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Abstract The paper proposes a novel signature verifica-

tion concept. This new approach uses appropriate similarity

coefficients to evaluate the associations between the sig-

nature features. This association, called the new composed

feature, enables the calculation of a new form of similarity

between objects. The most important advantage of the

proposed solution is case-by-case matching of similarity

coefficients to a signature features, which can be utilized to

assess whether a given signature is genuine or forged. The

procedure, as described, has been repeated for each person

presented in a signatures database. In the verification stage,

a two-class classifier recognizes genuine and forged sig-

natures. In this paper, a broad range of classifiers are

evaluated. These classifiers all operate on features observed

and computed during the data preparation stage. The set of

signature composed features of a given person can be

reduced what decrease verification error. Such a phenom-

enon does not occur for the raw features. The approach

proposed was tested in a practical environment, with

handwritten signatures used as the objects to be compared.

The high level of signature recognition obtained confirms

that the proposed methodology is efficient and that it can be

adapted to accommodate as yet unknown features. The

approach proposed can be incorporated into biometric

systems.

Keywords Signature verification � Hotelling’s statistic �
Classification � Biometrics

1 Introduction

The main goal of writer-recognition is to determine whe-

ther two handwritten samples were produced by the same

person. However, signatures, even those belonging to the

same individual, will be different in size, pen pressure,

velocity, direction and in many other aspects. It is for this

reason that signature recognition has historically been

difficult. The number of features analyzed fundamentally

depends on the type of sensors the writing surface, or

tablet, utilizes. The features captured comprise a feature

set; any signature can be represented by a description of its

unique feature set members. The analysis of handwritten

documents is important in many domains including in

business, forensic casework and banking. Handwriting

does need to be considered on an individual basis as each

person has unique style of writing.

Depending on type of devices utilized, the source can be

processed either as a digital image or, when a signature is

collected using a specialized device (tablet) as a dynamic

feature set. However, not every technology captures sig-

nature information in the same way. Some systems have a

static approach, only capturing an image of the completed

signature and thus do not record the unique behavioral

elements associated with the production of a signature. The

capturing of dynamic features during signature production

allows for a more precise analysis of a nature of a signature

because additional features, such as velocity, pressure

points, strokes and accelerations, can be recorded, in

addition to the signature static characteristics [1]. This

technique is to be preferred because dynamic features are
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very difficult to imitate. Unfortunately, these systems

require both user-cooperation and complex hardware.

Signature features are very often grouped into global

and local. Global features describe an entire signature and

can determined by a discrete Wavelet or Hough transform,

horizontal and vertical projections, as well as through many

other approaches [2–8]. On the other hand, local features

refer to dynamic properties including the pen’s motion, its

slant, pressure, tremor and so on. It should be noted, also,

that in practice it is impossible to take all possible factors

into consideration.

Signature verification methods are also classified into on-

line or off-line, depending on whether it is the signature

dynamic or its static features that are extracted and analyzed.

These classifications are well known in the research com-

munity [1, 2, 4, 9]. Off-line signature verification is based

solely on a signature scanned or photographic image.

Research in this area predominantly focuses on image pro-

cessing techniques. On-line signature verification is based on

signatures time-domain characteristics and is an accepted

biometric technology. It should be noted that some dynamic

characteristic can be also be utilized in the role of static, off-

line characteristics: the x, y discrete coordinates of a signa-

ture form the shape of the signature for example.

The data acquisition phase has some inherent limita-

tions, including potential issues with a signature length. In

the case of signatures that are excessively long, the rec-

ognition system to may find it difficult to identify the

unique data points of a signature during the data analysis

phase, and both pre-processing and the recognition stage

may come to consume excessive time. On the other hand,

for signatures that are too short, the data set may not be

representative enough leading to an excessively high false

accept rate (FAR) coefficient (that is, an impostor could

become authorized by the system).

A second limitation is the environment itself and the

conditions under which a person produces their signature.

For example, two signatures taken from an individual may

differ substantially due to differences in the writer’s posi-

tion. The complexity of signatures is one of the greatest

problems faced in the design of credible classifiers that can

function reliably in an identification or verification mode.

The repeatability of signatures, even those of the same

person, displays large discrepancies. For example, a sig-

natory may utilize similar but different velocities, pen

pressures and accelerations for each signature. Additional

difficulties arise in relation to those either assuming

another person’s identity or concealing their own identity

through an attempt to imitate the other’s signature. One

way to identify people is through each individual biometric

characteristic. The production of signatures is part of

behavioral biometrics and is a widely accepted and often

readily collectable biometric characteristic.

Given these observations, it follows that signature rec-

ognition processes are difficult tasks but that recognition is

possible if features can be appropriately extracted. Rec-

ognition methods of handwritten signatures have been

studied extensively and developed over many years [1–4,

7, 9–12]. Unfortunately, a reliable comparison of the dif-

ferent approaches is difficult due to inconsistencies in the

standards applied in this field [13, 14]. In practice, different

databases are used, each holding a different number of

original and forged signatures. Datasets of biometric fea-

tures of signatures are most often composed of private

(thus unavailable) signatures as well as signatures sourced

from publicly available databases. It is a well-known fact

that recognition performance decreases when the number

of samples in a database of biometric features is increased

[14]. This can be seen upon the addition of even a small

number of additional database records. Unfortunately, such

an important remark has been ignored in many publications

[14]. We therefore postulate that any results presented

should be normalized. In the approach presented here, all

obtained results were based on the SVC 2004 (Signature

Verification Competition) database (http://www.cse.ust.hk/

svc2004). This allows us to compare our results with the

achievements of other researchers. It should be noted that

other signature databases are also available. For example,

the popular Spanish MCYT can be used [15]. All such

databases incorporate the same content objects: a range of

different genuine and forged signatures from a number of

unknown persons. Thus, it is sufficient that experiments are

conducted on any one of the biometric signature databases.

Another issue is that in many papers the results reported

use different evaluative coefficients (FAR, FRR, EER), they

focus on different factors (accuracy, sensitivity, specificity)

and the results are presented on different charts (ROC,

CMC). Unfortunately, any one of these parameters is usu-

ally treated as one single factor completely representing the

quality of the biometric system being described. Additional

difficulties arise from the fact that in many papers there is

no information about the origin of the forged signatures.

Forgery is a criminal act for the purpose of fraud or deceit:

for example, signing another person name to a check

without the payee’s permission or authorization. Forged

signatures can be of a random, simple or professional

character. Thus, the nature of the fraud is of great impor-

tance. More extensive descriptions of forged signatures are

reported in [16]. These issues described are all obstacles

precluding a perfect comparison of the results achieved. All

biometric systems try to minimize the inconveniences

mentioned above, so they use only the most essential ele-

ments with the greatest biometric influence.

Currently, there are many measures that can be used to

specify the extent of similarity between different objects

[13, 17–20], all of which are based on an analysis of the
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objects features. Unfortunately, the repeatability of a sig-

nature features is often low and, in extreme cases, even very

low [5, 13, 16]. For this reason, classical similarity mea-

sures applied directly to signature analysis often returns a

low signature recognition level. The selection and reduction

methods are well known and frequently used in practice for

the solution of various verification problems [12, 13, 18, 19,

21–23]. Dimensionality reduction has been studied widely

by researchers within many different scientific areas

including biology, medicine, computer vision and machine

learning [24–30]. A survey of various dimensionality

reduction methods is listed in the references [17, 31]. Tra-

ditional dimensionality reduction methods endeavor to

project the original data onto a latent, lower dimensional

space, while preserving the important properties of the

original data. Unfortunately, there can be no guarantee that

the distribution of a dataset one domain is similar in its

distribution(s) in a dimensionally reduced space: this is

especially so for complex biometric data [11, 21, 31]. The

multiple-parameter capture of handwritten signatures pro-

duces high-dimensional data and, currently, around 40

features can be either captured or computed [17]. Unfor-

tunately, some features have low discriminant value. Thus

we do need to utilize some sort of dimensionality reduction

algorithm as part of our biometric data reduction.

