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Functional Equation f(x � g(y)) = f(x)
f(y)
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Abstract. We present a solution of Ulam’s stability problem for the func-
tional equation f(x � g(y)) = f(x)f(y) with vector-valued map f .
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1. Introduction

In 1940 S. M. Ulam at the University of Wisconsin proposed the following
problem: “Give conditions in order for a linear mapping near an approximately
linear mapping to exist”. In 1968 S. U. Ulam proposed the more general prob-
lem: “When is it true that by changing a little the hypotheses of a theorem one
can still assert that the thesis of the theorem remains true or approximately
true?” (see [8]). In 1978, Gruber [4] reformulated his question by posing a
more general stability problem: “Suppose a mathematical object satisfies a
certain property approximately. Is it then possible to approximate this object
by objects, satisfying the property exactly?”. This initiated a broad research
program on the stability problem in theory of functional equations; for more
information the reader may consult [5]. In [6] Najdecki considered the Ulam
stability problem for the functional equation

f(x � g(y)) = f(x)f(y) (1)

and proved the following version of the Baker superstability result [1]
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Theorem 1 (Najdecki). Let (X, �) be a semigroup, g : X → X, f : X → K,
where K ∈ {R,C}, and let ε ≥ 0. If

|f(x � g(y)) − f(x)f(y)| ≤ ε, x, y ∈ X,

then either f is bounded and |f(x)| ≤ 1+
√
1+4ε
2 , for x ∈ X, or

f(x � g(y)) = f(x)f(y), x, y ∈ X.

Considering K
n as an algebra (with multiplication by coordinates) Na-

jdecki [6] proved also

Theorem 2 (Najdecki). Let (X, �) be a semigroup, g : X → X, F : X → K
n

and let ε ≥ 0. If

‖F (x � g(y)) − F (x)F (y)‖ ≤ ε, x, y ∈ X

then there exist ideals I, J ⊂ K
n such that Kn = I ⊕ J , PF is bounded and

(QF, g) satisfies

QF (x � g(y)) = QF (x)QF (y), x, y ∈ X,

where P : Kn → I and Q : Kn → J are natural projections.

These studies was continued by Chung [2].
In the paper of Najdecki [6] we find the following statement: “We present

a very short and simple proof that a similar result (similar to the results ob-
tained by Ger and Šemrl [3]) is valid for function F : X → K

n satisfying (with
any norm in K

n) the following more general condition:

‖F (x � g(y)) − F (x)F (y)‖ ≤ ε, x, y ∈ X ′′.

Also Chung [2] states: “Generalizing the result of Ger and Šemrl [1], Najdecki
[2] proved the stability of the functional equation

F (x � g(y)) − F (x)F (y) = 0, x, y ∈ X

in the class of functions F : X → K
n”. But in the paper by Ger and Šemrl [3]

we find the following two more general theorems for vector-valued functions.

Theorem 3 (Ger - Šemrl). Let (S,+) be a semigroup and let A be a commuta-
tive semisimple complex Banach algebra. Assume that the mapping f : S → A
is such that
(a) the transformation

S2 	 (x, y) −→ f(x + y) − f(x)f(y) ∈ A

is norm bounded,
(b) for every nonzero linear multiplicative functional ϕ on A, the set (ϕ ◦

f)(S) is unbounded.
Then f is exponential, i.e.,

f(x + y) = f(x)f(y), x, y ∈ S.
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Theorem 4 (Ger - Šemrl). Let (S,+) be a semigroup and let A be a commuta-
tive C�-algebra. Assume that ε ≥ 0 and that a mapping f : S → A satisfies

‖f(x + y) − f(x)f(y)‖ ≤ ε,

for all x, y ∈ S. Then there exists a commutative C�-algebra B such that

(i) A is a C�-subalgebra of B (and therefore, f may be considered as a map-
ping from S into B),

(ii) algebra B can be represented as a direct sum B = I ⊕ J , where I and J
are closed ideals,

(iii) if P and Q are projections corresponding to the direct sum decomposi-
tion B = I ⊕ J , then Pf is an exponential mapping, i.e., Pf(x + y) =
Pf(x)Pf(y), for all x, y ∈ S and Qf is norm-bounded.

The following question appears: can we really get the results obtained by
Ger and Šemrl [3] also for the stability problem of the equation f(x � g(y)) =
f(x)f(y)? In the paper we give a positive answer to this question.

