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Abstract

Typically discretisation procedures are implemented as a part of initial pre-processing of

data, before knowledge mining is employed. It means that conclusions and observations are

based on reduced data, as usually by discretisation some information is discarded. The

paper presents a different approach, with taking advantage of discretisation executed after

data mining. In the described study firstly decision rules were induced from real-valued fea-

tures. Secondly, data sets were discretised. Using categories found for attributes, in the

third step conditions included in inferred rules were translated into discrete domain. The

properties and performance of rule classifiers were tested in the domain of stylometric anal-

ysis of texts, where writing styles were defined through quantitative attributes of continuous

nature. The performed experiments show that the proposed processing leads to sets of

rules with significantly reduced sizes while maintaining quality of predictions, and allows to

test many data discretisation methods at the acceptable computational costs.

Introduction

Plenty of observed phenomena, objects, and problems are expressed through features that are

real-valued. Such descriptions provide very detailed definitions of studied concepts. The avail-

able attributes and their values constitute a source of knowledge that can be used to construct

a more general data model, which allows for pattern recognition and classification of unknown

examples [1, 2].

Continuous nature of variables is not necessarily an advantage [3]. Firstly, quite simply,

they are not always suitable for information systems as inputs. Secondly, they can be too spe-

cific to enable generalisation, thus limiting the predictive capabilities of the obtained data

models, and possibly causing the risk of overfitting. Due to the applied representations, the

real-valued features and built on them systems can also have significantly higher requirements

for storage and processing time.

Therefore, typically a tough decision needs to be made, either to accept continuous values

of attributes with all consequences, or, to implement some of discretisation algorithms [4].

They attempt to simplify and reduce data by transforming continuous input space into
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granular and discrete one, grouping occurring values into some number of ranges called bins.

Categorical representation is more concise and by that more general, and allows for more

compact forms of inducers. Discretisation most often involves some loss of information, and

this fact works both as an advantage and a disadvantage. When discretisation procedures are a

part of input data pre-processing, preceding data mining, then we mine data from which some

information was irrevocably removed. The differences in patterns, clearly detectable in contin-

uous domain, can become blurred or even completely obscured in discrete domain, and data

models learned from such data can suffer as a result. What is more, due to the high number of

existing discretisation methods, the choice of an algorithm that would be best suited to any

given problem, is not a trivial task [5].

In an ideal scenario, at the stage of data mining we would appreciate access to all available

information, which means operating on real-valued features. Once all knowledge about

described concepts is discovered, we would like it to be represented in such form that discards

all unimportant, unnecessary details, and keeps broader general categories, which can be

obtained through discretisation. To achieve these two aims the paper proposes a new approach,

which can be applied to inducers capable of working with both continuous and nominal attri-

butes, and allowing for easy access to structures representing learned knowledge, such as rule

classifiers. Decision rules store information about patterns detected in data by listing condi-

tions for features that lead to class labels. This transparent form enhances understanding, and

is one of the reasons why rule classification systems are often preferred as inducers [6].

Studied decision rules were induced within Dominance-Based Rough Set Approach

(DRSA) [7], which is a modification of Classical Rough Set Approach (CRSA). Rough set the-

ory, firstly proposed by Z. Pawlak [8], works well in tasks with incomplete and uncertain data

[9]. DRSA allows for nominal as well as ordinal classification due to observing orderings in

value sets, and replacing indiscernibility (fundamental for CRSA) with dominance relation. It

is often employed for multi-criteria decision making.

In the proposed methodology firstly decision rules were inferred from input continuous

data. Secondly, data was discretised by various approaches. Applying definitions of categories

obtained for all features, in the third step conditions in previously induced rules were discre-

tised, translating decision algorithms from real into discrete space. And finally, the characteris-

tics of discretised systems of rules, such as coverage and reduction of storage requirements,

were studied, while performance was evaluated by application of rule classifiers to indepen-

dently discretised test sets [10, 11]. With this new approach several discretisation methods

could be considered for a task at a lower cost. Typically the hardest step of knowledge induc-

tion was executed just once, and only discretisation procedures were performed repeatedly.

They were markedly less demanding of computational resources.

In this research framework, sets of decision rules were also induced from discrete data.

Their power was compared to discretised algorithms, and the original versions operating in

continuous domain. The results from the experiments show that the changed scenario of data

processing is worth of considerations, both with respect to performance of constructed classi-

fication systems and size reduction of their structures. The obtained results allowed also for

observations on interesting differences in trends visible between applied discretisation

methods.

The patterns, detected and classified by generated decision algorithms, reflected character-

istic properties of writing styles. These stylometric features provided descriptions for linguistic

preferences of authors in a numerical form [12]. It enabled authorship attribution of texts with

unknown or disputed authorship [13, 14] to be executed as a classification task, with stylome-

try as an application domain. In the presented study the input data sets were prepared for

binary classification with balanced classes.
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The paper is organised in the following manner. Section Background and related works

explains motivation leading to research and presents theoretical background, with descriptions

of rough set processing applied to data, specifics of characteristic features in stylometric

domain, and discretisation approaches. Section Setting up the experiment provides the details

of research framework, while Section Observations on research results includes specific com-

ments to the obtained results. Section Concluding remarks contains the summary and conclu-

sions, and indicates directions for future research.

Background and related works

The section presents formulation of the problem and motivation for research, which is fol-

lowed with the theoretical background. There are given brief descriptions for all involved

areas, namely rough set processing as a way to mine data, rule induction algorithms, stylo-

metric analysis of texts, and selected approaches to discretisation of input continuous data.

Problem formulation and motivation

The motivation for the new methodology proposed in the paper originated in the observation

that in many application areas analysed and studied concepts are described with continuous

characteristic features, which are discretised in order to facilitate representation of information

and the process of data mining. As the notion of discretisation has been studied for years,

there are many categories of algorithms to choose from, and various methods were employed

in research works [4, 15].

While some data mining methods require discrete data, there are also some techniques

capable of reasoning based on real-valued attributes, for example Naive Bayes, Artificial Neural

Networks [16], or decision trees. Among the latter C4.5 and C5.0 are popular algorithms [17,

18], which handle both continuous and discrete attributes. In [19], the Authors proposed a

hybrid technique for data classification, and showed that neural networks were better than the

direct application of induction trees in modelling nonlinear characteristics of raw data.

There were also conducted studies where inducers handled both types of data, but could

perform better with discretised features [20–22]. Performance of Naive Bayes classifiers in

continuous and discrete domain was studied e.g., in [10, 23]. The Authors of [24] compared

classification accuracy for raw and discretised data, and showed that discretisation helped to

improve the performance of Naive Bayes model.

In [5], an influence of discretisation methods on the power of associative classifiers was

investigated. Experimental results indicated that the performance of classifiers significantly

varied with the change of employed data discretisation algorithm.

Decision rule classifiers also belong with data mining approaches that allow to learn knowl-

edge from continuous data. They can be based on a decision tree, or obtained directly from the

training data using different rule induction algorithms. They are often preferred as inducers,

because they offer also easily accessible and clear representation of discovered knowledge,

which enhances understanding of learned patterns [6, 25].

In [26], the Authors compared the classification accuracy of rule sets induced after discreti-

sation of data based on conditional entropy, with those inferred by MODLEM algorithm,

where discretisation and rule induction were executed at the same time. The results did not

display significant differences. In [27], MLEM2 algorithm was proposed for rule induction

from numerical attributes. The obtained results showed that discretisation performed simulta-

neously with rule induction caused better classification accuracy of rule classifiers than in case

of discretisation preformed as a pre-proceesing data step. Moreover, the size of rule sets and

the total number of conditions were smaller in case of MLEM2 algorithm.
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As there are many discretisation procedures, both parametric and non-parametric [28], the

observation that the power of a classification system is highly dependent on the selection of a

discretisation method, brings the conclusion that a choice of the algorithm that would be best

suited for any given task is not straightforward.

One of possible attempts at finding a solution to this problem, is to perform discretisation

by several procedures, with varying parameters, and execute data mining for all versions of dis-

crete input data sets. Then, by evaluation of performance of obtained classification systems, we

could choose the best variant. However, such methodology could be unfeasible, as it would

require repeating the knowledge discovery process multiple times, and this step often is the

most time consuming part of the entire data mining task, with the highest computational

demands and costs.