The algorithm presented in this work not only selects

which features of a signature to incorporate, but it also

identifies from the set of available measures the best simi-

larity measures that should be utilized. Thus it directly

minimizes signature verification error. However, the most

important feature of the approach proposed is its ability to

choose and utilize different signature features and different

similarity measures for each individual. For each individual,

this selection forms a ‘‘new composed feature’’. On the basis

of this new composed feature, similarities between signa-

tures are automatically calculated. The algorithm presented

here is based on a statistical analysis of each individual’s

signature features—undertaken for each signature in the

database—and the two stages of a proposed signature veri-

fication method are clearly distinguished: training and veri-

fication. During the training stage, training sets are

generated. Utilizing these sets it is then possible to evaluate,

for each individual, which features and which methods of

analysis would be best able to distinguish an original sig-

nature from a forgery. The best measures—those that iden-

tify genuine signatures—are then associated with that

individual. This information is then utilized during signature

verification. Nowadays, biometric methods of signature

analysis are well recognized, widely quoted and broadly

represented in the literature [1, 2, 5, 6, 8–10, 13, 32].

Unfortunately the signature verification levels reported are

still inadequate. This remains a challenge for future inves-

tigations. In the present study, a new composed feature

selection method is proposed for signature classification.

This proposed method can then be incorporated into both off-

line and on-line signature verification methods. In the future,

when new similarity measures have been developed, the

concepts presented here can be developed further.

2 Determination of a composed signature feature

values

The main goal of this paper is to analyze and identify two

kinds of objects, original and forged signatures; in other

words, the verification of signature genuineness. It should

be noted that other types of objects can be analyzed: for

example, the identification of genuine and counterfeited

banknotes. It is for this reason that a two-class recognition

problem is presented here.

In the first step, two sets of signatures are gathered for

each person. Let the set containing the original signatures

be denoted as follows:

p1 ¼ fS1; S2; . . .; Scg: ð1Þ

Let the set containing the same person forged signatures

be denoted as:

p2 ¼ fSD1 ; SD2 ; . . .; SDd g: ð2Þ

Professionally forged versions of a person signature are

difficult to obtain. In practice, the set p2 will consist of

either professionally forged signatures (if they are avail-

able) or of other people’s randomly selected signatures

(random forgeries). In the recording process, discrete sig-

nature features are sampled by a device (tablet), so signa-

ture S can be represented as a set of z points:

S ¼ sð1Þ; sð2Þ; . . .; sðzÞf g: ð3Þ

During signing, the tablet is able to continuously collect

a large number of different values of dynamic variables,

including the pressure of the pen on the surface of the

tablet, the position of the pen, its velocity, and acceleration

and so on (Fig. 1).

In this way, each discrete point s(t), t = 1, …, z is

associated with features recorded by the device. In the field

of biometrics, values of these variables are referred to as

the signature biometric features, because they form part of

the characteristics of each given individual [30, 33]. For

simplification, throughout this paper these characteristics

will be referred to as features. Let the set of attainable

features be denoted as follows:

F ¼ ff1; f2; . . .; fug: ð4Þ

Then, each discrete point s(t) = [f1
t , f2

t , …, fu
t ] is a vec-

tor of recorded features.

The most widely used signature features are presented in

Table 1.
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Objects (here, signatures) can be compared by means of

a range of different similarity coefficients. Let a set of these

methods be labeled as:

M ¼ fx1;x2; . . .;xkg: ð5Þ

Thus, the set M is comprised of all the methods and

mathematical rules which could be included in the classi-

fication process. In this paper, various different similarity

coefficients are taken into consideration. The most popular

coefficients and similarity measures are reported in [17].

Table 2 presents various similarity computation methods.

These similarity computation methods were utilized in the

practical tests reported in this paper.

Let Pi be the ith discrete point of a signature P, and Qi

be the ith discrete point of signature Q, and i = 1, …, z.

These points represent the same features as measured and

recorded from both the P and the Q signatures. Hence, the

similarity of these features present in these two signatures

can be expressed as:

– for the Euclidean distance:

dEuc ¼
Xz

i¼
Pi � Qij j2

 !1=2

ð6Þ

– for the Czekanowski coefficient :

sCzek ¼ 2
Pz

i¼1 minðPi;QiÞPz
i¼1 Pi þ Qið Þ ; ð7Þ

and so on for the other elements of Table 2, in accordance

with the details reported in Ref. [17].

For example, the recorded pen pressure at point i can

be analyzed, and the likewise for the others features. Each

pair of signatures analyzed by means of the similarity

measures listed in Table 2 should first be normalized:

their lengths made equal. Differences in the size of sig-

natures lead to a range of problems in signature com-

parison. To accomplish this normalization, the well-

known dynamic time warping (DTW) technique [34] was

applied to the normalization of the data stream coming

from the tablet. If these data streams have different time

lengths, then these data streams must be unified at cor-

responding points and be matched to each other. The

DTW algorithm is used to identify the corresponding

points of the two data streams. This normalization tech-

nique is widely known and has been described in detail

elsewhere in the literature [45, 15].

Through the use of the same feature fm 2 F occurring in

two objects, the similarity of these two objects can be

computed by the method xj 2 M. We assume that we can

construct a set FM of all possible combinations of feature–

method (FM) pairs:

FM ¼ fei � ðfm;xjÞi : fm 2 F;xj 2 Mg; i ¼ 1; . . .; u � k;
ð8Þ

where

(fm, xj)i the i-th pair: ‘‘object feature (fm)—analysis

method (xj)’’, m = 1, …, u, j = 1, …, k,

i = 1, …, u � k
u the number of features possessed by this object,

k the number of methods used for a comparison of

the features

Data prepared in this way can be appropriately ordered

in a matrix form. The matrix X is based on the object set

p1. The matrix contains values of the similarity coefficients

Sim calculated between the pairs of objects from the set p1.

Let [Si $ Sj] denotes pair of the signatures S1 and S2. The

matrix X is comprised of the one-columnar vectors [Si -

Sj]. Generally, this matrix has the following structure:

X ¼ S1 $ S2½ �; . . .; S1 $ Sc½ �; . . .; Sc�1 $ Sc½ �½ �
ðu�kÞ�

c

2

� �

¼ x1; . . .; x c

2

� �

2
664

3
775; ð9Þ

Table 1 List of analyzed features

Description

of the

feature

Signature feature

recorded by

tablet’s pen

Description

of the

feature

Signature feature

recorded by

tablet’s pen

f1 Pressure f6 xc- coordinate

f2 Acceleration f7 yc- coordinate

f3 xv- velocity f8 Time of

measurement

f4 yv- velocity f9 Pen-up time

f5 v- mean velocity f10 Pen-down time

Table 2 List of similarity measures or coefficients [17]

Description

of measure

Coefficient or

similarity

measure

Description

of measure

Coefficient or

similarity measure

x1 Euclidean x12 Jaccard

x2 Gower x13 Fidelity

x3 Minkowski x14 Bhattacharyya

x4 City Block x15 Hellinger

x5 Cosine x16 Matusita

x6 Kulczynski x17 Pearson v2

x7 Canberra x18 Neyman v2

x8 Czekanowski x19 Squared v2

x9 Intersection x20 Symmetric v2

x10 Clark x21 Kullback–Leibler

x11 Lorentzian x22 Kumar–Hassebrook
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where Si, Sj the ith and jth original signatures of a given person,

c the number of all genuine signatures of a given person

Each columnar vector holds the similarity values cal-

culated between a single pair of signatures from the set p1.

These similarities are computed using each possible ‘‘fea-

ture-method’’ pair. An example of the first columnar vector

from the matrix X is shown below:

X 3 x1 ¼ ½S1 $ S2� ¼

SimðS1; S2Þðf1;x1Þ1�1

..

.

SimðS1; S2Þðf1;xkÞ1�k

..

.

SimðS1; S2Þðfu;x1Þu�1

..

.

SimðS1; S2Þðfu;xkÞu�k

2

666666666664

3

777777777775

ðu�kÞ�1

; ð10Þ

where SimðSa; SbÞðfm;xjÞi—the ith similarity coefficient of

the feature fm of the objects Sa, Sb 2 p1. The similarity is

determined by means of the method xj.

