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Abstract: Using steady-state luminescence measurements, the luminescence spectra of Ce3+, Pr3+,
Nd3+, Sm3+, Eu3+, Dy3+, Er3+ and Yb3+ for the agrellite sample from the Kipawa River region have
been measured. The emission spectra of Eu3+ and Dy3+ next to those of Sm3+ and Pr3+ have been
measured for characteristic excitation conditions. The most efficient luminescence activator in the
studied sample was Ce3+. This ion was also a sensitizer of Pr3+, Sm3+, Eu3+, and Dy3+ luminescence.
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1. Introduction

Agrellite is a rather rare mineral and is usually found in pegmatite lenses and pods or in mafic
gneisses in a regionally metamorphosed agpatic alkali rock complex. It occurs with eudialyte, britholite,
aegirine, as well as miserite, vlasovite, calcite, fluorite, clinohumite, gittinsite, norbergite, zircon,
biotite, phlogopite, galena, and quartz. The most known localities of it are the Sheffield Lake complex,
Kipawa River, Villedieu Township, Québec (Canada), Dara-i-Pioz massif, Alai Range, Tien Shan
Mountains (China), (Tajikistan), the Murun massif, southwest of Olekminsk, Yakutia, (Russia) and
Wausau complex, and finally, Marathon Co. in Wisconsin (USA). Among the minerals from the
Kipawa River complex, only britholite, fluorite, calcite, miserite, and zircon are predisposed to exhibit
fluorescence from lanthanide ions. However, no such reports are known so far. The knowledge of
agrellite luminescence comes from websites only [1–3], and from the Gorobets and Rogojine review
book [4]. According to these sources, agrellite has a dull pink color or a bright pink color under
shortwave ultraviolet (SW UV) or longwave ultraviolet (LW UV, respectively. The following emission
centers have been observed [4]: Ce3+, Dy3+, and Sm3+ for samples from the Kipawa River; Fe3+, Mn2+,
Eu2+, and presumed Nd3+ for samples from the Yakutia; and of Ce3+ and Mn2+ for specimens from
the Dara-i-Pioz. The latest results of spectroscopic investigation of agrellite samples from Dara-i-Pioz
(Tajikistan) and Murun massif (Russia) shows luminescence from Ce3+ and EPR spectra of Mn2+ [5].

An attempt was also made to synthesize sodium calcium silicate with an initial composition such
as agrellite [6]. These materials were doped with Mn2+ (1%, 2%, and 3%), Ce3+ (0.5%), and Tb3+ (4%),
but as a result of synthesis, multiphase nanoparticles composed of wollastonite 2M CaSiO3, devitrite
Na2Ca3Si6O16, and cristobalite SiO2 was formed.

The current paper presents the preliminary results of a study of the luminescence properties of
agrellite NaCa2Si4O10F specimens from the Kipawa Alkaline Complex, Québec, Canada.

Agrellite crystallized in triclinic, space group P(−1), and unit cell parameters are: a = 7.759 (2) Å,
b = 18.946 (3) Å, c = 6.986 (1) Å, α= 89.88◦, β= 116.65◦, γ= 94.34◦, Z = 4 [7]. All atoms in the agrellite
lattice are present in general positions and the Wyckoff site of all atoms is denoted as 2i. The crystal
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structure of agrellite consists of two different NaO8 distorted cubes polyhedra, two CaO5F octahedra
(hereinafter referred to as Ca1B and Ca2A), and two CaO6F2 polyhedra (named as Ca1A and Ca2B)
coupled with two different Si8O20 chains [7]. The mean of Ca–O and Ca–F distances are smaller for
CaO5F octahedra and equal for Ca1B and Ca2A, respectively 2.381 Å, 2.192 Å, 2.367 Å, and 2.201 Å
than CaO6F2 and equal for Ca1A and Ca2B, respectively 2.574, 2.402, 2.615 Å and 2.454 Å (Figure 1a,b).
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Figure 1. A sketch of agrellite structure: (a) on (100) plane; oxygen atoms—small red balls, silicon
atoms—small blue balls, calcium atoms—big blue balls, Ca1A site—big blue and magenta balls,
sodium atoms—big yellow balls, and fluorine atoms—small black balls; (b) on (010) plane; small
dark blue tetrahedra in Si8O20 chains, big light blue Ca–O, F and yellow NaO8 polyhedra; small red
balls—oxygen atoms.