Following this line of reasoning, in the paper a new methodology was proposed. Its origi-

nality lies with the reversed order of processing steps, where knowledge discovery (induction

of decision rules) precedes discretisation, and not the other way round, as in other traditional

approaches. The novelty of this research framework comes down to discretisation of not just

data but also the learned knowledge, captured in the directly accessible conditions on attri-

butes, included in the premises of inferred rules.

In the first step of processing, decision rules are induced from continuous input data sets.

Secondly, all input sets are independently discretised with various methods. Employing defini-

tions of intervals constructed for all features in discretisation of training sets, in the third step,

the real-valued conditions in rules are replaced with their categorical representations. It results

in obtaining sets of discrete decision rules with greatly decreased sizes.

The proposed methodology allows to try many discretisation algorithms for data, with the

acceptable overall computational costs. The step of rule induction, which typically is the most

demanding, is executed only once, and only discretisation is performed several times. Even

though it is more complex, as not only input data sets are transformed but constructed rule

sets as well, still the process requires less time and effort than it would take in the traditional

experimental setting. This increased complexity of discretisation can be considered as a disad-

vantage of the methodology. Also, the possibility that for some variant of discrete data better

rules could be inferred cannot be entirely ruled out. Yet the guarantee of choosing the best dis-

crete representation of data could only be found in exhaustive induction and comparison of

rule sets from all possible versions of discrete data sets.

CRSA vs. DRSA

Rough set processing is dedicated to cases of uncertain, imprecise, and incomplete knowledge

[3, 9]. In set theory only crisp sets are distinguished, and elements are either not included or

included in some set. In Classical Rough Set Approach, as originally defined by Pawlak [25],

not only elements that are included in a set are defined, but also elements that could belong to

the set. And further, in Dominance-Based Rough Set Approach there are recognised elements

which can be included at most, or at least in some set [7, 29]. Thus inherent mechanisms of

rough processing allow to define imprecise concepts through approximations, imposing a spe-

cific granular perspective upon the universe of discourse.

The available information about the universe is stored in the form of decision tables. A deci-

sion table consists of a finite set of objects of the universe U, a finite set of condition attributes

A = {a1, . . ., an}, and a finite set of decision attributes D. In multi-criteria decision making con-

dition attributes are called criteria, and it often happens that there is a single decision attribute

D = {d}. It partitions the universe into a finite number of recognised classes Cl = {Clt}, with

t = 1, . . ., m.
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CRSA works only for categorical attributes, as the universe of discourse is perceived

through granules of knowledge corresponding to equivalence classes of objects that cannot be

discerned by the values of their attributes. With the indiscernibility principle, CRSA argues

that when two objects x and y of the universe cannot be discerned, they should be classified in

the same way—that is to the same class. In consequence CRSA is capable only of observing

presence or absence of some property, which leads to nominal classification.

In DRSA dominance relation replaces indiscernibility, and values in all input data sets are

perceived as ordered. Let ≽q be a relation of weak preference defined for the set of objects with

respect to a criterion q. Let I = {1, . . ., n} be a set of the indices of condition attributes and,

without a loss of generality, fai : U ! R, for each i 2 I. For all objects x, y 2 U, faiðxÞ � faiðyÞ
means that “x is at least as good as y with respect to attribute ai”, and it is denoted as x≽ai

y. It is

said that x dominates y with respect to a set of attributes P� A, when the values of all consid-

ered attributes for x are at least as good as their correspondents of y, that is if for every attribute

ai 2 P, faiðxÞ � faiðyÞ. It is denoted by xDP y. The relation of P -dominance is reflexive and tran-

sitive. y is dominated by x when all attributes of y considered as criteria have values at most as

good as those of x. Respectively we have a set of objects dominating x, and a set of objects dom-

inated by x. These sets correspond to granules of knowledge recognised in DRSA:

• P-dominating set—a set of objects dominating x:

DþP ðxÞ ¼ fy 2 U : yDPxg,

• P-dominated set—a set of objects dominated by x:

D�P ðxÞ ¼ fy 2 U : xDPyg.

The dominance or Pareto principle states that when an object x is as good as another object

y (with respect to values of the attributes considered as criteria), then x needs to be classified at
least as good as y. On the other hand, if x is not better than y with respect to their attributes, x
should be classified at most as good as y.

Decision classes are preference ordered (as any other values of attributes in DRSA), with

increasing indices leading to increased preferences, that is for all r, s 2 {1, . . ., m}, such that r>
s, the objects from Clr are preferred to the objects from Cls. Where no clear natural order in

data exists, it needs to be defined or discovered [30]. An attribute is considered as cost type

when its lower value is preferred over higher, and for gain type higher values are preferred

over lower ones. Decision classes are always considered as gain. For condition attributes of

cost type lowest values point to more preferred classes, while gain type links higher values of

criteria with more preferred classes.

The upward or downward unions of classes are called dominance cones, Eq (1).

Cl�t ¼
[

s�t

Cls; Cl�t ¼
[

s�t

Cls; t ¼ 1; . . . ;m: ð1Þ

P-lower approximation of Cl�t , for P� A, is the set of objects that belong to Cl�t without any

ambiguity. It is denoted as PðCl�t Þ. P-upper approximation of Cl�t , denoted as �PðCl�t Þ, is the

set of objects that could belong to Cl�t ,

P ðCl�t Þ ¼ fx 2 U : DþP � Cl�t g; ð2Þ

�PðCl�t Þ ¼ fx 2 U : D�P \ Cl
�
t 6¼ ;g; ð3Þ

Calculation of approximations for dominance cones is the starting point for the process of

induction of decision rules. These rules provide conditions on some attributes ai and their
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values vai and can take four general forms.

if ða1 � va1
Þ ^ . . . ^ ðan � vanÞ then Cl

�
t ð4Þ

if ða1 � va1
Þ ^ . . . ^ ðan � vanÞ then Cl

�
t ð5Þ

if ða1 � va1
Þ ^ . . . ^ ðan � vanÞ then Cl

�
t ð6Þ

if ða1 � va1
Þ ^ . . . ^ ðan � vanÞ then Cl

�
t ð7Þ

Forms (4) and (5) are induced for attributes of gain type, and forms (6) and (7) for cost. If

types of attributes are not uniform, and some are gain while others cost, then within a rule

there is a corresponding combination of forms of conditions. The rule classifies to either at

most some class by assigning x 2 Cl�t (as in Eqs (4) and (6)), or at least some class for x 2 Cl�t
(as in Eqs (4) and (6)). As a result, DRSA does not only observe the presence or absence of a

property, but also monotonic relationships within data, evidenced by preference orders in the

description of objects by condition and decision attributes. It leads to not only nominal, but

also ordinal classification [31].

DRSA processing does not require any prior discretisation of real-valued attributes, only def-

initions of preferences. It means that constructed decision algorithms can operate directly in

continuous domain. When conditions included in rules refer to continuous values, they provide

very close descriptions for recognised concepts. Yet such precision comes at a cost of reduced

generality, possibly more complex calculations, and prolonged processing. Thus any chance at

simplification or improvement gives motivation for research. It was of sufficient interest to

observe how categorical values of attributes obtained through various discretisation approaches

reflect on rule classifier performance to warrant experiments presented in the paper.

Rule induction algorithms

Decision algorithms are often favoured as inducers. Due to their transparent structure, they

directly indicate conditions that need to be satisfied to associate a sample with a class [32, 33].

When applying decision rules for classification of examples, we often refer to notions of sup-

port and coverage. Support of a rule indicates for how many objects in train data the rule is

true (both the premise and the conclusion parts of the rule need to be true), or, in other words,

how many learning instances support this rule. Coverage of the rule indicates for how many

objects in a data set the premise part of the rule is true. In the case of application to train data,

these two terms can be used interchangeably, as no rule should incorrectly classify a learning

example—when coverage exists, also support follows. In the case of evaluation and test

instances, a rule can show coverage without providing correct classification, which then causes

either false positive or false negative.

There are many classification strategies based on decision rules [34]. Taking into account

ordering of rules, they can be divided into two groups: classifying with lists of rules (rules are

applied successively and ordering of rules is significant), and sets of rules (rules are applied

simultaneously and ordering of rules is insignificant). While focusing on inferred decision

rules, we can observe: algorithms inducing minimal sets of rules, algorithms inducing exhaus-

tive sets of rules, and algorithms inducing satisfactory sets of rules (where satisfactory means

meeting some criteria defined by a user) [9, 35].