Finally, the fully populated matrix X holds ðu � kÞ �

c

2

� �
elements.

The second matrix Y is based on the p1 and p2 sets. It

can be observed that matrix X is constructed from the

original signatures of a given person (say person Q) while

the matrix Y holds the original and the forged signatures of

the same person Q. The matrix Y is built as follows:

Y ¼ S1 $ SD1
� �

; . . .; S1 $ SDd
� �

; . . .; Sc $ SDd
� �� �

ðu�kÞ�ðc�dÞ
¼ ½y1; . . .; yc�d�;

ð11Þ

where Si, Sj
D the ith genuine and the jth forged signature of

a given person, d the number of all unauthorized (forged)

signatures of a given person.

The columns of the matrix Y are constructed similarly to

the columns of the matrix X. The first columnar vector has

the following structure:

Y 3 y1 ¼ ½S1 $ SD1 � ¼

SimðS1; S
D
1 Þ

ðf1;x1Þ1�1

..

.

SimðS1; S
D
1 Þ

ðf1;xkÞ1�k

..

.

SimðS1; S
D
1 Þ

ðfu;x1Þ1�u

..

.

SimðS1; S
D
1 Þ

ðfu;xkÞu�k

2
6666666666664

3
7777777777775

ðu�kÞ�1

; ð12Þ

where: SimðSa; SDb Þ
ðfm;xjÞi— the ith similarity coefficient of

the feature fm of the objects Sa 2 p1 and Sb 2 p2.

Similarity was determined via use of the method xj.

The matrix Y includes only the similarities between the

original and forged signatures of one given person. Simi-

larities between the different original signatures are not

calculated. Hence, the fully populated matrix Y contains

(u � k) 9 (c � d) elements.

Matrices X and Y always have the same u � k rows.

In both the matrices X and Y, each Sim value represents

the value of one signature composed feature.

3 The features reduction

Very often, objects are described by means of a large

number of features. Some of these features are similar,

even for different objects, while others are unique. The

main goal of this investigation is to select those features

that allow for different objects to be distinguished. When

there are a large number of features, the best features

may be difficult to identify. Thus, features with a low

impact on the verification process should be removed, if

at all possible. Additionally, features (see Table 1) can

be compared by means of different methods (listed in

Table 2). For this reason, feature selection and the

choice of the best similarity measures are significant

challenges. However, if these tasks are performed satis-

factorily, then objects will be able to be correctly

verified.

As was previously mentioned, the process of signature

verification is conducted on the basis of the available fea-

tures. The feature selection process should result in the

ability to significantly distinguish a given signature fea-

tures from the same features in the other signatures in the

database. Feature extraction is the most vital but most

difficult step of any recognition system. The accuracy of

the system depends mainly on the number and quality of

the object features. Modern devices can record many dif-

ferent signature features including velocity, pen pressure,

azimuth and pen acceleration. For signatures, nowadays,

about fifty features are either directly captured (shape),

measured (discrete points and time) or computed (velocity

and acceleration between signature discrete points). In

many cases, to improve recognition levels and accuracy

measures, several copies of the same person signature are

collected which leads to a large number of features being

contained in a system. However, in practice, this volume of

data leads to an excessively long verification period,

especially when the database itself holds many records.

One of the problems with high-dimensional datasets is that,

in many cases, not all the variable data are required for a

proper understanding of the underlying phenomena of

interest. Additionally, the high dimensionality of the fea-

tures space makes it difficult to utilize many recognition

algorithms. In other words, dimensionality reduction is an
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effective, even necessary, method of downsizing data. The

majority of verification algorithms have data some

dimensionality limitation, so that, practically, only

restricted forms of data can be processed. In this paper, it is

also proposed that data dimensionality reduction be

undertaken.

A reduction in the large number of features can be

achieved during the reduction and feature selection pro-

cess. These methods are well known and have been widely

discussed in the literature [12, 21, 25, 30, 31, 35–37]. One

of these methods is Hotelling’s discriminant analysis [36,

38–40, 49]. This technique can also be successfully adap-

ted to the solving of biometric system tasks. This statistical

approach will be described in some detail here because it

has not yet been applied in the domain of biometrics and,

when applied to the signature verification process, it gives

better results in comparison to the well-known principal

components analysis (PCA) and singular value decompo-

sition (SVD) methods. For any given signature, the Ho-

telling approach removes those features which possess the

smallest discriminant power.

3.1 Hotelling statistic

The reduction of a dimensionality of a dataset can be

achieved through the use of Hotelling’s T2 statistic. While,

in practice, many other methods of data reduction are

widely known, as will be shown later the approach pro-

posed in this paper results in a superior level of object

recognition in comparison to other statistical measures. For

many of the available statistical methods, the ability to use

the method depends on the data having, or complying with,

a specific probability distribution. For this reason, the

investigation of data distributions is one of the major issues

in biometrics. Unfortunately, these restrictions are often

simply ignored, producing research results open to incor-

rect interpretation.

Hotelling’s T2 method requires that data display a nor-

mal distribution. Several phenomena observed in nature,

medicine and industry have such a Gaussian distribution.

The values of measurements from nature can be shown to

be the sum or average of a large number of independent

small random factors, so that, regardless of the distribution

of each of these individual factors, the total distribution

will approach normal. This requires that the total, global

process is comprised of many random processes of which

none is dominant. The Hotelling statistic is a multivariate

generalization of the one-sample t Student’s distribution

[12, 26, 36, 38]. A univariate distribution is a probability

distribution of one single random variable, in contrast to a

multivariate distribution, where we are observing the

probability distribution of many independent vectors.

Given this assumption, we have:

t ¼ �y� l
s

ffiffiffi
n

p
; ð13Þ

where s is a sample standard deviation:

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n� 1

Xn

i¼1

ðyi � �yÞ2

s
: ð14Þ

Then

t2 ¼ ð�y� lÞ2

s2
n ¼ nð�y� lÞðs2Þ�1ð�y� lÞ; ð15Þ

and statistical evaluations t2 can be considered in the

context of the Snedecor’s F distribution due to

t2 * F1,n-1.

Equation (13) can be simply generalized to a p-dimen-

sional vector. Given the basic definition of the one-sample

Hotelling statistic, we have n independent vectors of

dimension p, observed over time, where p is the cardinal

number of the set of objects characteristics being measured

[36, 37]. These data can be presented as observation vec-

tors. If this is done the observation vectors produce the

following matrix:

Y ¼

y11 y12 � � � y1n

y21 y22 � � � y2n

..

. ..
. ..

. ..
.

yp1 yp2 � � � ypn

2

6664

3

7775 ¼ y1; y2; . . .; yn½ �: ð16Þ

In other words, the ith row of the matrix Y represents the

ith feature from all p features over all observations; the jth

column represents the jth observation from all of the

n observations.

The vectors yi, i = 1, …, n form a p-dimensional

normally distributed population Np(l, R), with a mean

vector l and a covariance matrix R. The parameters l
and R are obviously unknown, hence they need to be

estimated.

The value l can be expressed by a mean vector:

�y ¼ 1

n
Y � j ¼ 1

n

Xn

i¼1

yi ¼

�y1

�y2

..

.

�yp

2

6664

3

7775; ð17Þ

where j is an n 9 1 dimensional vector; j = [1, 1, …, 1]T

consists only of ones.

The covariance matrix R, of dimension p 9 p, can be

estimated by utilizing the unbiased estimator:

S ¼ 1

n� 1

Xn

i¼1

ðyi � �yÞðyi � �yÞT : ð18Þ

Hence EðSÞ¼R and Eð�yÞ¼l.

In this case we obtain a one-sample, T2-Hotelling’s

distribution with the covariance matrix S:
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T2 ¼ nð�y� lÞTS�1ð�y� lÞ: ð19Þ

The main goal of this paper is to analyze and recognize

two kinds of signatures (objects): original and forged sig-

natures. These sets of signatures form two classes of

objects. For this reason, the basic Hotelling statistic needs

to be extended to a two-sample T-squared statistic.