2. Main Results

As the analog of Theorem 3 we prove

Theorem 5. Let (S, �) be a semigroup, A be a commutative semisimple complex
Banach algebra and let g : S → S. Assume that the mapping f : S → A is
such that

(a) the transformation

S2 	 (x, y) −→ f(x � g(y)) − f(x)f(y) ∈ A

is norm bounded,
(b) for every nonzero linear multiplicative functional ϕ on A, the set (ϕ ◦

f)(S) is unbounded.

Then f and g satisfy

f(x � g(y)) = f(x)f(y), x, y ∈ S.

Proof. By assumption (a) there is a constant ε > 0 such that

‖f(x � g(y)) − f(x)f(y)‖ ≤ ε, x, y ∈ S.

Let ϕ be a fixed element of the set ΦA of all nonzero linear multiplicative
functionals on A. Then, using the fact that ‖ϕ‖ = 1, we get

‖(ϕ ◦ f)(x � g(z)) − (ϕ ◦ f)(x)(ϕ ◦ f)(y)‖
= ‖ϕ (f(x � g(y)) − f(x)f(y)) ‖
≤ ‖ϕ‖‖f(x � g(z)) − f(x)f(y)‖ ≤ ε,
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for all x, y ∈ S. Since (ϕ ◦ f)(S) is unbounded Najdecki’s result (Theorem 1)
shows that the function ϕ ◦ f satisfies Eq. (1) which means that f(x � g(y)) −
f(x)f(y) ∈ ker ϕ, for all x, y ∈ S. Thus, for x, y ∈ S,

f(x � g(y)) − f(x)f(y) ∈
⋂

{ker ϕ : ϕ ∈ ΦA} = radA.

But A is semisimple (radA = {0}) which proves that f(x�g(y))−f(x)f(y) = 0,
for all x, y ∈ S and ends the proof. �

If we assume that a semigroup S is commutative we can prove more.
Namely, we can show the counterpart of Shtern’s theorem (see [7]) for the
stability of our functional equation.

Theorem 6. Let (S, �) be a commutative semigroup and let A be a commutative
Banach algebra, g : S → S and let f : S → A. Assume that

(A) the transformation

S2 	 (x, y) −→ f(x � g(y)) − f(x)f(y) ∈ A

is norm bounded,
(B) every S-orbit

OS(b) = {f(x)b : x ∈ S}, b ∈ A\{0},

in A is unbounded.

Then the pair (f, g) satisfies

f(x � g(y)) = f(x)f(y), x, y ∈ S.

Proof. Let ε be a positive constant such that

‖f(x � g(y)) − f(x)f(y)‖ ≤ ε, x, y ∈ S.

Then for x, y, z ∈ S we have

‖f(z)[f(x)f(y) − f(x � g(y))]‖
≤ ‖f(x)f(z)f(y) − f(x � g(z))f(y)‖

+‖f(x � g(z))f(y) − f(x � g(z) � g(y))‖
+‖f(x � g(y) � g(z)) − f(x � g(y))f(z)‖

≤ ε · ‖f(y)‖ + ε + ε.

This means that the S-orbit of the element f(x)f(y) − f(x � g(y)) is bounded
and assumption (B) implies that

f(x � g(y)) = f(x)f(y),

which ends the proof. �

Let us point out that this theorem generalizes the previously proven the-
orem in the case of the commutative semigroup S.
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Corollary 1. Let (S, �) be a commutative semigroup and let A be a commutative
semisimple complex Banach algebra, g : S → S and let f : S → A. Assume
that
(α) the transformation

S2 	 (x, y) −→ f(x � g(y)) − f(x)f(y) ∈ A

is norm bounded,
(β) for every nonzero linear multiplicative functional ϕ on A, the set (ϕ ◦

f)(S) is unbounded.
Then (f, g) satisfies

f(x � g(y)) = f(x)f(y), x, y ∈ S.

Proof. Let b be a nonzero element of A. Then, since the algebra A is semisim-
ple, there is a linear multiplicative functional φ such that φ(b) �= 0. By con-
dition (β) the set (φ ◦ f)(S) is unbounded. Hence the set (φ ◦ f)(S)φ(b) is
unbounded. But

(φ ◦ f)(S)φ(b) = { φ(f(x))φ(b) : x ∈ S }
= { φ(f(x)b) : x ∈ S }
= φ ({ f(x)b : x ∈ S })
= φ (OS(b)) .