Minimal cover approach follows the general heuristic strategy, which is used for many

known machine learning algorithms e.g., AQ [36], CN2 [37]. It is based on constructing a first
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rule by sequentially choosing these elementary conditions which are the “best” according to

some heuristic criteria. Examples that match this rule are removed from the learning set. The

process is repeated iteratively as long as some learning examples remain uncovered, and

stopped as soon as the obtained set of rules covers all train instances. Within the research

described in the paper the minimal cover rule sets were inferred with DOMLEM algorithm

implemented in 4eMka software [29]. Rules induced with minimal cover approach are found

relatively quickly, and cardinalities of rule sets are low. It results in fast processing, which is an

advantage of this approach and the reason for preference for such algorithm. On the other

hand, there is no guarantee that the best rules are discovered.

Exhaustive rule induction algorithm constructs all minimal rules that can be generated for

given examples [1]. It allows to obtain the richest information about all patterns existing in the

analysed data set, not only those that are most often repeated. Among created rules there are

ones which correspond to the same or overlapping sets of objects, and rules having similar

condition parts. In consequence, the number of rules inferred in exhaustive search typically is

significantly higher than the number of rules induced by minimal cover approach. Exhaustive

approach is the most expensive from the point of view of processing time, computational com-

plexity, and storage requirements. However, several examples can be found, where this

approach was successfully applied in classification, either directly or with using some addi-

tional processing e.g., rule filtering for the purpose of increased performance [6, 38, 39]. High

costs speak against exhaustive algorithms, but, contrary to minimal cover, they do guarantee

to include decision rules with the highest quality [40], as literally all rules on examples are

induced. This type of algorithm was also used in the research.

Stylometric characteristic features

Analysis of texts leading to tasks of author characterisation (or profiling) and authorship attri-

bution (or verification), is a prominent field of study, with probably the most influential early

works due to Mosteller and Wallace [41]. It attracts more and more attention with the constant

increase of textual data sent, stored, and processed for various purposes [12]. Studied text sam-

ples vary in considered lengths, type of media, employed linguistic registers, and many other

properties. Along with myriads of intended applications, it causes a wide range of stylometric

markers to be used as characteristic features, describing writing styles in quantitative terms

[42]. These style descriptors can be put into many categories, for example content-specific,

structural, lexical, or syntactic type [43].

For content-specific markers, their definitions depend on a subject topic, as they refer to

words of a certain meaning in a context (key words). Structural markers are used to describe

specific formatting or organisation of text elements. In the case of digital media, they include

font types, embedded links or pictures, emoticons, and for a hard copy also page layout, or

handwritten or drawn elements can be considered. These two types, together with language-

specific descriptors, are also referred to as application-specific features.

Lexical features base on employed vocabulary with its richness, and statistical information

on linguistic elements present in a text sample. They can specify averages, frequencies of

occurrence [44], or distributions of selected elements [45], which explains their inherent con-

tinuous nature. Inside this group, character features are distinguished, which refer to single

characters (letters and digits) or their groups, of either fixed or varied length (but not necessar-

ily forming words [46]). When synonyms and semantic dependencies are studied, with consid-

erations of parts of speech, the resulting style markers can be treated as lexical, placed among

syntactic descriptors, or form a separate category of semantic markers.
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Syntactic descriptors capture the underlaying patterns in constructed structures of phrases

and statements, as evidenced by complexity of sentences, application of passive voice, or

included punctuation marks [47].

A group of features that allow for a unique definition and recognition of an author based

on their style, is referred to as a writer print or author print. As with any other prints we leave

behind, there can be more than one such set. A textual analysis with respect to writing styles

relies on finding such characteristic features, which form an author-specific base of attributes.

Styles are defined by quantitative descriptors referring to such linguistic elements that are used

rather semi-consciously or subconsciously. They are hidden inside habitually preferred

phrases, in favoured patterns of formulated sentences [48]. They should enable authorship

attribution with sufficient level of reliability, regardless of a subject content of a text, and

despite possible style variations appearing when compared text samples were written even

years apart [49]. The latter problem can be studied as a task with so-called concept drift [50].

In order to execute attribution we need to compare a text sample of unknown or questioned

authorship with others which are reliably attributed. It means looking for a solution for a

supervised learning task.

Methods and techniques employed in authorship attribution studies often use some statis-

tics-oriented computations, for example by constructing language models based on the proba-

bilities of occurrence for the chosen sequences of characters, words, or phrases [51]. Another

way of processing is adaptation and application of some data mining approaches [52, 53], for

example Artificial Neural Networks [16], or rule classifiers [35].

Reliability of style markers and author recognition depends also on the construction of

input data sets, obtained samples, and their groups. Descriptors need to be calculated over text

samples of comparable and sufficient size, neither too large nor too small [54]. The former lim-

its the number of available examples and obscures some style variations that can be useful in

discrimination, while the latter returns strictly local and detailed characteristics, which can be

hard to find in other texts.

Comparable sizes of text samples typically imply that larger works are divided into different

numbers of smaller parts. In such examples that are based on various parts of the same longer

text, similarities can be detected for obtained characteristics, closer than when compared to

other samples, based on separate texts. This observation leads to an important conclusion.

When authorship attribution is treated and executed as a classification task, in order to evalu-

ate classifier performance we need to use evaluation and test sets, and not popularly employed

cross-validation. In cross-validation, even with several folds, it is highly probable to obtain

falsely higher classification accuracy. These overly optimistic results are explained by this close

similarity of some groups of examples [55], and lack of statistical independence between tests,

as the same samples are used in several evaluations [11].

Evaluation and test sets need to use samples based on works which are separated from

training. This independence of input sets gives higher reliability of obtained results. However,

when discretisation approaches are employed to these sets, independently executed procedures

(which is the simplest way) can result in additional problems with varying numbers of intervals

defined for the same variables in different sets [10].

Discretisation approaches

Data pre-processing is one of the important steps preceding the execution of data mining [1].

It consists of: (i) data cleaning methods, which can be used for removal of inconsistencies and

noise contained in the data, (ii) data transformation methods, which can improve the effi-

ciency of distance-based mining algorithms, and (iii) data reduction methods, which allow to
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obtain such representation for a data set that is reduced in volume but produces either the

same or very close analytical results. All pre-processing methods are important for knowledge

discovery, because they aim to improve the quality of the data, and help to successfully execute

data mining tasks.

One of data reduction mechanisms is discretisation. It transforms numerical real-valued

attributes into discrete or nominal ones with a finite number of intervals [15], by mapping input

continuous space of attributes’ values into a reduced subset of their categorical representations.

Discretisation process simplifies the data and removes possible noise from them. Thanks to

this, the data is easier to understand, interpret and use. One of disadvantages of discretisation

is that it causes some loss of information. Which is why discretisation process should always

be executed with caution, and adjusted to the available data.

There are many discretisation methods and approaches, and they can be divided using vari-

ous criteria [22]. Below popular categorisations can be found.

• Supervised vs. unsupervised;

If a discretiser takes into account class information for samples to find the proper intervals

among the ranges of the attribute values, it is called supervised. It uses some heuristic mea-

sures, e.g., entropy, to determine the best out of candidate cut-points. An unsupervised dis-

cretiser does not consider class information and the number of constructed intervals is

provided as an input parameter.

• Static vs. dynamic;

A static discretiser is independent from the learning algorithm, and performs transformation

of attributes before the learning task. Dynamic discretisers are the components of the learn-

ing algorithm, and they are based on the information exchange between the discretiser and

learner units. Most of discretising methods are static, dynamic discretisers are considered to

be a part of data mining approaches.

• Univariate vs. multivariate;

A univariate discretiser works with a single attribute at a time, contrary to a multivariate

one, which bases on the interactions among the attributes, and simultaneously considers val-

ues of all attributes to define the set of cut-points.

• Local vs. global;

The work of local discretisers is limited to some distinctive parts of the attribute domain, for

which they are defined separately. To obtain the initial set of cut-points, a global discretiser

analyses the full ranges of values for the attributes.

• Top-down vs. bottom-up;

Top-down discretisers initially assign one large interval to represent all known values of an

attribute, and then this interval is partitioned into some number of smaller and smaller sub-

intervals, until a certain stopping criterion is met. In a bottom-up approach, the processing

starts with some number of intervals determined by the set of cut-points, and during execu-

tion these intervals are combined together, until a certain stopping criterion is achieved.

In general, discretisation can be considered as a four-step process [22]:

1. sorting all values of a discretised attribute, in either descending or ascending order;

2. establishing the cut-points (for splitting intervals, or for merging intervals);

3. splitting or merging intervals, according to an algorithm criterion.