In the two-sample problem we have two sets of indepen-

dent vectors of features, which form two observation matrices:

X ¼

x11 x12 � � � x1n

x21 x22 � � � x2n

..

. ..
. ..

. ..
.

xp1 xp2 � � � xpn

2
66664

3
77775
¼ x1; x2; . . .; xn½ �;

Y ¼

y11 y12 � � � y1m

y21 y22 � � � y2m

..

. ..
. ..

. ..
.

yp1 yp2 � � � ypm

2
66664

3
77775
¼ y1; y2; . . .; ym½ �:

ð20Þ

The object features create vectors xi, i = 1, …, n and yj,

j = 1, …, m, and together they form a p-dimensional

normally distributed population xi * Np(l,
P

), yi * -

Np(l,
P

) with the same mean vector l and the covariance

matrix R. As previously, we can define the mean vectors:

�x ¼ 1

n
X � j ¼ 1

n

Xn

i¼1

xi ¼

�x1

�x2

..

.

�xp

2
6664

3
7775 and �y ¼ 1

m
Y � g ¼ 1

m

Xm

i¼1

yi

¼

�y1

�y2

..

.

�yp

2
6664

3
7775;

ð21Þ

where j is an n 9 1 dimensional vector and g is a similar

m 9 1 dimensional vector.

The variance–covariance matrix R, of dimension p 9 p,

can be estimated by the unbiased estimators:

S1 ¼ 1

n� 1

Xn

i¼1

ðxi � �xÞðxi � �xÞT ;

S2 ¼ 1

m� 1

Xm

i¼1

ðyi � �yÞðyi � �yÞT :
ð22Þ

In Hotelling’s primary, fundamental definition, it was

assumed that the mean vectors and covariance matrices are the

same for both populations [37]. Both of the homogeneous

covariance matrices, S1 and S2, are estimators of the common

covariance matrix R. A better estimate can be obtained by

pooling the two estimates. Hence, for the two-class case, the

pooled common variance–covariance matrix is formed as a

maximum likelihood estimator with weighted average of group

variances:

S ¼ S1ðn� 1Þ þ S2ðm� 1Þ
nþ m� 2

: ð23Þ

S ¼ 1

nþ m� 2

Xn

i¼1

ðxi � �xÞðxi � �xÞT þ
Xm

i¼1

ðyi � �yÞðyi � �yÞT
 !

:

ð24Þ

These pooled approaches work if the samples are large

and even, if the variances are equal, with non-normally

distributed data [36]. Given this, as previously, the two-

sample Hotelling’s T2 statistic for a pooled covariance

matrix S is defined as follows:

T2 ¼ ð�x� �yÞT S
1

n
þ 1

m

� �� ��1

ð�x� �yÞ¼ n � m
nþ m

ð�x

� �yÞTS�1ð�x� �yÞ: ð25Þ

The homogeneity of the variancesS1 andS2 can be evaluated

and confirmed by use of Bartlett’s test [35, 36] as will be

explained in the following paragraphs. Assuming equal vari-

ances is a major assumption, and using pooled procedures if the

variances are, in fact, unequal gives poor results. If, from the

analyzed data, it becomes apparent that the variances are unpo-

oled then, in place of (24), a new estimator needs to be introduced

in which the covariance matrices are utilized separately:

V ¼ S1

n
þ S2

m
: ð26Þ

In this situation, a two-sample Hotelling’s T2 statistic for

matrix V, is now defined as follows:

T2 ¼ ð�x� �yÞTV�1ð�x� �yÞ: ð27Þ

If the samples are small, we can look at the Hotelling’s T2

statistic as an F-statistic. Let:

~F ¼ nþ m� p� 1

pðnþ m� 2Þ T2; ð28Þ

so that (28 is asymptotically F-distributed with p degrees of

freedom for the numerator and n ? m - p - 1 for the

denominator [12]. Thus, the Hotelling’s T2 statistic is well

approximated by Snedecor’s distribution F:

~F�Fp;nþm�p�1;a; ð29Þ

where a denotes the chosen significance level.It can be

demonstrated that, for large samples, ~F ¼ T2 and

T2 * vp,a
2 [36]. Hence:

T2 � v2
p;a: ð30Þ

This means that, in this case, the Hotelling’s T2 statistic

can be approximated well by means of the Chi square

distribution. In the approach presented in this paper, only

formula (29) was used.
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3.2 The Hotelling reduction of composed signature

features

Now we return to the collected and prepared data. For a given

signature, Hotelling’s approach enables the removal of those

features which have the smallest discriminant power. In

practice, discriminant analysis is useful when deciding whe-

ther a particular ‘‘feature-method’’ pair (f, x) is an effective

contributor to the classification process. If the feature-method

pair is not such a contributor, then this given pair can be

removed. Utilizing this procedure, only pairs with the greatest

discriminant power will be left from all possible pairs.

Some recognition methods have better discriminant

properties than others: a particular method can better rec-

ognize some signature features while some features are

insignificant and should be rejected. The better recognition

methods and significant features are unknown a priori, and

must be discovered by the analysis to be undertaken.

However, for any given signature, only its best discrimi-

nant features and the methods that recognize these features

will, ultimately, be selected.

The reduction of features can be carried out gradually.

In each successive step, the feature responsible for the

smallest change in the multidimensional discrimination

measure is eliminated [12, 35].

The dimensionality reduction algorithm can be executed

in several steps, leading to a data reduction of matrices

X and Y. In practice, according to (10) and (12), the sim-

ilarity values Sim of the composed features between sig-

natures is used in the data reduction process.

Reduction of the dimensionality of matrices was per-

formed, step by step, for every available ‘‘feature-method’’

pair. The algorithm implemented can be shown in the form

of the following pseudocode:

In this way, the dimensionality of the matrices is suc-

cessively reduced. After the full reduction process has

completed, the reduced matrices are now denoted as ~X and
~Y.

The procedure, as described, is executed for every per-

son X. The results are stored in the set FMX , FM, in

which only the best discriminating (f, x)X pairs are stored.

It is these pairs that best distinguish a genuine signatures of

a person X from its forged signatures.

It should also be noted that the previously described

process of data reduction needs to be repeated every time,

when a new signature is added to the database, as the main

set FM will be changed. Thus, the process is conducted on

a closed set of data.

4 Statistical parameters of the new data

The classical Hotelling’s T2 method requires that the data

have a normal (Gaussian) distribution [38]. After data

preparation, the matrices X and Y include different values

with respect to the original Hotelling statistic. This process

of data modification has been explained in Sect. 2. How-

ever, these new values should now be evaluated statisti-

cally again.

The database we utilized in this research contains sig-

natures acquired from 40 people, with 20 genuine signa-

tures and 20 forged signatures for each person, so that in

total there are 1,600 signatures. In the experiments, every

element of Tables 1 and 2 were utilized, so u = 10 and

k = 22. During each experiment, c = 10 genuine and

d = 5 forged signatures were randomly selected. This was

done many times, until every instance of each signature

had been utilized. During the experiments, appropriate

Algorithm 1
Let  FM be a set of the “feature-method” pairs; 
Let  i be the ith element of the set FM;
Let q be the cardinality of the set FM;
Repeat

for i:=1 to q do
  Calculate Hotelling’s statistics for the set FM; 
  Calculate Hotelling’s statistics for FM with removed ith element; 
  Let Ui be the necessity of the  i calculated as a difference of two preceding Hotelling’s statistics; 

end
 Let i be the index of the lowest values of U; 

If F-test result does not fall into critical region according to Snedecor's  F-distribution table  
then

  Remove  I from the set FM;
q:=q-1; 

else
  Done= TRUE;
    end 
Until Done; 

990 Pattern Anal Applic (2015) 18:983–1001

123



X and Y matrices were created always of the sizes: matrix

½X�
ðu�kÞ�

c

2

� � as 220 9 45; matrix [Y](u�k)9(c�d) of

220 9 50.

4.1 Independence

The subjects in both populations were uncorrelated so they

are could be independently sampled. In our case, the gen-

uine signatures were collected independently of the

attempted forgeries.

