA(x, y),

as required.

Theorem 5.7. Assume that the theory T i is closed under the Friedman
translation and complete with respect to the class of conversely well-founded
Kripke models with constant domains. Then T c is conservative over T i with
respect to the class of prenex formulae with a positive formula as the matrix.

Proof. The proof goes along the lines of that of Theorem 5.6 but we refer
to the second part of Lemma 5.5.

Let us note that in Theorem 5.6 we do not assume that the theory in
question is closed under the negative translation. Instead, we need a semantic
property that the theory is complete with respect to a class of conversely
well-founded Kripke models.

6. Applications

In this section we provide applications of the results presented in this pa-
per to Constructive Zermelo Fraenkel set theory CZF. For the background,
axiomatization and properties of CZF see [8,10].

In general, constructing Kripke models for a particular intuitionistic the-
ory is a difficult task. In case of fragments of CZF, some constructions were
introduced in [8]. The results presented there involve conversely well-founded
and normal models.

The key result which enables us to describe models of CZF− (which is CZF
without Collection Axioms) can be rephrased in the following way (cf. [8,
Corollary 9]).

Let M = (W,≤, {Mw : w ∈ W}) be a Kripke model such that

(a) the frame (W,≤) of M has no infinite branches,
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(b) all the worlds Mw of M are transitive models of ZF,
(c) all atomic formulae are decidable in M.

Then M is a model of CZF− plus Bounded Strong Collection and Set-
bounded Subset Collection.

The result above allows us to define a very natural class of models of some
extension of CZF−. Let us denote by F the class of all Kripke models that
satisfy the above conditions. We define CZF F as the theory of the class F,
in other words,

CZF F :=
⋂

{Th(M) : M ∈ F}.
Of course, the theory CZF F contains CZF− and proves Bounded of Strong
Collection and Set-bounded Subset Collection. Moreover, any path in every
model of F is finite, therefore CZF F contains also formulae which are not
intuitionistically valid, for example the Principle of Double Negation Shift
(DNS), ∀x¬¬A → ¬¬∀xA.

Since the frames of the models of the class F have no infinite branches,
and all the worlds of the Kripke models M of F are models of ZF, we have
M � ¬¬A, for all M ∈ F and A such that ZF � A. It follows that every
theorem of ZF prefixed by double negation belongs to CZF F, and hence

(CZF F)c = ZF.

Obviously, CZF F is complete with the class of ZF-normal models, so it
satisfies the assumptions of Theorem 4.10. Hence we derive the following
fact.

Corollary 6.1. ZF is conservative over CZF F with respect to the formulae
of the form

∀x̄(C → ∀ȳ∃z̄D),

where C is a generalized semi-positive formula in CZFf and formula D is
quantifier-free.

Note also that CZF F is complete with respect to a class of conversely well-
founded Kripke models and it is closed under the Friedman translation, so
it satisfies also the assumptions of Theorems 5.6.

Finally, observe that CZF F depends on axioms which essentially involve
disjunctions and existential quantifiers and is not closed under the negative
translation. Thus, Corollary 6.1 cannot be proven by the syntactic methods
used in the proof of Theorem 2.1.
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