In a top-down approach, intervals are split, in a bottom-up approach intervals are merged.
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For splitting, all candidate cut-points are evaluated, the best one is chosen, and it splits the

considered range of continuous values into two bins. Discretisation is continued with each

interval until a stopping criterion is achieved. Similarly for merging, neighbouring bins are

evaluated to find the best pair to merge in each iteration. Discretisation continues with the

reduced number of intervals as long as a stopping condition remains unsatisfied.

4. stopping the discretisation process, which depends on a specific criterion defined in the dis-

cretisation algorithm.

Unsupervised discretisation methods. The two most popular unsupervised discretisation

algorithms are equal width binning and equal frequency binning [4]. The former sorts the val-

ues of a discretised continuous attribute, designates the minimum and maximum values of the

attribute, and then divides the range into k disjoint discrete intervals with equal width, where k
is an input parameter defined by a user.

Equal frequency binning also finds the minimum and maximum values of the discretised

attribute, sorts all values in an ascending order, and divides the resulting range into a number

of intervals defined by a user, so each bin contains the same number of sorted values [28]. For

this method, repeated occurrences of the same continuous value could cause that such value

would be assigned into different bins. During construction of the cut-points, it is important

that any duplicated values are detected and directed always to one and the same bin, even if it

means unequal numbers of occurrences in established intervals, or smaller than the requested

number of bins.

The two methods are simple (which works to advantage), and sensitive with respect to a

number of bins defined by a user (which could become a disadvantage). One of drawbacks is

that in cases where the values of a continuous attribute are not distributed evenly, some infor-

mation can be lost after the discretisation process.

There is a modification of equal width binning algorithm that is based on leave-one-out

estimation of entropy. The obtained numbers of bins and cut-points allow to construct the dis-

crete data set, which better reflects the nature of the input data. This optimised version of the

algorithm (as implemented in WEKA environment [2], used in the research) contains three

steps:

1. 8a 2 A the distribution table is calculated, where

A—the set of attributes,

b = 1. . .B, B—maximum number of bins defined by a user,

d(a, b)—the number of instances of the attribute a in each bin for given b.

2. Entropy for all attributes is estimated by the following calculation:

boptðaÞ ¼ argmin
b

HðaÞ ¼ �
Xb

k¼1

dða; kÞ log
dða; kÞ � 1

wða; kÞ
; ð8Þ

where w(a, k) is the width of the bin for the given attribute a, and k is the number of bins.

3. 8a 2 A cut-points for bopt(a) are calculated.

An alternative version exists also for equal frequency binning algorithm. Instead of requir-

ing the number of bins, the weight of instances per bin is set as the input parameter. When the

instances are not weighted, this processing delivers such resulting number of bins that contain

the assumed number of instances.
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Due to the definition of constructed intervals provided by the user, the described unsuper-

vised discretisation mechanisms in their standard versions do not cause significant problems

when several separate sets of samples need to be discretised. To simplify transformations, these

sets can be processed independently. It results in constructing independent discrete data mod-

els, which are then compared within the classification process. With this independent process-

ing, the ranges of the intervals, established for the same attributes in different sets, can vary to

some extent. Yet the numbers of these intervals will be as required.

Supervised discretisation methods. Two most popular methods from supervised cate-

gory were proposed respectively by Fayyad and Irani [56], and Kononenko [57]. They base on

class entropy of the considered intervals for evaluating candidate cut-points, and Minimum

Description Length (MDL) principle as a stopping criterion.

Let set S contain N instances and t decision classes Cl1, . . ., Clt. Class entropy H(S) of S is

defined as follows:

HðSÞ ¼ �
Xt

i¼1

PðCli; SÞ log ðPðCli; SÞÞ; ð9Þ

where P(Cli, S) is the proportion of class Cli instances in S.

Taking into account binary discretisation of a continuous attribute a, the optimal selection

of cut-point Topt is made by testing all possible candidate cut-points T. A cut-point T splits set

S into two subsets, S1 and S2, where S1� S contains the instances with the attribute values�T,

and S2 = S\S1. Then entropy for the cut-point T is calculated as:

Hða;T; SÞ ¼
jS1j

jSj
HðS1Þ þ

jS2j

jSj
HðS2Þ: ð10Þ

For the optimal cut-point Topt class information entropy H(a, Topt;S) is minimal.

The process of finding cut-points is top-down: it starts with considering one interval

including all occurring values of a discretised attribute. Then its partitioning is repeated in a

recursive way, until a stopping criterion is met. It is possible that discretisation results in all

values of some attribute being grouped into a single interval. It happens when the calculated

entropy indicates that this particular attribute does not contribute to discrimination of classes

within the confines of the particular set of instances. For the same set for another variable sev-

eral intervals can be required. Following this line of reasoning, supervised discretisation can be

considered a process of knowledge discovery. Information about the numbers of bins con-

structed for each variable can be treated as a new source of available knowledge, to be mined

and used for other purposes [58, 59].

Contrary to unsupervised discretisation methods, for supervised discretisation there can be

some serious consequences of independent processing for the input data sets. Not only the

cut-points can be different, but, which is far more problematic, their numbers and the result-

ing from them numbers of the constructed intervals can greatly vary, depending on the local

context of each transformed set [60]. It can lead to obtaining discrete data models so dissimilar

that it makes the classification task more difficult.

Fayyad and Irani MDL. In the case of Fayyad and Irani method, the stopping criterion

for the top-down process of evaluating cut-points is connected with information gain—the dif-

ference in entropy without and after splitting the interval. Discretisation is applied as long as

information gain, resulting from accepting the cut-point T, exceeds the value based on MDL
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principle and defined in Eq (11):

Gainða;T; SÞ ¼ HðSÞ � Hða;T; SÞ >
log 2ðN � 1Þ

N
þ
Dða;T; SÞ

N
; ð11Þ

where

Dða;T; SÞ ¼ log 2ð3
t � 2Þ � ½t � HðSÞ � t1 � HðS1Þ � t2 � HðS2Þ�: ð12Þ

t1 and t2 denote respectively the numbers of classes represented in the subintervals S1 and S2.

Kononenko MDL. In the case of Kononenko method, the process of discretisation is

applied recursively until the following inequality (13) is satisfied:

log
N

NCl1
. . .NClt

 !

þ log
N þ t � 1

t � 1

� �

>

X

j

log
Naj

NCl1aj
. . .NCltaj

 !

þ
X

j

Naj
þ t � 1

t � 1

� �

þ logNT;

ð13Þ

where

NCli
—the number of training instances from the class Cli,

Nax
—the number of instances with x-th value of the given attribute a,

NCliay
—the number of instances from class Cli with y-th value of the given attribute a,

NT—the number of candidate cut-points.

Setting up the experiment

Executed experiments included preparation of the input data sets, induction of decision rules

in continuous domain, discretisation of data sets and rule sets, induction of decision rules in

discrete domain, evaluation of performance for all constructed classifiers, and analysis of all

experimental results. The procedure is illustrated in a diagram given in Fig 1, and explained in

the following subsections.

Proposed research framework

The proposed methodology consisted of the steps as follows:

1. initial data processing

a. defining the task of authorship attribution by choosing writers for comparison,

b. selecting specific works for textual analysis,

c. constructing text samples,

d. choosing stylometric features and obtaining their values for all samples;

2. rough data mining with DRSA approach for continuous data

a. induction of decision rules with exhaustive and minimal cover algorithms,

b. re-classification of training samples for the purpose of establishing hard constraints on

rule supports,

c. evaluation of performance for test sets;
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3. discretisation through various methods for

a. all input data sets,

b. conditions in the previously inferred decision rules;

4. rough data mining for discrete data

a. induction of decision rule sets with minimal cover algorithm,

b. re-classification of training samples with discretised and discrete rule sets to obtain hard

constraints on rule supports,

c. evaluation of performance for test sets;

Fig 1. The procedure of executed experiments.

https://doi.org/10.1371/journal.pone.0231788.g001
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5. analysis of results

a. properties of discretised and discrete rule sets,

b. observations on trends in performance for classifiers,

c. conclusions from comparisons of obtained results.

All steps are described in detail in the following subsections, and discussion of the experi-

mental results is provided in the next section.

Input data sets

To achieve a fair comparison of writing styles, considered authors need to come from some

similar time period. Otherwise, the linguistic differences resulting from the constant evolution

of any used language could be far too striking. Furthermore, to obtain reliable characteristics,

for every author many texts are required, each of sufficient length. It is also best not to compare

writers of the opposite gender. Their styles show such discriminating properties that enable to

make certain observations on the linguistic preferences of male and female authors, which

would cloud the objectives of experiments.