4.2 Mean vectors

Hotelling’s assumption implies that the data from populations

i = 1, 2 are to be sampled with their mean being li. Essen-

tially, this assumption means that there are no sub-popula-

tions comprising the main population. In our experiment, this

condition could be violated as the forged signatures could

have been produced by more than one individual.

4.3 Multivariate normality (MVN)

Because Hotelling’s technique assumes multivariate nor-

mality of the data, it is important to ensure that the new

data complies with this pattern. Visualizing MVN is

impossible for more than two dimensions so, for this

reason, it is demonstrated by scatter plots for each pair of

variables. Under bivariate normality, concentrated ellipti-

cal cloud of points should be observed on each plot.

Matrix X, created as part of the research, is high-dimen-

sion matrix. Because of the large number of possible

scatter plots, only a proportion of them have been

depicted in Fig. 2. The portions of the scatter plots not

shown have a similar point distribution to that shown in

the clouds here.

Similar results were obtained for matrix Y.

Additionally, the Central Limit Theorem dictates that

the mean vectors of samples will be approximately mul-

tivariate normally distributed regardless of the distribution

of the original variables [35]. Hence, Hotelling’s T2-

method is not sensitive to violations of this assumption.

Thus, the multivariate normality of the data has been

confirmed.

4.4 Homogeneity of covariance

This assumption has been assessed by means of Bartlett’s

test [35, 36]. This test should be used for normally dis-

tributed data. It has been proven above that a normal

multivariate distribution is guaranteed. The variances are

judged to be unequal if Bt[ vdf-1,a, where Bt is the

Bartlett statistic and vdf-1,a is the critical value of the Chi

square distribution with degrees of freedom df and a

significance level of a. In our experiments, the Bartlett’s

statistic was computed for the matrices X and Y data (the

same for covariance matrices S1 andS2). For this reason,

the T2 statistic (25) or the values produced by Eq. (27)

would be appropriate to be used during the feature

reduction process.Fig. 1 The discrete set of the points comprising signature S

Fig. 2 Bivariate normality of

the data of matrix X: the

concentration of selected data

points inside the elliptical area,

with a 95 % confidence interval
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5 Signature verification

In the approach proposed, the k-Nearest Neighbor (k-NN)

method was applied [11, 35]. Genuine signatures were

sourced from the database, so these signatures formed the

first class of objects, class p1. The forged signatures formed

the second class of the signatures, class p2. Determination

of the sets FMQ was required to be able to verify the sig-

natures written by person Q.

Let SX be the signature of some person X, in need of

verification. This person presents himself or herself as

being person Q, for example. The truth value of the

assertion made by X should be able to be automatically

verified. Let the reduced matrixes X and Y be denoted as ~X

and ~Y. After reduction, these matrices maintain the same

number of rows (say r B u � k). Together, the matrices ~X

and ~Y form a new global matrix H ¼ ~X~Y
� �

r�
c

2

� �
þðc�dÞ

� �.

The matrix H includes the similarities between all the

signatures of person Q stored in the database; these simi-

larities have been computed on the basis of selected fea-

tures and selected recognition methods. Columns of the

matrix H can be treated separately as vectors h. Let the

dimension of the matrix H be defined as r 9 l, where

l ¼
c

2

 !
þ ðc � dÞ; then:

H ¼ h1; h2; . . .; hl
� �

hi ¼ hi1; h
i
2; . . .; h

i
r

� �T
; ð31Þ

hence

H ¼

h1
1; h

2
1; . . .; h

l
1

h1
2; h

2
2; . . .; h

l
2

..

.

h1
r ; h

2
r ; . . .; h

l
r

2
6664

3
7775

r�l

; ð32Þ

if h j 2 ~X ! h j 2 p1 and if h j 2 ~Y ! h j 2 p2,

j = 1, …, l.

Because the classifier works in verification mode, the

person to be classified X, appears as a person Q, for

example. Given this, a signature SQ of person Q is ran-

domly selected from the database. In this stage of verifi-

cation, the most distinctive common features and signature

similarity measures of the person Q have been established.

This means that the matrix H for this signature is known.

For this reason only a new vector hX = [h1
X, h2

X, …, hr
X]T

needs to be created. The elements of the vector hX are

determined as follows:

hXi ¼ SimðSX; SQÞðf ;xÞi ; i ¼ 1; . . .; r; ð33Þ

where

SX the signature to be verified,

SQ randomly selected original

signatures of person Q,

hXi ¼ SimðSX; SQÞðf ;xÞi similarity between signature

SXand signature SQ. This

similarity has been determined

using the ith pair (f, x)i from the

set FMQ

In the next stage, the set D of Euclidean distances

between vector hX and all successive vectors hi 2 H is

calculated:

D ¼ dðhX;h j
	 


dðhX;h j ¼
Xr

i¼1

hi � h
j
i

� �2

" #1=2

;

j ¼ 1; � � � ; l:
ð34Þ

From the distances in the set D the smallest k distances

are selected. The verified signature SX is classified into

class p1 or p2 by means of the k-NN classifier. The final

classification results are established on the basis of a voting

score, which depends on the number nb of neighbors

belonging to class p1 or p2. In works [10] and [17], the

authors report that the most suitable value for nb can be

estimated by simulation, but in practice can be approxi-

mated by the square root of the number of complete cases:

nb ¼
c

2

 !
þ ðc � dÞ

 !1=2
2

4

3

5 ð35Þ

Let D1 and D2 be the sets of numbers which show how

many times signature SQ has been classified into class p1

or p2, respectively:

dðhX; h jÞ 2 D1 if : h j ! p1;

dðhX; h jÞ 2 D2 if : h j ! p2:
ð36Þ

Let the cardinality of the sets be denoted by symbol #;

the classification voting principle can then be formulated as

follows:

SX :
genuine signature of the person Q for #D1[#D2

forged signature of the person Q for #D1�#D2
:




ð37Þ

6 Interpretation and comparison of the methods

In this paper, the features of the object have become more

widely understood because the features themselves and the

best methods for recognizing these features have been

formed into a new form of statistical data. In our opinion,

this constitutes a new technique of data mining.

The feature reduction methods based on Hotelling sta-

tistic were also compared to two well-known analytical

methods: principal component analysis (PCA) and singular

value decomposition (SVD). As presentation of
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multidimensional data is difficult, graphical presentation

will be limited to those cases where, after reduction, only

two-dimensional data remained.

In the experiments conducted, the captured signatures’

features and similarity coefficients, obtained as seen in

Tables 1 and 2, were considered. In this section, the

attempt to verify person X will be performed. This indi-

vidual claims to be a person Q.

For this demonstration the principles of a method only

one of signatures stored in the database has been selected.

Signatures of person Q were divided into two groups. Let

the first group consist of ten original signatures (c = 10) of

person Q, while the second group consists of five forged

signatures (d = 5) of the same person. The classification

process is undertaken on the basis of the hi 2 H vectors,

where i ¼ 1; . . .; ðc � dÞ þ c

2

� �
¼ 95. This means that the

k-NN classifier always has a constant pool of available

vectors to compare, and each of them has the dimension

r. The k-NN classifier works with the nine neighbors,

which follows from the estimation detailed in Eq. (35). The

way that the identity of person Q is to be verified will be

shown below. In our experiments as described here, until

verified, the individual X should be recognized as an

unauthorized person, Q.

6.1 Hotelling reduction method

As discussed previously, in the experiment ten original

signatures and five forged signatures associated with each

person have been analyzed. From this signatures dataset we

obtain 95 vectors hi 2 H, i = 1, …, 95. During the real

reduction process, let the two best discriminant pairs

(f6, x2) and (f3, x1) be selected. In other words, feature f6
of person Q’s signature best distinguishes this signature

from all the other signatures in the database when f6 is

evaluated using similarity measure x2. The same expla-

nation can be given for the second pair (f3, x1). It means

that hi vectors have dimensionality of r = 2. Figure 3 plots

the similarity distribution between the different signatures

of person Q. It also represents the similarities between the

different genuine signatures of the person Q and the sim-

ilarities between their original and forged signatures. In

practice, each point (triangle or circle) in this plot has its

own individual label. For example, label (1–5) represents

the similarity between the original signatures Number 1

and Number 5 of person Q, while label (8-5F) represents

the similarity between original signature Number 8 and the

forged signature Number 5. For simplicity, only selected

labels are shown. Figure 2 presents the decision-making

areas for the trained classifier and shows the class to which

a point with the specific coordinates would be assigned.

