Title: Functions of convexity and dimension

Author: Tomasz Kulpa

FUNCTIONS OF CONVEXITY AND DIMENSION

TOMASZ KULPA

Abstract. Two dual sequence functions describing some kind of local convexity and dimension of subspaces of linear metric spaces are introduced. It is shown that the functions give a useful tool in the investigations of fixed point properties of the Schauder type.

Notations and conventions. By a linear metric space we mean a topological real vector space E which is metrizable. By Kakutani theorem (see for instance [6]) E is equipped with an F-norm such that $||x+y|| \leq ||x|| + ||y||$ and $||tx|| \leq ||x||$ for each $t \in [-1,1]$. Such an F-norm induces an equivalent translation-invariant metric ρ on E given by the formula, $\rho(x,y) := ||x - y||$. A linear space with a metric induced by an F-norm is said to be an F-metric linear space. Let us denote by;

$B(a,r) := \{x \in E : \rho(x,a) < r\}$ — the ball with centre a and radius r,
$B(A,r) := \bigcup\{B(a,r) : a \in A\}$ for each nonempty set A,
$diam A := \{\rho(x,y) : x,y \in E\}$ — the diameter of the set A,
$conv A := \{x \in E : x = \sum_{i=0}^{n} t_i a_i, \sum_{i=0}^{n} t_i = 1, t_i \geq 0, a_i \in A, n \in \mathbb{N}\}$ — the convex hull of the set A.

In this paper we want to construct a tool to estimate approximative fixed points. Our aim will be reach by constructing two dual sequences of functions describing dimension and local convexity.

Sequence function of dimension. For any family \mathcal{W} of subsets of a metric space (Y, ρ) let us define mesh and order of the family \mathcal{W}:

mesh $\mathcal{W} < \varepsilon$ provided that $diam \mathcal{W} < \varepsilon$ for each $W \in \mathcal{W}$,
ord $\mathcal{W} \leq n$ provided that $|\{W \in \mathcal{W} : x \in W\}| \leq n + 1$ for each $x \in Y$.

Let us recall the definition of covering dimension, $\dim Y$, of a topological space
For a given metric space \((Y, \rho)\) define a sequence function of dimension \(\Psi_Y\):
\[\Psi_Y(n) := \inf \{ \varepsilon > 0 : \exists \text{ finite covering } W \text{ of } Y, \text{ mesh } W < \varepsilon \text{ and ord } W \leq n \}.\]

Let us list without proof the following properties of the function \(\Psi_Y\):

1. \(\Psi_Y(n) \geq \Psi_Y(n + 1) > 0\) for each \(n \in \mathbb{N}\).
2. If \(Y\) is a compact then \(\lim_{n \to \infty} \Psi_Y(n) = 0\).
3. If \(\dim Y < \infty\) and \(Y\) is compact then \(\Psi_Y(n) = 0\) for each \(n \geq \dim Y\).
4. \(\Psi_Y(n) = \frac{1}{2^n}\) for the Hilbert cube \(Y = [0,1]^\infty\), with the metric
\[\rho(x,y) := \sum_{i=1}^{\infty} \frac{1}{2^i} |x_i - y_i|\]

Theorem. Let \(E\) be an infinite-dimensional F-metric linear space. Then for each decreasing sequence \(\varepsilon_0 > \varepsilon_1 > \ldots > 0\) of reals there is a closed convex subset \(C\) of infinite dimension such that
\[\Psi_C(n) < \varepsilon_n \text{ for each } n \in \mathbb{N}.\]

Proof. We shall define by induction a sequence of affine independent points \(a_0, a_1, \ldots \in E\), a sequence of families \(W_n, n \in \mathbb{N}\), of open sets, and a sequence of positive reals \(\delta_1 > \delta_2 > \ldots > 0, \delta_i < \varepsilon_i\) such that:

1. \(\text{mesh } W_n < \varepsilon_n\) and \(\text{ord } W_n \leq n\) for each \(n \in \mathbb{N}\),
2. \(C_n := \text{conv } \{a_0, \ldots, a_n\} \subset \bigcup W_n \subset B(C_{n-1}, \delta_n) \subset B(C_{n-1}, 2\delta_n) \subset \bigcup W_{n-1}\).