Taking all these factors into account, two data sets were constructed, one comparing a pair

of male writers, namely Jack London and James Curwood, and the second for a pair of female

writers, Mary Johnston and Edith Wharton. The chosen writers are known for several suffi-

ciently long novels, which were divided into groups to provide a base for training, and evalua-

tion and test sets. The selection of studied texts is given in Table 1.

Table 1. The selection of literary works used in the research.

Training

E. Wharton The fruit of the tree J. London Martin Eden

The custom of the country Michael, brother of Jerry

The house of mirth Smoke Bellew

The valley of decision A daughter of the snows

M. Johnston The long roll J. Curwood The hunted woman

Audrey Nomads of the North

By the order of the company Kazan

Lewis Rand God’s country—And the woman

Test 1

E. Wharton The age of innocence J. London The sea wolf

The reef The little lady of the big house

The glimpses of the moon The jacket

M. Johnston To have and to hold J. Curwood Flower of the North

Prisoners of hope The valley of silent men

1492 The flaming forest

Test 2

E. Wharton Summer J. London Burning daylight

Ethan Frome The mutiny of the Elsinore

Bunner Sisters The valley of the moon

M. Johnston Sir Mortimer J. Curwood The country beyond

Pioneers of the old South The Alaskan

Foes The courage of Marge O’Doone

https://doi.org/10.1371/journal.pone.0231788.t001
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All analysed works were partitioned into much smaller text samples, with a comparable size

of around 2 thousand words. For the training sets 25 text chunks were chosen per each of four

novels per author, and for two test sets 15 samples per each of three novels per writer. It

resulted in constructing the training sets including 200 samples, and two test sets with 90 sam-

ples each. For all text samples some statistics were calculated. They reflected the frequencies of

occurrence for a group of common function words and punctuation marks, which have

proven to be good style discriminators [41, 42].

Function words were selected in the following manner. Referring to the list of the most fre-

quently used words in the English language, firstly for the most common one hundred entries

the frequencies were calculated for text chunks designated as a base for the training sets. To

these variables the frequencies of regular punctuation marks were added. Then several feature

ranking algorithms were employed to the data. For further processing only these attributes

were chosen that were never considered as irrelevant. In other words, the set of the selected

characteristic features consisted of variables included in the intersection of all rankings. The

entire procedure is illustrated in the diagram shown in Fig 2.

Fig 2. The employed procedure of input data preparation.

https://doi.org/10.1371/journal.pone.0231788.g002
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This feature selection process resulted in the set of 24 attributes, including 22 lexical in

nature (that, on, but, by, what, who, there, how, then, any, after, never, same, such, during,

before, though, until, almost, whether, around, within), and 2 syntactic (semicolon, comma).

The minimum value of any attribute equalled zero (when this attribute was absent in a text

sample). The maximum in theory would be equal one, but only in the case when a text sample

would contain just this feature (no other word, no punctuation marks), which in practice is

next to impossible. So the obtained values of the attributes where always in the range<0, 1).

Table 2 lists some statistical characteristics of these features for the training sets, for both male

and female data sets.

Thus constructed input data sets were examples of binary classification with balanced clas-

ses, with continuous condition attributes and nominal class labels. From the point of recogni-

tion, both classes were considered to be of the same importance.

Induction of decision rules from continuous data

Dominance-Based Rough Set Approach requires definitions of preference orders for values of

all available attributes. In the case of continuous-valued features, recognised in the considered

task, the ordering is natural, but preferences unclear. Also, as class labels are nominal and no

author is preferred to any other, there is no visible ordering of values for the decision attribute.

Defining preferences for criteria means creating associations between the calculated values of

Table 2. Statistical characteristics of attributes in the training sets.

Female writers Feature Male writers

Average ± Stand.dev. Average ± Stand.dev.

0.01105107 ± 0.003442 that 0.01317706 ± 0.004606

0.00543583 ± 0.002661 on 0.00673523 ± 0.002870

0.00588084 ± 0.001974 but 0.00535185 ± 0.002247

0.00369755 ± 0.001963 by 0.00278382 ± 0.001549

0.00204511 ± 0.001322 what 0.00211854 ± 0.001302

0.00224227 ± 0.001497 who 0.00152172 ± 0.001078

0.00295941 ± 0.001644 there 0.00339445 ± 0.001875

0.00094113 ± 0.000809 how 0.00077539 ± 0.000853

0.00192844 ± 0.001282 then 0.00231427 ± 0.001345

0.00093867 ± 0.000811 any 0.00061570 ± 0.000653

0.00105569 ± 0.000784 after 0.00121316 ± 0.000934

0.00098878 ± 0.000863 never 0.00125856 ± 0.001074

0.00040399 ± 0.000458 same 0.00056841 ± 0.000617

0.00110639 ± 0.001085 such 0.00057576 ± 0.000703

0.00011204 ± 0.000283 during 0.00018787 ± 0.000346

0.00144544 ± 0.000946 before 0.00137534 ± 0.000834

0.00075369 ± 0.000700 though 0.00054694 ± 0.000685

0.00027586 ± 0.000484 until 0.00088509 ± 0.000867

0.00031832 ± 0.000451 almost 0.00066813 ± 0.000668

0.00010454 ± 0.000257 whether 0.00009506 ± 0.000233

0.00021629 ± 0.000400 around 0.00035876 ± 0.000510

0.00031865 ± 0.000444 within 0.00021422 ± 0.000363

0.00682859 ± 0.003382 ; 0.00246340 ± 0.002065

0.07370084 ± 0.018293 . 0.06379152 ± 0.015922

https://doi.org/10.1371/journal.pone.0231788.t002
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condition attributes and certain authors, reflecting characteristics of their writing styles. This

information is not necessarily immediately accessible.

When preference orders cannot be directly implied from the available domain knowledge,

they can be discovered through some auxiliary transformations [30], but such process is very

time-consuming and computationally complex. To avoid it, a much simpler way was adapted.

As only two class labels were considered, a single order was assumed for both data sets. For all

condition attributes the same preference order was assigned, and tested for both “cost” and

“gain” types, for minimal cover algorithms (they are referred to as MinC algorithms later in

the paper). The induced rule sets were compared with respect to processing time, the number

of inferred rules, and their quality evidenced by support. Even though in the case of minimal

cover algorithms generation of rules is usually a matter of seconds, the time factor becomes

important with repeated induction, also, it was reasonable to expect that the exhaustive algo-

rithms would require much more time.

For both data sets the process of generation for one MinC algorithm took more time, and

the rule set included more, but weaker rules, while the other showed much better characteris-

tics in all these considered elements. These preference orders were selected that led to these

better decision algorithms, gain type in the case of male writer data set, and cost type for female

writer data set.

With the preference orders assigned to all criteria for male and female writers, all rules on

examples were then induced in the exhaustive search (this algorithm is denoted as Exh later in

the paper). As expected, the process of rule induction took a significant amount of time, in fact

it took several days for each rule set, as thousands of decision rules were inferred, each includ-

ing real-valued conditions on some attributes.

Next, both types of rule classifiers (MinC and Exh) were applied to the data. In the case of

conflicts, a simple voting strategy was employed, giving each rule a single vote. As a measure of

performance classification accuracy was used, understood as a ratio of correctly classified

examples to the total number of examples, presented as percentage. Classification accuracy

was a correct choice for a score of performance evaluation in the presented case since in all

tasks classification was binary and classes balanced, and both classes were considered to be of

the same importance. It means that the cost of false positives always equalled the cost of false

negatives [11].

Firstly, constructed inducers were used for re-classification of learning samples. This step

enabled to impose some additional hard constraints on decision rules. In each case such set

was chosen that included rules with supports at least equal the threshold that was the highest

of these that guaranteed the maximum classification accuracy for the learning samples. This

approach was used for all further processing, for all executed experiments.

The constrained decision algorithms were evaluated by classifying samples from two test

sets in the next step, and the results were selected as the reference points for comparison in fur-

ther analysis. From all obtained results average values were calculated, and these are given in

Table 3.

The low performance of minimal cover decision algorithms partially resulted from imper-

fect coverage for test sets (on average it was 85.55% for female writers, and 79.45% for male).

Table 3. Averaged performance of rule classifiers in continuous domain [%].