The same figure plots the decision area of the k-NN clas-

sifier during classification of the individual X. The signa-

ture of person X will be recognized as the signature of an

individual who wants to obtain unauthorized access to the

resources.

Figure 3 clearly shows by means of visible separation

border that the genuine and the forged signatures of indi-

vidual Q are well distinguished. This was done by using

only two signature features and two similarity measures. In

practice, beyond two-dimensional cases, multidimensional

cases need to be processed.

6.2 The PCA and SVD reduction methods

The proposed method was compared with two other

methods well known in the literature: PCA [10, 41, 42] and

SVD [42, 43]. PCA and SVD are two eigenvalue-based

methods used to reduce high-dimensional datasets to fewer

dimensions while still retaining important information.

PCA is known as a system of unsupervised learning. Both

methods give the same or similar results but, due to various

numerical factors, the results obtained differ slightly. As

before, feature reduction refers to the mapping of original

high-dimensional data onto a lower dimensional space.

Let a dataset of the n-dimensional data points

X = {x1, x2, …, xa} be an observation space.

Then, for the PCA or SVD methods:

xi 2 Rn ? zi 2 Rd: zi = Gxi, where G is a transfor-

mation matrix consisting of the d principal components,

d 	 n and i = 1, …, a. The vector xi is original recorded

data, while zi represents data transformed according to the

properties of the transformation matrix G.

Fig. 3 Mutual similarities between signatures of the person Q and k-

NN classification area of the person X
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For the Hotelling method:

xi ¼ ½x1; x2; . . .; xn� 2 Rn ! zi ¼ ½xi1 ; . . .; xid � 2 Rd, and

elements of vector zi create a subset of the set of elements

of the vector xi, d 	 n, and i = 1, …, a.

Similarly, the signatures of one person, Q, will be ana-

lyzed. In the PCA method, the covariance matrix and those

principal components (PCs) which account for the greatest

variance in the data set are calculated for the matrix

H. Table 3 shows the selected factor loadings obtained for

the first seven PCs. After this calculation, the cumulative

percentage of the variance was computed. The first prin-

cipal component (PC 1) is the most important—it describes

most of the total variability of the data (above 87 %). The

first two PCs describe more than 93 % of the total variance.

The remaining components explain successively less of the

variance of a data. The components are interpreted by

observing the contributions of the primary variables to the

construction of the main components. For a given principal

component (PC), the maximum absolute value of the

coefficient of any original variable represents the maxi-

mum contribution that this variable can make to the con-

struction of this PC. Note that, in this example, the PC 1 is

associated with all of the shown pairs (f, x), while PC 2 is

mainly associated with the pairs (f5, x2) and (f5, x1).

Table 3 shows the largest contributions to the construction

of each PC.

The interaction between the main components, PC 1 and

PC 2, is plotted below (Fig. 4a). Two data points on the

plot are closer together when they are more similar to each

other [41]. The PCA score plot is useful to understand the

similarity between signatures. Analysis of SVD compo-

nents is similar.

Figure 4 shows that the most important loadings are I,

which corresponds to the pair (f4, x1) and C, which

correspond to the pair (f7, x1). Points lying near to the

beginning of the coordinate system can not be taken into

consideration because their vectors are too close to the

projection of this plane. The PC-based categorization is

shown in Fig. 5. This figure presents the decision-making

areas for the trained classifier and shows the class to which

a point with specific coordinates would be assigned. The

same figure plots the k-NN classifier decision area during

classification of the individual seeking verification, X.

This experiment has shown that person X, on the basis

of the reduced set of data, will be recognized and autho-

rized as individual Q. However, recognition based on

Hotelling’s data reduction indicates a different decision.

In practice, the above-presented graphic interpretation is

unnecessary. The main goal of this representation was to

demonstrate the basic ideas behind the methods. All

computations boil down to determination of the matrix

H. Different methods form different structures for matrix

H, so the k-NN classifier gives a different classification of

the object X.

In the proposed Hotelling-based reduction approach, it is

very convenient that appropriate signature features and

similarity coefficients (Tables 1, 2) are always automati-

cally selected.

7 Results obtained

The results of proposed classification, based on an adaptive

feature selection, have been compared with the results of a

classification that utilizes the complete feature set. Com-

parison of the results achieved allows us to estimate how

the proposed method influences the reduction of classifi-

cation error. As was previously stated, in the experiments

Table 3 The most important

factor loadings (absolute values

below 0.1 were omitted)

a The letters A…N represent

corresponding ‘‘feature-

method’’ pairs

Feature-methoda PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7

A-(f6, x1) 0.887 –0.102 0.359 –0.260

B-(f6, x2) 0.890 0.119 0.359 0.172 –0.149

C-(f7, x1) 0.984 –0.116

D-(f7, x2) 0.964 –0.183

E-(f1, x1) 0.980 –0.106 –0.103

F-(f1, x2) 0.953 –0.134 –0.198

G-(f3, x1) 0.982 0.104

H-(f3, x2) 0.955 0.265

I-(f4, x1) 0.989 –0.111

J-(f4, x2) 0.981 0.129

K-(f5, x1) 0.861 0.393 –0.125 0.282

L-(f5, x2) 0.665 0.719 –0.154

M-(f2, x1) 0.981 0.127 –0.037 0.105

N-(f2, x2) 0.969 0.129 0.138

Explained variance (%) 87.78 5.90 2.77 1.50 0.97 0.71 0.37
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signatures of forty people were tested. All available sig-

natures from database were divided into sets containing

data for one person. For each person, c = 10 genuine and

d = 5 forged signatures were randomly selected. Hence,

(10 ? 5) 9 40 = 600 signatures were analyzed. The

database used was a subset of the SVC 2004 database.

Matrices X and Y were constructed on the basis of these

selected signatures. The training set was used to fit a sta-

tistical model. The remaining signatures were treated as

validation signatures. The proposed classifier was finally

used in its verification mode. The classification of a test

signature was undertaken by comparing it against a set of

genuine and forged signatures for the person being verified.

During the research, classification was performed using,

either, all the available features and comparison methods,

or by using only those features and methods pre-selected

for the currently to-be-verified individual. In the investi-

gations themselves, all the elements of both Tables 1 and 2

were utilized. In regards to using the PCA/SVD methods,

boundary feature-method reduction should be defined a

priori. The best results were obtained for the 2nd, 6th and

12th PCA/SVD components. The false acceptance rate

(FAR) and false rejection rate (FRR) errors levels for the

different methods of composed feature reduction are shown

in Tables 4 and 5.

Under the classical approach, for a given recognition

threshold t, the FAR(t) is defined as the experimentally

determined ratio of the number of imposter scores

exceeding the value of t to the total number of imposter

scores [33]. Analogously, FRR(t) is the experimentally

determined ratio of the number of genuine scores not

exceeding threshold t to the total number of genuine scores.