2. Materials and Methods

The agrellite sample studied here takes the form of fine lath-shaped aggregates measuring from a
few to over 100 mm in length. It has a greenish-white color (Figure 2a) which changes to lavender-pink
under mid UV (Figure 2b).
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Rare earth elements (REE) concentrations in the studied agrellite crystal were measured by the
ISP-MS method at ACMA Lab (Canada), and the results are listed in Table 1. Steady-state fluorescence
measurements for ions shown in the chemical analysis were performed using a Jobin-Yvon (SPEX)
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spectrofluorimeter FLUOROLOG 3-12 (Jobin-Yvon, Grenoble, France SPEX at room temperature
using a 450 W xenon lamp, a double-grating monochromator, and a Hamamatsu 928 photomultiplier
(Hamamatsu Photonics, Shizuoka, Japan). The wavelength range for emission and excitation spectra
was from 250 to 900 nm, and the resolution no lower than 1 nm. For such conditions, the emission and
excitation spectra of Ce3+, Pr3+, Sm3+, Eu3+, Dy3+, and Er3+ in the UV–Vis range were recorded. The
emission spectra of Nd3+, Yb3+, and Er3+ also in the NIR range were measured utilizing a Dongwoo
Optron DM711 monochromator (MaeSan-Ri, Opo-Eup, GwangJu-Si, Gyeonggi-Do, Korea) coupled
with a Hamamatsu 928 photomultiplier (Hamamatsu Photonics, Shizuoka, Japan), and an InGaAs
detector (Hamamatsu Photonics, Shizuoka, Japan) or PbS detector (Hamamatsu Photonics, Shizuoka,
Japan) depending on the spectral region. An InGaAs diode laser (Appolo Instruments, Irvine, USA)
emitting infrared radiation at 975 nm and an AlGaAs diode laser (CNI, Changchun, China) emitting at
808 nm were used as continuous wave excitation sources.

Table 1. Concentration of some transition elements in the studied agrellite sample.

Contents (ppm)

Y La + Lu Ce Pr Nd Sm Eu Gd
>2000 >2000 >2000 1174 >2000 1034 136 1265

Contents (ppm)

Tb Dy Ho Er Tm Yb Mn Fe
221 1419 282 772 93 458 1454 <2000

3. Results

In the studied agrellite specimen, the minimum content of lanthanide ions as a potential
luminescence activator can be estimated as 1.0% (Table 1). If the distribution of these ions is
uniform, then these ions are present in every 2.5 unit cell. The maximum distance among 4f ions is not
less than 17.5 Å and not more than 47.25 Å.

Using steady-state fluorescence measurements, the emission of the following lanthanide ions
were measured: Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, Er3+, and Yb3+. Despite the significant Mn content, the
emission spectra of Mn2+ were not measured. Unlike the [4] data, no emission from Fe3+ was obtained.

3.1. Nd3+, Yb3+, and Er3+ Luminescence

The emission of Nd3+ was measured as a group of three multiples (Figure 3). The most intense
was measured at 1046, 1060, 1064, 1078, and 1092 nm and corresponds to the 4F3/2→

4I11/2 transition.
Another group of lines at 879, 885, 893, 905, and 917 nm is associated with the 4F3/2→

4I9/2, transitions
and the last with lines at 1313, 1335, and 1340 nm-with the 4F3/2 →

4I13/2 transitions. The emission
spectrum of Yb3+ was not very intense (inset of Figure 3) and band 979 nm corresponds to the transition
2F5/2→

2F7/2.
It was expected that the measurement of distinct emission lines of Er3+ would be possible due to

the significant content of this ion and its high luminescence efficiency. However, the emission bands
of Er3+ corresponding to the 2H11/2 →

4I15/2, 4S3/2 →
4I15/2 and 4F9/2 →

4I15/2 transitions and usually
measured at a 500–600 nm range were not clearly visible for steady-state luminescence measurements
using a xenon lamp excitation, contrary to time-resolved measurements [8]. It has previously been
verified [9] that for steady-time measurements using a xenon lamp, the most convenient excitation for
Er3+ is λ = 377 nm. However, for the studied agrellite specimen, only a weak emission band at 543 nm
was measured (Figure 4). In the NIR range, the distinct emission band at 1533 nm (1554 nm, 1512 nm,
and 1488 nm) was measured as a result of the 4I13/2→

4I15/2 transition (Figure 5). Using laser excitation,
emission bands of 2H11/2→

4I15/2, 4S3/2→
4I15/2, and 4F9/2→

4I15/2 transitions were also obtained (inset
in Figure 5). However, the intensities of these bands at 520 and 550 nm were very weak, not only in
comparison with the Er3+ emission in the NIR range but also with the Sm3+ and Pr3+ emission lines,
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although the samarium or praseodymium concentration was not much higher than the Er content
(Figure 6).Minerals 2019, 9, 752 4 of 15 
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3.2. Ce3+ Fluorescence