Exh MinC

Female writers 92.22 59.68

Male writers 93.33 53.51

https://doi.org/10.1371/journal.pone.0231788.t003
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While minimal cover is generated, obviously it relates to learning samples and patterns discov-

ered among them, which can be expressed and classified by some small number of rules. Yet in

continuous domain conditions included in rules work against the probability of detecting the

same detailed patterns in test data, which was confirmed by obtained results. With much

higher numbers of rules provided by exhaustive algorithms also stronger rules were found, giv-

ing satisfactory predictions and coverage at 100%.

Discretisation of the input data sets

In the presented research works to the training input data sets eight discretisation approaches

were applied. They included:

• unsupervised

• equal width binning—with varying the input parameter corresponding to the number of

constructed bins: from 2 to 9 with a step of 1, from 10 to 90 with a step of 10, from 100 to

900 with a step of 100, from 1000 to 9000 with the step of 1000, and 10000 (36 variants)

� in a standard approach (denoted as duwb),

� with additional optimisation of obtained bins which led to their minimisation (denoted as

duwo),

• equal frequency binning

� in a standard approach (denoted as duf)—with varying the input parameter that corre-

sponded to the number of required bins from 2 to 200 with the step of 1 (199 variants)

� in an approach with weighting bins (denoted as dufw)—with varying the input parameter,

giving the required number of occurrences included in bins, from 1 to 200 with the step of

1 (200 variants)

• supervised (a single variant for each set)

Fayyad and Irani

� in a standard approach (denoted as dsF),

� with additional optimisation of obtained bins which led to their minimisation (denoted as

dsFo),

Kononenko

� in a standard approach (denoted as dsK),

� with additional optimisation of obtained bins which led to their minimisation (denoted as

dsKo).

Discretisation of tests sets was executed in two ways: independently on the learning sam-

ples, and by referring to ranges defined for the learning instances. Since the numbers of sam-

ples included in the test sets were different than in the training sets, in independent processing

not all previously listed variants of input parameters were valid for them. For equal width bin-

ning the same parameters were used, and for non-parametric supervised methods the

approach was the same.

In the case of equal frequency binning in the standard version the numbers of bins were

varied from 2 to 90 with the step of 1 (89 variants), and from 1 to 90 with the step of 1 (90 vari-

ants) for the version with requirements on numbers of occurrences in bins. Then, in the
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executed tests such variants of training and test input sets were matched that were character-

ised by the same numbers of bins defined for the corresponding attributes. If the exact match

was impossible to find, the closest variants were selected from the available alternatives.

For simplicity of representation and later processing, instead of using the intervals defined

as the ranges specified by the established cut-points, all intervals were simply enumerated.

Such positive integer numbers were next stored and used as attributes’ values, which allowed

for a significant reduction of size in discretised rule sets.

Discretisation of conditions in decision rules

Sets of inferred decision rules allow for a direct access to knowledge discovered in mining of

data, given as conditions on attributes. Thus, the decision algorithms, induced previously from

the continuous data, were discretised for each obtained variant of the discretised training sets.

Discretisation was performed in the following manner.

For all attributes included in the premise part of a rule, a condition specified was matched

with a certain interval to which the continuous value was assigned. Then the value in the con-

dition was replaced with the selected interval, using its representation by an integer number.

As the result of such processing groups were constructed that consisted of the following ele-

ments: the discrete training sets, the decision algorithms with the conditions discretised using

intervals defined for the training sets, and the test sets with as close matching of intervals as it

was possible to find. The number of such groups was equal to the number of variants of the

discrete learning data sets.

Performance evaluation for discretised classifiers

Each decision algorithm, translated from the continuous into discrete domain as described

above, was then employed for re-classification of the corresponding discretised learning set,

and two test sets. Firstly, there was found the highest value of the minimal support required of

rules that led to the maximum classification accuracy of the training samples. With this hard

constraint on rules, the results for test sets were obtained.

For both male and female data sets, for each matching set of elements, two discrete decision

algorithms (exhaustive and minimal cover) and two test sets, minimum, maximum, and aver-

age classification accuracies were found. There was also noted the coverage averaged for test

sets, and obtained reduction of the rule set size, compared with respect to this size in continu-

ous domain. These characteristics were studied separately for both types of decision algo-

rithms, i.e. MinC and Exh. The experimental results are commented in the next section of the

paper.

Induction of decision rules from discrete data

Once the input data sets were discretised, it became possible to apply to them such data mining

techniques that require discrete attributes, in particular decision rule induction methods. For

the sake of comparison, once again rough set approach was considered. With the availability of

categorical features DRSA could be replaced with CRSA, however, for both ways of processing

inferring rules by exhaustive search was unfeasible due to the high number of prepared dis-

crete variants of the training sets. In discrete domain rule induction is significantly simplified,

yet it can still take several hours, as long as a day, and there were required multitudes of such

processing time, hundreds. Thus the only type of algorithm, generation of which could be exe-

cuted with some reasonable time constraints, was minimal cover.

Rough Set Exploration System (RSES) [61], dedicated to CRSA, includes implementation of

LEM2 minimal cover algorithm. However, for discrete data it returns so few decision rules
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that coverage of test sets is often close to zero, which results in unacceptably low classification

accuracy. These observations led to induction of minimal cover algorithm with DRSA, and

MODLEM algorithm implemented in 4eMka software, the same that was used for induction

of rules in continuous domain. The newly generated rule sets were once again applied as deci-

sion algorithms for re-classification of the training samples, and then their performance was

evaluated with test samples.

Observations on research results

The experimental results presented can be divided into three parts. The first was dedicated to

performance of the discretised decision algorithms, for all considered variants of the discrete

data sets. Unsupervised discretisation methods led to series of tests with varying the numbers

of intervals defined for all attributes, while for supervised methods there were single tests. For

all of them the observations are given for both types of decision algorithms generated (exhaus-

tive and minimal cover), as different trends in performance were detected.

In the second part of given results some properties of the discretised rule sets were studied.

The third group of results consisted of scores, obtained in evaluation of performance for mini-

mal cover decision algorithms induced from the discrete input data sets.

Unsupervised discretisation

Discretisation by construction of intervals with equal width is often criticised, as disregarding

important data characteristics such as distribution of occurring values. When only minimum

and maximum values are detected, and so defined range divided equally, in return some inter-

vals can be established for which there were absolutely no occurrences of values in the consid-

ered sets. Nevertheless, since the number of bins is the input parameter, the procedures

enforce the same numbers of intervals when applied to separate sets, which makes operations

on them much simpler.

The classification results for minimal cover (MinC) and all rules on examples (Exh) deci-

sion algorithms are displayed in Fig 3. The charts show the performance averaged over the test

sets for each specified number of intervals constructed. For the exhaustive algorithms it can be

observed that for the standard version of the discretisation method (duwb), actually in the

whole range of the tested numbers of bins the performance can be considered as satisfactory.

For optimised equal width binning (duwo), the results were noticeably worse. For the rela-

tively small numbers of bins the performance was to some extent acceptable, but for the higher

numbers it was degraded too much. This was partially caused by the locality of the executed

optimisation—since all sets were discretised independently, each was optimised independently

as well. In turn, it caused much greater differences between the intervals defined for the train-

ing and test sets. And these differences resulted in the increased numbers of incorrect classifi-

cations of examples.

Due to the relatively poor performance of the minimal cover algorithms in continuous

domain, caused by lower coverage, in discrete domain their observed power was increased for

more variants of the discretised sets. The overall performance showed trends similar to those

of exhaustive algorithms, i.e. satisfactory results for lower numbers of bins, and degraded for

higher.

When the frequencies of occurrence of values are taken into account, such parts of the

input continuous space, which are characterised by the presence of many points, are divided

into many small and closely packed intervals. Other regions, with sparsely occurring values,

have much fewer, yet larger bins. Thus this kind of processing more closely follows the distri-

butions of input data points, and still, at least for some range, returns the same numbers of
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bins for independently discretised sets. Unequal numbers of constructed intervals can be

caused by different cardinalities of sets with samples. Typically, the training sets include more

examples than the evaluation and test sets. In such cases any attempts at enforcing the same

numbers of bins are doomed to failure.

A modification of the standard equal frequency binning assigns some weights to intervals,

where it is possible to define preferences for some regions of the feature space. When all bins

Fig 3. Averaged performance of rule classifiers in relation to the number of constructed intervals for

unsupervised discretisation. A: Equal width binning (duwb). B: Optimised equal width binning (duwo).

https://doi.org/10.1371/journal.pone.0231788.g003
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(all regions) are treated in the same way, weighting them can be seen as a direct definition of

the number of occurrences required for each interval. Hence in the standard version of discre-

tisation algorithm (duf) a user specifies the numbers of bins, and the procedure ensures that in

all intervals the same numbers of occurrences are included. For equal frequency binning with

weights (dufw), the user defines the numbers of occurrences. Using this input parameter the

target numbers of constructed intervals are established.