Since, in our experiments, no acceptance threshold level

needed to be determined, the FAR/FRR coefficients have

been established in an alternative manner [33]:

FAR ¼ NFA

NIVA
; ð38Þ

Fig. 4 Dispersion of the original loadings (a); Enlarged fragment of the cloud loadings with the important loadings I and C (b)

Fig. 5 Mutual similarities between signatures of the person Q in the

PCA category (a); and k-NN classification area of the person X (b)

Table 4 False accepted rate (FAR). For varying numbers of refer-

ence signatures, varying feature vector dimensions

Number of signatures FAR (%)

p1 (genuine) p2 (forged) FSMa Vector dimension in

PCA method

(manually selected)

Vector dimension in

SVD method

(manually selected)

2 6 12 2 6 12

3 1 6.34 8.14 6.32 6.75 6.14 7.12 5.62

5 3 1.08 2.22 2.62 2.21 2.52 2.12 2.25

10 4 1.67 3.14 3.44 3.29 3.15 3.21 3.94

a Proposed approach—(F)eature-(S)imilarity (M)ethod (FSM) and k-NN classifier

Bold values indicate the best results

Pattern Anal Applic (2015) 18:983–1001 995

123



where:

NFA number of false acceptances,

NIVA number of impostor verification attempts,

FRR ¼ NFR

NEVA
; ð39Þ

where:

NFR number of false rejections,

NEVA number of enrollee verification attempts

Accuracy ¼ NCV

NAVA
; ð40Þ

where:

NCV number of correct verifications,

NAVA number of all verification attempts

These results were obtained for varying numbers of

signatures from the set p1 (genuine signatures) and the set

p2 (forged signatures), and for varying numbers of reduced

features. The FRR ratio represents genuine signatures

classified as forged signatures, while FAR represents

forged signatures classified as genuine. It accepted that a

perfect biometric would neither reject any authorized

individual (FRR = 0), nor would it accept any unautho-

rized individual (FAR = 0). Instead, in practice, highly

secure biometric systems operate with small FAR/FRR

values. It is impossible to have low error rates (close to

zero) for both FAR and FRR at the same time. The relation

between false acceptance and false rejection rates can be

established by choosing a threshold point where FAR and

FRR values are balanced, the so-called equal error rate

(EER) point. Given the nature of these investigations, the

EER point was not determined—the threshold t has not

been established.

Tables 4 and 5 show that it was when using the method

proposed in this work that the smallest FAR/FRR coeffi-

cients were obtained: FAR = 1.08 % and FRR = 2.53 %.

These results are significantly better than the results

obtained using the PCA/SVD method. The smallest FAR/

FRR ratio was obtained when the number of original sig-

natures in the set p1 was five and the number of forged

signatures in the set p2 was three. All of the forged sig-

natures used were professionally counterfeited.

Additionally, the new data-type classification proposed

in this paper was compared to other classifiers, all proven

in literature and implemented in the WEKA system [44]:

– k-Nearest Neighbors Classifier (k-NN) [11],

– Random Forest: forest of random trees (RanF) [45],

– Random Tree: tree that considers K randomly chosen

attributes at each node (RanT) [45],

– J48 - C4.5 decision tree (J48) [46],

– PART - PART decision list (PART) [47]

The Nearest Neighbors Classifier assumes that a new

object has membership of a class on the basis of comparing

it against a set of sample (prototype) objects. During

classification, a voting process of k-neighbors is used. This

classifier is particularly useful for classifying data with a

multi-dimensional input space. The next two classifiers

listed are the Random Forest and the Random Tree. The

Random Forests is built up from an ensemble of Random

Trees which, in contrary to classic decision trees, are built

using randomly selected subsets of features for each node.

Also tested were the C4.5 algorithm-based J48 decision

tree classifier and the PART classifier, both of which use a

divide-and-conquer approach to constructing a partial C4.5

decision tree during each iteration, turning the ‘‘best’’ leaf

into a rule.

In our experiments, the measurement time was deter-

mined on an Intel Core2Duo E7400 processor, 2.8 GHz

computer with 8 GB of RAM and running the Windows

7 9 64 operation systems.

The classifier producing the greatest Accuracy level was

selected as the best method–having the best recognition.

The experiment was conducted on both unreduced and

reduced datasets. The highlights in Table 6 show that the

best recognition level was achieved using the k-NN clas-

sifier working on reduced set of composed feature values of

a signatures. For this data, the k-NN classifier gives a

significant better Accuracy level when compared to a RanF

classifier working on a set of composed feature values of

unreduced signatures.

The results obtained were also compared with other

solutions for which a range of various signature recognition

techniques have been applied. A brief overview of these

results is presented here in Table 7.

Table 5 False rejection rate (FRR) for varying numbers of reference

signatures, varying feature vector dimensions

Number of signatures FRR (%)

p1 (genuine) p2 (forged) FMSa Vector dimension

after using PCA

(manually selected)

Vector dimension

after using SVD

(manually selected)

2 6 12 2 6 12

3 1 7.14 5.31 6.55 5.40 6.33 5.60 4.90

5 3 2.53 2.58 2.78 4.94 4.35 4.78 4.05

10 4 2.60 2.83 3.06 5.25 3.96 4.84 4.60

a Proposed approach—(F)eature-(S)imilarity (M)ethod (FSM) and k-NN classifier

Bold values indicate the best results
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Unfortunately, making any reliable comparison of these

various approaches is rather difficult, due to inconsistencies

in the accepted evaluative standards. In practice, various

databases are used containing different numbers of original

and forged signatures. These datasets of biometric features

are generally comprised of private (and hence unavailable)

signatures in addition to signatures obtained from com-

mercially published databases. For this reason, the results

presented here are unable to be presented in a properly

unified manner. However, Table 7 does show that the

results achieved by the approach proposed in this paper are

the best when compared to all of the other published

methodologies.

In addition, the results achieved here have been com-

pared with results of classifications based on the raw sig-

nature features acquired directly from the tablet. In these

cases, the matrices X, Y and H have not been used and the

classification has been achieved using only these dynamic

signature features. Prior to classification, the feature vec-

tors were all scaled to a common length and normalized. In

order to equalize the signature lengths, instead of DTW the

FNP method was used to scale the data vectors to a spe-

cific, experimentally selected, length of B = 30 points.

This way classification error was minimized [1]. This was

required to set an arbitrary length for each signature vector,

an outcome that cannot be guaranteed from the DTW

method which automatically adjusts the length of each pair

of vectors.

Algorithm 2. The pseudocode for equalizing sequences

for use with the FNP method:

The length of the signature for any given person has

been experimentally established so as to minimize classi-

fication error. In our case, discrete points of signatures

from the database have been all normalized to the same

length of 30 discrete points. Utilizing all of the captured

features, the results of the dynamic data classification are

presents Table 8.

The results presented in Table 8 show that classification

based on the raw signature data has a high classification

error for every type of classifier, always returning a worse

Table 6 FAR, FRR and

accuracy measures for various

classification methods applied

to both unreduced and reduced

datasets

a The average verification time

for one person

Classifier All features and methods Pre-selected features and methods

FAR

(%)

FRR

(%)

Accuracy

(%)

Timea

(ms)

FAR

(%)

FRR

(%)

Accuracy

(%)

Timea

(ms)

k-NN 54.25 0.00 72.87 362 1.08 2.53 97.92 350

RanF 22.00 2.75 87.62 317 5.75 0.00 97.12 303

RanT 40.25 19.75 70.00 217 18.75 2.00 89.62 274

J48 71.25 19.25 54.75 292 62.25 5.75 66.00 297

PART 71.25 19.25 54.75 325 62.25 5.75 66.00 256

[ ]jA f= , where jf  is a set of   j-th feature points in the analyzed signature. 

Let A be the input sequence; 
Let B be the A sequence after equalization; 
Load the input sequence A; 
Specify the length of the output sequence B; 

length of  the input sequence 
jump =

length of  the output sequence 

A

B  ;

for each (i >= 1 and i < the length of the output sequence B); 

position  = jump*i ; 
if (position > length of the input sequence A) then

position = length of the input sequence A;  
  end 
  if position  < 1 then 

position  = 1;
  end 

B(i) = A(position);
end 
Return B; 
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recognition level than the data from Table 6 in which the

classification was performed on a complete and then on a

reduced dataset. Additionally, processing time for single

signature verification was significantly longer for a raw

signature features.

The correctness of the results shown in Tables 4 and 5 was

also statistically verified using appropriate comparative stud-

ies. The results obtained were compared using a k-fold cross-

validation and the paired t-method [12, 48]. In the k-fold cross-

validation, the data set is partitioned into k disjoint subsets of

the same size. A single subset is used as the validation data

while the remaining k - 1 subsets are used as training data. The

cross-validation process is then repeated k times. The advan-

tage of this method is that all observations are utilized for both

the training and the validation part and each observation is

used in the validation process exactly once.