Inductive Construction.

Step 0. Choose \(a_0 \in E \setminus \{0\}\) and define \(C_0 := \{a_0\}\) and \(W_0 := \{E\}\).

Step \(n + 1\). Assume that we have defined affinely independent points \(a_0, \ldots, a_n\) families \(W_0, \ldots, W_n\) of open sets and reals \(\delta_1, \ldots, \delta_n\) satisfying (1) and (2).

Since \(C_n\) is compact, there exists a positive real \(\delta_{n+1}; 0 < \delta_{n+1} < \delta_n, 2\delta_{n+1} \leq \varepsilon_{n+1}\), such that
\[C_n \subset B(C_n, \delta_{n+1}) \subset B(C_n, 2\delta_{n+1}) \subset \bigcup W_n\]

Choose a point \(a_{n+1} \in B(C_n, \delta_{n+1}) \setminus \text{span } C_n\). The points \(a_0, \ldots, a_{n+1}\) are affinely independent. Note that
\[C_{n+1} := \text{conv } \{a_0, \ldots, a_{n+1}\} \subset B(C_n, \delta_{n+1}).\]
To see this, fix $x \in C_{n+1}$. Then
\[x = \sum_{i=0}^{n+1} t_i a_i, \quad \sum_{i=0}^{n+1} t_i = 1 \text{ and } t_i \geq 0. \]
Choose $b \in C_n$ such that $||a_{n+1} - b|| < \delta_{n+1}$ and put
\[y := \sum_{i=0}^{n} t_i a_i + t_{n+1} b. \]

Then it is clear that $y \in C_n$ and
\[||x - y|| = ||t_{n+1}(a_{n+1} - b)|| \leq ||a_{n+1} - b|| < \delta_{n+1}. \]
This yields $x \in B(C_n, \delta_{n+1})$. Since $\dim C_{n+1} = n + 1$, according to theorems on shrinkings and swellings of families of sets (see [1], Theorems 1.7.8 and 3.1.2), one can find a family \mathcal{W}_{n+1} of open sets in E such that
\[\text{mesh } \mathcal{W}_{n+1} < \varepsilon_{n+1}, \quad \text{ord } \mathcal{W}_{n+1} \leq n + 1, \quad C_{n+1} \subset \bigcup \mathcal{W}_{n+1} \subset B(C_n, \delta_{n+1}). \]
This completes the inductive construction. Now, let us put
\[C := \bigcup_{n=0}^{\infty} C_n. \]

Note that
\[C \subset \bigcap_{n=0}^{\infty} B(C_n, \delta_{n+1}), \]
because $\bigcup_{n=0}^{\infty} C_n \subset \bigcap_{n=0}^{\infty} B(C_n, \delta_{n+1})$. Thus from (1) and (2) we infer that $C \subset \bigcup \mathcal{W}_n$ for each $n \in \mathbb{N}$, and therefore $\Psi_C(n) \leq \text{mesh } \mathcal{W}_n < \varepsilon_n$. □

Sequence function of convexity. For a given subset $Y \subset E$ of a linear metric space (E, ρ) define a sequence function of convexity $\Phi_Y : \mathbb{N} \times [0, \infty) \to [0, \infty)$;
\[\Phi_Y(n, r) := \inf\{ L > r : \forall K > L \exists s > r \forall y, c_0, \ldots, c_n \in Y \quad c_0, \ldots, c_n \in B(y, s) \Rightarrow \conv\{c_0, \ldots, c_n\} \subset B(y, K)\}. \]

The function Φ_Y has the following properties:
1. $\Phi_Y(n, r) \leq \Phi_Y(n + 1, r)$ and $\Phi(n, r) \leq \Phi(n, s)$ for each $n \in \mathbb{N}$ and $r \leq s$.
2. $\Phi_Z(n, r) \leq \Phi_Y(n, r)$ for $Z \subset Y$.
3. If $(E, || \cdot ||)$ is a normed space, then $\Phi_Y(n, r) = r$ for each $n \in \mathbb{N}$ and $r \geq 0$.
4. If (E, ρ) is an F-metric linear space, then $\Phi_Y(n, r) \leq (n + 1)r$.