For both MinC and Exh versions of the decision algorithm the classification results are dis-

played in Fig 4. The charts show the observed performance for the first half of the tested

Fig 4. Averaged performance of rule classifiers for unsupervised discretisation. A: Equal frequency binning (duf).

B: Equal frequency binning with weights (dufw).

https://doi.org/10.1371/journal.pone.0231788.g004
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variants of the learning sets. For the second half the classification was very poor due to too

large differences between the numbers of intervals for the training and test sets, resulting from

independent discretisation of all sets.

For the exhaustive decision algorithms discretised by the standard equal frequency binning,

almost in the whole presented range the classification accuracy was satisfactory, in several

cases exceeding the reference levels of real-valued algorithms. The modification with interval

weighting brought the worsening of the average performance, even though some of the

obtained maxima were greater than the ones detected for the standard version of discretisation

algorithm.

For minimal cover decision algorithms, the charts showed seemingly opposite trends in

performance for the two versions of the discretisation method. This came from the fact that

the trend in classification accuracy was related to the numbers of intervals, which in the stan-

dard version increased with the input parameter, and decreased for the weighted version. In

both cases the highest correct prediction ratio could be found for the relatively low numbers of

bins established.

Supervised discretisation

Supervised discretisation is commonly praised for preserving the discriminating properties of

values, occurring in the input sets, so intuitively we would expect better results from its appli-

cation, than for the unsupervised approaches. In the tested cases, however, these supervised

methods brought rather disappointing results, in particular for the exhaustive decision algo-

rithms. For both types of algorithms, for Fayaad and Irani, and for Konnonenko method, the

classification accuracies are shown in Table 4. For the minimal cover algorithm, since it ini-

tially performed so poorly, still some improvement could be observed. For the exhaustive algo-

rithm the power was degraded, and not due to low coverage, but mainly because of the low

level of minimum classification accuracy, in particular for male writer data set.

For the second version of Fayaad and Irani method, with optimised encoding, for both

types of decision algorithms the observed performance was the same for male writers, and for

female it was worse. For Kononenko approach, for all rules on examples for both versions of

the discretisation method the results were the same, and for minimal cover some slight

improvement could be detected for female writer data set.

These counterintuitive lower predictive properties of the discretised decision algorithms, in

particular low minima, could be explained to some extent by a close adjustment of the con-

structed data models to the local context, that is to the particular sets. As they were discretised

independently, all calculations and stopping criteria were based on the values occurring in

each set. As not only the values but also the numbers of samples included in the sets were dif-

ferent, discretisation resulted in different definitions of intervals, and even in the varying

Table 4. Averaged performance of rule classifiers for supervised discretisation [%].

Standard method With optimised encoding

Exh MinC Exh MinC

Fayyad and Irani

Female writers 90.56 78.34 87.78 75.56

Male writers 50.00 50.00 50.00 50.50

Kononenko

Female writers 88.89 80.21 88.89 83.89

Male writers 65.56 50.00 65.56 50.00

https://doi.org/10.1371/journal.pone.0231788.t004
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numbers of those intervals for the same attributes in different sets. There were even cases that

in one set for all values of some attribute the single interval was assigned, whereas in another

set for the same attribute several bins were established.

To ensure that in all data sets the transformations of the same attribute were uniform,

another attitude to discretisation of the evaluation and test sets could be employed—they

could be discretised using the data models obtained for the training samples. Then the values

present in the evaluation and test data sets were seen through the perspective of those values

which occur in the learning set. The results from such processing are shown in Table 5.

The decision algorithms used in those experiments were the same as the ones obtained

before, but they were applied to the modified test sets. It could easily be observed that this

modified processing of some sets brought the expected improvement when compared to the

previously shown results for supervised discretisation methods. In particular the minimum

classification accuracies were significantly higher, which gave also much improved averaged

performance for both types of decision algorithms.

Properties of discretised rule sets

As in the presented case the recognised classes were considered to be of the same importance,

the cost of false positive was considered to be equal to false negative. Therefore, the perfor-

mance of the tested decision algorithms could be evaluated by specification of the number of

correctly labelled samples in relation to the total number of samples, which results in the global

classification accuracy, commented before in Sec. Unsupervised discretisation and Supervised

discretisation. However, a study of coverage encountered for the test sets gave yet another

insight, and enhanced understanding of the detected patterns, which were discretised by trans-

formations of decision algorithms.

In the case of exhaustive algorithms, for all versions of discretised sets the coverage was

always at 100%, and none of the test samples remained uncovered, so the returned classifica-

tion accuracy resulted only from the correct and incorrect classifications, for all discretisation

methods employed in the research.

For MinC algorithms the situation was markedly different, and the coverage highly depen-

dent on the applied discretisation procedures and their parameters. From the four unsuper-

vised discretisation methods, for equal width binning with optimised encoding the coverage

was next to perfect—only for 3 and 4 numbers of bins, respectively 7-9 for female and 7-10 for

male writers, there were some uncovered samples in the test sets. For the other three methods

there were many more such cases, thus the charts presenting coverage are given in Fig 5.

It could be observed that for both versions of equal width binning and the standard equal

frequency binning, for both data sets coverage was the best for the small numbers of intervals

Table 5. Averaged performance of rule classifiers for supervised discretisation with transformations of the test

sets based on discrete data models obtained for the training samples [%].

Standard method With optimised encoding

Exh MinC Exh MinC

Fayyad and Irani

Female writers 90.00 88.33 90.00 85.21

Male writers 91.11 80.67 90.56 84.45

Kononenko

Female writers 90.00 85.21 90.56 86.67

Male writers 90.56 84.45 90.56 84.45

https://doi.org/10.1371/journal.pone.0231788.t005
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constructed, and then it gradually decreased while the numbers of intervals increased. Also, on

average for equal width method for male writers the coverage was higher than for female writ-

ers, when the opposite could be stated for equal frequency binning. For equal frequency bin-

ning with weights, for both data sets at the beginning the numbers of intervals were high,

Fig 5. Averaged coverage of the minimal cover rule classifiers for unsupervised discretisation. A: Equal width

binning (duwb). B: Equal frequency binning (duf). C: Equal frequency binning with weights (dufw).

https://doi.org/10.1371/journal.pone.0231788.g005
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hence low coverage, increased with the higher numbers of instances required per bins, which

meant construction of fewer intervals.

For supervised discretisation approaches only in one case coverage was below 100%: for the

standard Kononenko method, for female writer data set the coverage for MinC decision algo-

rithm, averaged over test sets, equalled 98.89%.

In discretisation of the induced rule sets, continuous values of conditions, included in the

rule premises, were replaced with the nominal representations of intervals constructed. In this

manner the numerical values, which required several digits to be stored, were replaced with

single characters. It caused a significant reduction of size for both types of decision algorithms,

shown for all unsupervised discretisation methods in Fig 6, and for supervised in Table 6.

For minimal cover rule sets, as they were smaller, contained fewer rules and through that

fewer conditions to be discretised, the size reduction was also smaller than in the case of

Fig 6. Reduction of size of rule sets for unsupervised discretisation. A: Equal width binning (duwb). B: Optimised equal width binning (duwo). C:

Equal frequency binning (duf). D: Equal frequency binning with weights (dufw).

https://doi.org/10.1371/journal.pone.0231788.g006

Table 6. Reduction of size of rule sets for supervised discretisation [%].

Exh MinC

Female writers 76.50 87.71

Male writers 78.01 87.58

https://doi.org/10.1371/journal.pone.0231788.t006
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exhaustive algorithms that included so many more rules. The results are given as the percent-

age presented by a size of a discretised algorithm with respect to the corresponding original

size of decision algorithms, induced in continuous domain.

As it turned out, for both supervised discretisation methods employed in the research, and

both their versions, for MinC and Exh algorithms the obtained reduction of size was the same,

and the two differences observed were between two types of decision algorithms, and the two

studied data sets.

Induction of rules from discretised data

In the proposed methodology discretisation follows data mining, whereas typically discretisa-

tion is considered to be a part of initial data pre-processing, after which data mining follows.

To confront the two ways, new rules were induced from all versions of the discrete input data

sets, by using minimal cover algorithm in DRSA approach.