The cerium content in the studied agrellite sample was high. Electric-dipole 4f–5d transitions are
even and spin allowed with the oscillator strength at half-width and short luminescence decay time.
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Cerium Ce3+ is often added to synthetic crystals because of its well-known properties as an efficient
sensitizer of luminescence. Luminescent materials doped with Ce3+ can efficiently absorb excitation
energy. A very intensive emission band at 388 nm has been measured (Figure 7). The zero phonon line
(ZPL) position was designated in the point of spectral overlap of the excitation and emission curves, i.e.,
at λ = 337 nm (29,673 cm−1). The Stokes shift ∆S, as the energy difference between absorption/excitation
and emission maxima of transition between the lowest 5d and the 4f ground states, is equal to 1567
cm−1. This value is not very high, probably owing to the high coordination number around Ce3+ and
the long Ca–O distance [10,11]. For the lowest Raman frequency of agrellite 331 cm−1, the Huang-Rhys
parameter S is equal to S = 2.8, so electron-phonon coupling may be recognized as intermediate.Minerals 2019, 9, 752 7 of 15 
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Figure 7. Photoluminescence spectra of Ce3+ in agrellite sample.

On the excitation spectra, two bands at 284 nm and 321 nm were recorded, so the crystal-field
splitting 10 Dq of 5d level was estimated as 4059 cm−1. The upper excited level of Ce3+ is T2g and the
lower is Eg. The 10 Dq parameter for Ce3+ usually has a value in the 5000–10,000 cm−1 range. For
the studied crystal it was slightly smaller because the Ca–O length in agrellite is larger than in other
Ca–minerals, for example fluor-apatite. The emission band of Ce3+ is nearly symmetric, although it
was fitted to two Gaussian components with maxima at 28,023 cm−1 and 25,819 cm−1 (R2 = 0.998) that
can be discerned, (Figure 8), which correspond to the transition terminated on the 2F5/2 and 2F7/2 levels.

The intensity of the Ce3+ emission band at 388 nm measured for λexc = 284 nm was almost
1.5 times higher than those observed for λexc = 321 nm, despite the power of the xenon lamp is lower
at λ = 284 nm than at 321 nm. This may indicate that a significant part of the excitation energy at
λexc = 321 nm in the studied mineral transferred to other luminescence centers.

In [5] for the agrellite sample from Dara-i-Pioz, the emission and excitation spectra of Ce3+ have
been presented. The Ce-content in this sample was 1160–1263 ppm, distinctly less than for the Kipawa
River (Table 1). The emission band of Ce3+ was measured at 370 nm as a rather symmetrical band,
while on the excitation spectrum, the following bands have been measured: 190, 220, 245, 281, and
317 nm. The differences in emission and excitation bands for the sample from Dara-i-Pioz (Tajikistan)
and the Kipawa River are certainly due to the change in the Ce–O bonding length in both samples.
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It can be concluded that the crystal-field strength for the Kipawa River specimen is less than for the
sample from Dara-i-Pioz. The possibility of Ce4+ presence and Ce4+ charge transfer bands on the
absorption spectrum at 400 nm, which may be due to the gray color of agrellite crystals, was also
assumed [5].
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For the studied agrellite sample, the energy transfer between Ce3+ and Dy3+, Eu3+, Sm3+, and
Pr3+ were found. Energy transfer in phosphors with sensitizer-activator ion pairs means that part of
the excitation energy of the sensitizer ion transfers to activator ion through a non-radiative process and
it subsequently enhances or generates the emission of the activator. The energy transfer among Ce3+

and other 4f ions is well known and used to synthesize phosphors with expected properties [12–18].
Gd3+ is another activator with intense absorption and emission lines in the UV range. Its excitation

line is usually at 275 nm and corresponds to 8S7/2 →
6I7/2 transition, while emission could occur

either from the 6I7/2 or the 6P7/2 level as a 312 nm band. The Gd3+ emission was rarely measured
for mineral samples. However, the Gd3+ luminescence was found in some scheelite, anhydrite,
apatite, and fluorite specimens [19]. Moreover, it was found for CaF2 [19] that due to energy transfer
(6I7/2-6P7/2)(Gd3+)-(3F2,3H6-3H4)(Pr3+), the emission at 275 nm is weakened, whereas at 312 nm it is
enhanced. After using laser induction [4], time-resolved measurements of the Gd3+ fluorescence for
zircon, anhydrite, and hardystonite have been prepared. The energy transfer among Gd3+ and many
RE3+ have been analyzed [10–27]. For the studied agrellite sample, the energy transfer from Gd3+ to
RE3+ could be excluded. The validity of this thesis is based on the fact that:

(a) for all substances known from existing literature, the Gd2O3 content was about 25 mol% or more.
(b) the excitation and emission lines of Gd3+ did not appear in the agrellite spectra at all, although

certain narrow lines should be clearly visible.