This process can be described in more detail. Let there

be two classification algorithms: A and B. The algorithms

are to be tested on the basis of the same data set X. Let

there be two sets: the training set {Ti:i = 1, …k} and the

validation set {Vi:i = 1, …k}. Under the proposed k-fold

cross-validation, the set X is divided into disjoint subsets

Xi 2 X, i = 1, …k as follows:

V1 ¼ X1 T1 ¼ X2 [ X3 [ . . . [ Xk

V2 ¼ X2 T2 ¼ X1 [ X3 [ . . . [ Xk

..

. ..
.

Vk ¼ Xk Tk ¼ X1 [ X2 [ . . . [ Xk�1

ð41Þ

The misclassification rate in fold i is defined as follows:

pAi ¼ 1

N

XN

j¼1

errAj ; p
B
i ¼ 1

N

XN

j¼1

errBj ; ð42Þ

where

err
AðBÞ
j ¼

1 if classifier AðBÞ gives a classification error

0 otherwise
;




ð43Þ

and N is the number of examples classified by both

algorithms.

In addition, let the error differences of a pair-wise

algorithm be described in the form:

pi ¼ pAi � pBi : ð44Þ

Bearing in mind that pi
A and pi

B have an approximately

normal distribution, their mutual difference should also be

normally distributed. Thus, we could assume that pi * -

N(0, d2). Because both parameters l and d are unknown,

they have to be estimated from the mean and the standard

deviation. For this assumption simply defined the appro-

priate estimators:

m ¼ 1

k

Xk

i¼1

pi and s2 ¼ 1

k � 1

Xk

i¼1

ðpi � mÞ2: ð45Þ

Thus, under the null hypothesis H0:l = 0 (vs

H1:l = 0) we obtained a statistic t-distributed with k - 1

degrees of freedom [25]:

ffiffiffi
k

p
ðm� 0Þ
s

¼ m
ffiffiffi
k

p

s
� tk�1: ð46Þ

When the value tk-1 is outside of the range ( - ta/2,k-1,

ta/2,k-1) we can reject the hypothesis H0 and we can claim

that the algorithms A and B produce statistically different

results. This is evaluated at the level of significance a. We

could also check, for example, whether the algorithm A

generated smaller errors than the algorithm B. In this case,

we applied a one-sided t test ( - ?, ta/2,k-1). The results

obtained have been collated in Tables 9, 10. All compu-

tations were performed with respect to a significance level

of a = 0.05 with k = 10. From the values listed in the

well-known t-distribution tables, we obtained the range

Table 7 A comparison of the performance of various signature rec-

ognition systems

The approach FAR FRR Signature

recognition

system

Off-

line

On-

line

Proposed approach—Hotelling’s

reduction and k-NN

1.08 2.53 ? ?

Exterior contours and shape features 6.90 6.50 ?

HMM and graphometric features 23.00 1.00 ?

Virtual support vector machine 13.00 16.00 ?

Genetic algorithm 1.80 8.51 ?

Variable length segmentation and

HMM

4.00 12.00 ?

Dynamic feature of pressure 6.80 10.80 ?

Consistency functions 1.00 7.00 ?

On line SRS—digitizer tablet 1.10 3.09 ?

The selected best results based on the report [6, 7]

Bold values indicate the best results

Table 8 FAR, FRR and accuracy for various classification methods

applied to the raw data

Classifier FAR (%) FRR (%) Accuracy (%) Timea (ms)

k-NN 25.22 23.92 75.83 105

RanF 23.45 18.47 80.25 133

RanT 32.50 24.79 73.66 135

J48 34.29 20.16 75.75 142

PART 35.26 20.60 75.16 136

a Average verification time of a one signature

Bold value indicates the best result
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�ta=2;k�1; ta=2;k�1

� �
¼ �t0:025;9;þt0:025;9

� �
¼ �2:685;ð

þ2:685Þ:
From Table 9, then, it followed that the Hotelling and

the PCA approaches return different recognition results and

that the Hotelling method generated a smaller number of

FAR errors, with tk-1 * 35.10, so the Hotelling’s tech-

nique should be preferred.

Similar results were produced for the comparison of the

Hotelling and PCA methods when the FRR coefficient was

utilized as the evaluative criteria. All computations are

presented in Table 10. In this case, tk-1 * 4.74, so the

Hotelling features analysis again gives better results than

the PCA technique. Exactly the same comparison was

conducted between the Hotelling and the SVD methods.

These results have all been presented in Tables 11 and 12,

which include results for which the FAR/FRR coefficient

was estimated. In these cases, the appropriate t-distributed

values returned for the values from Table 11 were

tk-1 * 34.79 and, for the values listed in Table 12,

tk-1 * 52.00. It can thus be observed that the Hotelling

method gives significantly better object recognition in

comparison to the SVD technique.

Table 9 PCA and Hotelling

comparison by means of the

cross-validation paired t test—

for the FAR mode

10-fold cross-validation partition Mean

(m)

Stdev

(s)

PCA

pi
A 0.023 0.022 0.024 0.022 0.022 0.022 0.022 0.023 0.022 0.022 0.0224 0.0007

Hotelling approach

pi
B 0.011 0.011 0.012 0.011 0.011 0.012 0.013 0.011 0.011 0.010 0.0113 0.0008

Difference

pi 0.012 0.011 0.012 0.011 0.011 0.010 0.009 0.012 0.011 0.012 0.0111 0.0010

Table 10 PCA and Hotelling

comparison by means of cross-

validation paired t test—for the

FRR mode

10-fold cross-validation partition Mean

(m)

Stdev

(s)

PCA

pi
A 0.026 0.028 0.026 0.026 0.026 0.025 0.026 0.026 0.026 0.026 0.0261 0.0007

Hotelling approach

pi
B 0.025 0.026 0.025 0.025 0.025 0.025 0.025 0.025 0.026 0.025 0.0252 0.0004

Difference

pi 0.001 0.002 0.001 0.001 0.001 0.000 0.001 0.001 0.000 0.001 0.0009 0.0006

Table 11 SVD and Hotelling

comparison by means of the

cross-validation paired t test—

for the FAR mode

10-fold cross-validation partition Mean

(m)

Stdev

(s)

SVD

pi
A 0.021 0.021 0.022 0.021 0.021 0.021 0.021 0.022 0.021 0.021 0.0212 0.0004

Hotelling approach

pi
B 0.011 0.011 0.012 0.011 0.011 0.012 0.013 0.011 0.011 0.010 0.0113 0.0008

Difference

pi 0.010 0.010 0.010 0.010 0.010 0.009 0.008 0.011 0.010 0.011 0.0099 0.0009

Table 12 SVD and Hotelling

comparison by means of cross-

validation paired t test—for the

FRR mode

10-fold cross-validation partition Mean

(m)

Stdev

(s)

SVD

pi
A 0.039 0.040 0.041 0.040 0.041 0.039 0.040 0.039 0.042 0.039 0.0400 0.0011

Hotelling approach

pi
B 0.025 0.026 0.025 0.025 0.025 0.025 0.025 0.025 0.026 0.025 0.0252 0.0004

Difference

pi 0.014 0.014 0.016 0.015 0.016 0.014 0.015 0.014 0.016 0.014 0.0148 0.0009
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8 Conclusions

In this paper, the features of the object of interest have

become are more extensively understood because the

classical features and the best methods of recognizing them

have together been formed into a new form of statistical

data. In our opinion, this can be treated as a new data

mining technique. The originality of the proposed approach

follows from the fact that the classifier utilizes not only the

features extracted, but also the best similarity measures

appropriate to any given problem. From the investigation

conducted, it then was seen that the FSM method gives the

best object recognition level when compared to two other

widely used methods in which only the features of an

object are analyzed. Under the proposed approach, the

feature space is intimately connected with the set of sim-

ilarity measures to be used in the recognition process. Such

an association is a new proposition: a composition signa-

tures feature values. However, such an approach has not

yet been applied.
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