Therefore, for every nonzero b ∈ A, S-orbit OS(b) is unbounded and by The-
orem 6 the pair (f, g) satisfies

f(x � g(y)) = f(x)f(y), x, y ∈ S.

This ends the proof. �

As the analogue of Theorem 4 we prove the following

Theorem 7. Let (S, �) be a semigroup and let A be a commutative C�-algebra.
Assume that ε ≥ 0, g : S → S, f : S → A and

‖f(x � g(y)) − f(x)f(y)‖ ≤ ε,

for all x, y ∈ S. Then there exists a commutative C�-algebra B such that
(i) A is a C�-subalgebra of B,
(ii) algebra B can be represented as a direct sum B = I ⊕ J , where I and J

are closed ideals,
(iii) if P and Q are projections corresponding to the direct sum decomposition

B = I ⊕ J , then the pair (Pf, g) satisfies Pf(x � g(y)) = Pf(x)Pf(y),
for all x, y ∈ S and Qf is norm-bounded.

Proof. Let G : A → C0(Δ) be the Gelfand transform of A onto the alge-
bra of all complex continuous functions on a locally compact Hausdorff space
Δ which vanish at infinity. Then the Gelfand map G (by the commutative
Gelfand-Naimark theorem) is an isometric �-isomorphism from A onto C0(Δ).
So, we can identify the algebra A with the algebra C0(Δ). Moreover, using
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our assumption and the fact that the Gelfand transform G is an isometric
�-isomorphism, for every t ∈ Δ, we see that

|G(f(x � g(y)))(t) − G(f(x))(t)G(f(y))(t)| ≤ ε, x, y ∈ S.

It gives us that for every t ∈ Δ the complex-valued map

S 	 x �→ (G ◦ f)(x)(t)

satisfies inequality from Najdecki’s Theorem 1. By Najdecki’s result (Theorem
1) we known that for every t ∈ Δ either (G ◦ f)(·)(t) is bounded (by 1+

√
1+4ε
2 )

on S or satisfies the functional equation

G(f(x � g(y)))(t) = G(f(x))(t)G(f(y))(t), x, y ∈ S.

Let

Δb =
{

t ∈ Δ : |G(f(x))(t)| ≤ 1 +
√

1 + 4ε
2

, x ∈ S

}

and, for x ∈ S, let

Δx =
{

t ∈ Δ : |G(f(x))(t)| ≤ 1 +
√

1 + 4ε

2

}
.

Then

Δb =
⋂

x∈S

Δx

and, by continuity of the function (G ◦ f)(x)(·) on Δ, the set Δx is a closed
subset of Δ, for every x ∈ S. Therefore the set Δb is a closed subset of Δ.
Putting Δs = cl(Δ \ Δb) and using Najdecki’s theorem together with the
continuity of the function (G ◦ f)(x)(·) on Δ, for every x ∈ S, we obtain

G(f(x � g(y)))(t) = G(f(x))(t)G(f(y))(t), x, y ∈ S,

for every t ∈ Δs. Consequently we get a commutative C�-algebra C0(Δs)
for which the map G ◦ f satisfies our functional equation and a commutative
C�-algebra C0(Δb) for which the map G ◦ f is bounded (by 1+

√
1+4ε
2 ).

Let B be a commutative C�-algebra defined by B = C0(Δ1) ⊕ C0(Δ2)
with the norm given by ‖u ⊕ v‖ = max{‖u‖, ‖v‖}, for u ⊕ v ∈ B. Because a
map F defined as follows

C0(Δ) 	 ξ �→ ξ |Δs
⊕ξ |Δb

∈ B

is an isometric �-homomorphism (from C0(Δ) into B) we can regarded on A
as a C�-subalgebra of B (the map F ◦G is an isometric �-homomorphism from
A into B). Taking I = C0(Δs) ⊕ {0} and J = {0} ⊕ C0(Δb), in comparison to
previous observations, the proof is finished. �
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3. Open problem

The functional equation (1) was studied in general terms (for functions with
values in groups). We propose to study Ulam’s stability problem for the fol-
lowing “additive” version of Eq. (1)

f(x � g(y)) = f(x) + f(y).

Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s
Creative Commons licence and your intended use is not permitted by statutory regu-
lation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.
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Variables. Birkhäuser, Basel (1998)

[6] Najdecki, A.: On stability of a functional equation connected with the Reynolds
operator. J. Inequal. Appl. Article ID 79816 (2007)

[7] Shtern, A.I.: Exponential stability of quasihomomorphisms into Banach algebras
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