3.2.1. Energy Transfer Ce3+-Dy3+

The intense emission of Dy3+ related to 4F9/2 →
6H13/2 transition at 575 nm was measured for

the most suitable excitation at λ = 438 nm (solid olive line in Figure 9). However, for λexc = 321 nm,
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not only was Ce3+ emission at 388 nm measured, but so was a Dy3+ emission band (solid red lines in
Figure 9), and luminescence intensity was stronger than for the previous excitation. Moreover, on the
excitation spectrum at λem = 575 nm corresponded to the 4F9/2 →

6H13/2 transition (dash-dot olive line
in Figure 9), while the excitation band at 321 nm prevails on the Dy3+ band. It appears that the Ce3+

excitation band overlapped on the Dy3+ 4f9-4f85d broadband or that it is transferred to the 4K15/2, 17/2

excited Dy3+ level.
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Figure 9. The photoluminescence spectra of Dy3+, Sm3+, and Pr3+ and Ce3+. Solid lines—emission
spectra: black—λexc = 284 nm, red—λexc = 321 nm, olive line—λexc = 348 nm. Dash-dot lines—excitation
spectra: dark olive line—λem = 575 nm, black line—λem = 388 nm.

3.2.2. Energy Transfer Ce3+-Sm3+, Pr3+, and Eu3+

The efficient emission of Sm3+ and Pr3+ was also found for agrellite crystal. In the spectral range
of 550–700 nm, the emission lines of these two ions are located close to each other and are: at 562 nm
and 569 nm as 4G5/2→

6H5/2 transition of Sm3+; at 601 nm and 607 nm of both Sm3+ 4G5/2→
6H7/2 and

Pr3+ 1D2 →
3H4 + 3P0 →

3H6 transitions; and at 648 nm mainly for Pr3+ transition 3P0 →
3F2. As it

was found earlier [9], the most convenient excitation for Sm3+ is the 399-402 nm line, while for Pr3+ it
is 480 nm (Figure 10).

For λexc = 402 nm excitation, beside of Sm3+ and Pr3+ emission lines, the Eu3+ emission at 613 nm
attributed to transition 5D0→

7F2 have been measured as well (Figure 11).
No emission of Eu2+ was found. The emission of Eu3+ as a characteristic line at 613 nm was

obtained for the most convenient excitation λexc = 393 nm (Figure 12). However, this excitation also
caused Sm3+ and Pr3+ emission.
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Figure 11. The photoluminescence spectra of Pr3+, Sm3+, and Eu3+ in agrellite. Emission spectrum
measured at λexc = 402 nm excitation—magenta line, excitation spectrum at λem = 613 nm—blue line,
excitation spectrum at λem = 601 nm—red line, and excitation spectrum at λem = 648 nm—black line.



Minerals 2019, 9, 752 10 of 13

Minerals 2019, 9, 752 11 of 15 

 

No emission of Eu2+ was found. The emission of Eu3+ as a characteristic line at 613 nm was 

obtained for the most convenient excitation λexc = 393 nm (Figure 12). However, this excitation also 

caused Sm3+ and Pr3+ emission. 

 

Figure 12. Excitation and emission spectra of Eu3+ in agrellite. 

Under excitation λexc = 321 nm, not only the emission of Dy3+ (574 nm) but also of Sm3+ and Pr3+ 

(562 nm, 569 nm, 601 nm, 607 nm), was measured (Figure 9). On the excitation spectra monitored at 

562 nm, not only the most convenient bands for Sm3+ (and Pr3+) were measured but an intense band 

of Ce3+ was recorded too. In the excitation spectra of Sm3+, Pr3+, and Eu3+, the Ce3+ band at 321–323 

nm always appeared and it was intense. (Figure 13). This same effect has been measured when 

luminescence was excited into the Ce3+ emission band, i.e., 388 nm (Figure 14). 