Due to the high number of the prepared variants of the discrete data sets (several hundreds

per data set), induction of rule sets in exhaustive search would be a task of unmanageable pro-

portions, when taking into account the computational costs involved. It was one of the consid-

ered factors motivating the proposed research framework. Because of the employed heuristics,

minimal cover algorithms were found relatively quickly (in a matter of seconds), thus even if

the generation procedure was repeated many times, still the task was feasible.

Once all rules were inferred, they were applied for re-classification of the training and test

samples, with simple voting strategy employed in case of conflicts, as in the earlier batch of

tests concerning discretised rule sets. For all unsupervised discretisation methods, the average

classification accuracy obtained for the test sets is shown in the charts included in Fig 7, and

for supervised discretisation approaches in Table 7.

When these results were compared against MinC decision algorithms working in continu-

ous domain, it could be observed that for female writer data set only for optimised equal width

binning the performance was worse, while for other discretisation methods on average it was

improved. For male writers also for supervised discretisation the results were degraded. On

the other hand, in all cases the discretised decision algorithms achieved better predictive accu-

racy than the rule sets induced from discrete data.

Nevertheless, it is not entirely out of the question that for some variant of the discrete input

data set an algorithm induced in exhaustive search could outperform both types of decision

algorithms with continuous values, and with the discretised conditions. How to find out which

particular approach to discretisation would cause such advantageous conditions remains the

open problem.

Summary of the obtained results

For all tested variants of decision algorithms and input data sets Table 8 provides average clas-

sification accuracy and the calculated standard deviation. For simplicity of comparisons, there

were also included the reference points of average performance for decision algorithms

induced and operating in continuous domain.

The summary indicates that the widest ranges of power of rule classifiers, evidenced by the

relatively high values of standard deviation, were detected for optimised equal width binning

(duwo), and for equal frequency with weights (dufw). The lowest values of standard deviation

were obtained for equal frequency binning, followed close by supervised discretisation. How-

ever, for the latter the accompanying predictive accuracies were mostly worse than for unsu-

pervised methods.
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As far as the average classification accuracies were concerned, for female authors and

exhaustive algorithms only equal width binning (duwb) gave a slight improvement, while for

other discretisation approaches the results were worse than for continuous domain. For male

writers and Exh algorithms, for all methods on average classification was degraded with

respect to considerations of real-valued conditions. On the other hand, for minimal cover

algorithms, since their performance for continuous data was relatively poor, it was much easier

to find some improvement.

Furthermore, it needs to be remembered that Table 8 lists only the overall averages, calcu-

lated over series of tests. In the previously presented detailed plots, in unsupervised methods

there could be detected many values of the input parameter, which led to the significant

improvements of performance for the discretised rule classifiers.

Fig 7. Averaged performance of the minimal cover rule classifiers induced from discrete data sets. A: Equal width binning (duwb). B: Optimised

equal width binning (duwo). C: Equal frequency binning (duf). D: Equal frequency binning with weights (dufw).

https://doi.org/10.1371/journal.pone.0231788.g007

Table 7. Average performance of minimal cover rule classifiers induced from discrete input data for supervised discretisation [%].

Standard method With optimised encoding

Fayyad Kononenko Fayyad Kononenko

Female writers 74.65 59.45 57.23 58.89

Male writers 36.54 40.36 45.63 40.36

https://doi.org/10.1371/journal.pone.0231788.t007
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The results from experiments show the merit of the reversed attitude to discretisation of

data. Instead of executing it as a part of initial pre-processing before data mining, we can mine

data first. Then we discretise both data and constructed inducers, and still obtain satisfactory

results. With such changed order, in the data mining phase we have access to all available

information and do not risk any loss of it, which most often happens during discretisation. On

the other hand, later translation from continuous into discrete domain helps to obtain more

general and compact forms of constructed inducers, shortens processing time, while keeping

or even improving predictions, and enables to observe results for many disretisation

approaches at reasonable computational costs. These advantages of the proposed methodology

should be weighted against some disadvantages, such as an increased complexity of discretisa-

tion, and a lack of guarantee that discretised rule sets perform better than some of decision

algorithms which could be induced from discrete data.

Concluding remarks

The paper presents the research on discretisation applied to the decision rules induced from

the continuous data, thus changing the standard order of the processing steps. The proposed

methodology relied on mining the complete available data, without any attempts at its initial

simplification or reduction, which was then followed by such simplification of the learned

models through their discretisation.

The research framework enabled to test various discretisation approaches with acceptable

costs of processing, as the most computationally demanding stage of data mining and knowl-

edge discovery was executed just once, and only discretisation was performed repeatedly. One

of the disadvantages of such methodology could be found in more complex discretisation,

since not only data sets but also learned models were discretised. Also, no guarantee could be

given that a better performing inducer could not be found for some discrete version of data

sets. On the other hand, for the typical order of processing, with discretisation preceding data

mining, such guarantee neither could be given.

The real-valued input characteristic features, used in the research works, came from the

application domain of stylometric analysis of texts. For the task of authorship attribution, writ-

ing styles were defined by some quantitative descriptors of lexical and syntactic type. They

gave the frequencies of occurrence for the selected common function words and punctuation

marks.

From the prepared continuous learning data sets decision rules were inferred within Domi-

nance-Based Rough Set Approach, for two types of algorithms, minimal cover and exhaustive.

The induced rules contained real-valued conditions that meant a very close fit to the training

Table 8. Summary of performance for all rule classifiers [%].

Decision algorithm Contin. domain Discretisation method

duwb duwo duf dufw ds

F-Exh 92.22 92.38 ± 1.68 61.03 ± 15.37 91.15 ± 1.56 89.93 ± 04.41 89.03 ± 1.03

F-MinC 59.68 69.30 ± 7.71 58.14 ± 12.37 71.41 ± 5.59 81.12 ± 07.69 79.50 ± 4.83

M-Exh 93.33 88.64 ± 5.58 55.29 ± 11.58 89.69 ± 3.61 81.50 ± 11.11 57.78 ± 7.78

M-MinC 53.51 73.33 ± 5.52 54.24 ± 11.15 62.06 ± 7.57 77.09 ± 10.64 50.00 ± 0.00

F-DMinC 62.90 ± 6.71 30.77 ± 21.40 66.95 ± 4.63 61.06 ± 13.90 62.55 ± 7.21

M-DMinC 66.16 ± 5.41 35.18 ± 20.81 58.76 ± 4.71 55.86 ± 13.90 40.72 ± 7.55

For continuous domain the averages are listed, and for all discretisation methods overall average± standard deviation for algorithms discretised and induced from

discrete data (denoted as DMinC).

https://doi.org/10.1371/journal.pone.0231788.t008
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data, and detailed definitions of the concepts. By itself, it could be considered an advantage,

but it could cause poorer generalisation, lengthen the classification process, and increase the

requirements for data storage.

In the next stage of the experiments, all input data sets were discretised, using the selected

unsupervised and supervised strategies, with varying their parameters. The previously con-

structed inducers were transformed as well, by substituting the continuous conditions on the

attributes with their discrete forms. So translated rule classifiers were next applied for classifi-

cation of samples in discretised sets.

The results from the performed tests show that for unsupervised discretisation approaches

on average the inducers outperformed those constructed for supervised methods. For exhaus-

tive algorithms some improvements in classification accuracies were detected, but for minimal

cover algorithms the positive differences in performance were much higher. However, it

should be remembered that the results of rule induction and classification depend on data, dis-

tributions of features’ values, both condition attributes and decision classes.

Some properties of the discretised rule sets were also studied. Coverage obtained for the test

sets by the exhaustive algorithms was always perfect, but for minimal cover algorithms highly

dependent on a discretisation strategy and its parameters. The sizes of the transformed rule

sets were significantly reduced with respect to continuous domain, due to replacing the real-

valued conditions with their categorical representations. For comparison sake, from discrete

data sets minimal cover algorithms were also induced. Their performance, contrasted with

decision algorithms with the real-valued and discretised conditions, turned out to be worse.

In the described research works the proposed approach was dedicated to rule classifiers, in

which the access to the learned knowledge is relatively straightforward. In the future research,

the methodology will be tested for other types of inducers capable of working on continuous

attributes while allowing for easy access to their structures. An another research path will be

directed at discretisation executed with regard to not the whole data, but only conditions pres-

ent in the inducers constructed in continuous input space. It would allow to use even more

knowledge, discovered in the data mining phase, for the processes dedicated to building the

discrete data models. Also, the proposed methodology will be tested in other application

domains, for other data sets.
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