Figure 12. Excitation and emission spectra of Eu3+ in agrellite.

Under excitation λexc = 321 nm, not only the emission of Dy3+ (574 nm) but also of Sm3+ and Pr3+

(562 nm, 569 nm, 601 nm, 607 nm), was measured (Figure 9). On the excitation spectra monitored
at 562 nm, not only the most convenient bands for Sm3+ (and Pr3+) were measured but an intense
band of Ce3+ was recorded too. In the excitation spectra of Sm3+, Pr3+, and Eu3+, the Ce3+ band at
321–323 nm always appeared and it was intense. (Figure 13). This same effect has been measured
when luminescence was excited into the Ce3+ emission band, i.e., 388 nm (Figure 14).Minerals 2019, 9, 752 12 of 15 
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Figure 14. The emission spectra of Pr3+ and Sm3+ under Ce3+ excitations.

The presence of the Ce3+ excitation band in the PLE spectrum of Dy3+, Sm3+, Pr3+, and Eu3+

indicated the occurrence of Ce3+
→ (Dy3+, Sm3+, Pr3+, and Eu3+) energy transfer process. Upon UV

irradiation, electrons from the 2F5/2 ground state of Ce3+ are excited into the 5d excited state. Some of
these electrons return to the ground states (2F7/2 and 2F5/2) of Ce3+ ions, resulting in the violet-blue
emissions of Ce3+ due to the 5d→ 4f transition. At the same time, owing to the nonradiative resonant
energy-transfer, a portion of excited electrons can be transferred into the 4K15/2, 17/2 excited levels of
Dy3+ and then relax, mainly as 4F9/2→

6H13/2 transition. Similarly, another portion of excited electrons
can be transferred into excited levels of 4K11/2 or 3P2 of Sm3+ or Pr3+ and subsequently, the electrons
can relax to their ground levels.

4. Conclusions

In the studied agrellite crystal, the lanthanide ions form a complex arrangement of luminescence
centers. The f-f emission of many ions has been distinctly excited by the excitation band of Ce3+.
Generally, the mechanism of energy transfer from donor to acceptor ions can be attributed to an
exchange interaction or electric multipolar interaction. The average distance Rc between the Ce3+

donors and Sm3+ or Pr3+ acceptors was estimated as a value according to the below equation where C
is the total concentration of 4fn ions in the studied sample, N is the coordination number, and V is the
cell volume:

Rc = 2
3

√
3 ·V

4π ·C ·N

when this value was determined to be 19.38 Å and it is greater than 5 Å, the energy transfer process
would take place via electric multipolar interaction. The direct confirmation of this conclusion could
be obtained by measuring the decay lifetimes of Ce3+, Dy3+, Sm3+, and Pr3+ emissions, as well as
the changes in luminescence intensities of these ions for samples containing their variable content.
It is necessary to carry out measurements for other specimens of agrellite, differing in the content of
these ions.
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Contrary to the information on the website [3], the luminescence of Mn2+ has not been observed,
although it was stated at 580 nm; similarly, no emission band of Eu2+ which was notified at 410 nm
was observed. Additionally, the emission lines of Dy3+ at 478 nm or of Er3+ at 522 nm were not clear.
It was observed that the measured emission spectra in the 400–560 nm range show intensive scattering
of incident radiation not related to the effect of light reflection from the crystal surface. It can be
assumed that it is due to the presence of numerous defects on [Si4O10]4− and will be confirmed after
femtosecond excitation measurements.

Some differences have been observed between the emission spectra of agrellite specimens for
various localities presented in [4] or [5] and our results. The main reason for these differences is
certainly the difference in REE content, although the data contained in [1,2] are incomplete. The agrellite
specimen from the Kipawa River studied in the current research contains more Ce and a comparable
amount of Mn and Fe as a sample from Dara-i-Pioz, and it is more than the sample from Yakutia [5].
However, contrary to [1] but similar to [5], we did not measure the emission of Mn2+ as was stated
for the specimen from Dara-i-Pioz, and also the emission of Fe3+

tetra and Eu2+ as was shown for the
specimen from Yakutia. Compared to previous luminescence results for specimens from the Kipawa
River [4], the emissions from Er3+, Pr3+, and Eu3+ were also measured in the current research.

The most important result of the present research is the demonstration of the phenomenon of
effective energy transfer between Ce3+ as a donor and Pr3+, Sm3+, and Dy3+ as the acceptors. For this
reason, a synthetic material based on agrellite, subsidized with the right amount of these ions, can be
an efficient white light emitter.
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