To see this, let $c_0, \ldots, c_n \in B(y, s)$. Choose $x \in \conv\{c_0, \ldots, c_n\} \subset B(y, s)$. Then
\[\rho(x, y) = ||\sum_{i=0}^{n} t_i c_i - y|| = ||\sum_{i=0}^{n} t_i c_i - \sum_{i=0}^{n} t_i y||. \]
\[\leq \sum_{i=0}^{n} ||t_i(c_i - y)|| \leq \sum_{i=0}^{n} ||c_i - y|| \leq (n+1)s, \]

where
\[\sum_{i=0}^{n} t_i = 1, \quad t_i \geq 0, \quad K > (n+1)r, \quad r < s < \frac{K}{n+1}. \]

5. Fix \(0 < p < 1. \) Recall that the Lebesgue space \(L_p \) is defined to be an F-metric space of all the Lebesgue measurable functions \(f : [0,1] \to \mathbb{R} \) with an F-norm such that
\[||f|| := \int_{0}^{1} |f(t)|^p \, dt < \infty. \]

One can verify that \(\Phi_Y(n,r) \leq r(n+1)^{1-p}. \)

Roughly speaking, a function of convexity \(\Phi_Y \) describes some kind of \(n \)-local convexity of nonlocally convex F-metric spaces. This function together with a sequence function of dimension \(\Psi_Y \) gives a better tool for investigations of a fixed point property, than a sequence function of the Kuratowski measure of noncompactness \([5] \). Some methods of measure of noncompactness which are intensively exploit the reader will find in \([7] \).

6. In a paper \([4] \) due to Olga Hadžić it is investigated a notion of a set of \(Z_\phi \)-type. In our terminology a subset \(Y \subset E \) of an F-metric linear space \(E \) is said to be of \(Z_\phi \)-type if there exists a function \(\phi : [0,\infty) \to [0,\infty) \) such that for each \(r > 0 \)
\[\text{conv} ([Y - Y] \cap B(0,r)) \subset B(0,\phi(r)). \]

From this condition it follows that
\[\Phi_Y(n,r) \leq \phi(r) \quad \text{for each } n \in \mathbb{N}, \quad r > 0. \]

7. In the same paper, for the Lebesgue space \(L_0; \)
\[L_0 := \{ f : [0,1] \to \mathbb{R} : ||f|| = \int_{0}^{1} \frac{f(t)}{1+f(t)} \, dt < \infty \}, \]
it is shown that for the convex set
\[Y_A := \{ f \in L_0 : |f(t)| \leq A \text{ for each } t \in [0,1] \}, \text{ where } A > 0, \]
the function \(\phi \) is given by the formula:
\[\phi(r) = (1 + 2A)r. \]

The concept of \(Z_\phi \)-set was originated in Zima's paper \([8] \), where a fixed point property of the Schauder type was established for some nonlocally F-metric spaces. From the results of the next part of our paper it will be follow that for this space \(Y_A \) each continuous compact map \(g : Y_A \to Y_A \) has a fixed point.
Mixed sequence of functions of convexity and dimension. A function \(\chi_Y : \mathbb{N} \to [0, \infty) \), where \(Y \) is a subset of a linear metric space \(E \), defined by the formula

\[
\chi_Y(n) := \Phi_Y[n, \Psi_Y(n)]
\]
is said to be a mixed sequence function of convexity and dimension. The real number

\[
\chi(Y) := \inf\{\chi_Y(n) : n \in \mathbb{N}\}
\]
is said to be the convexity-dimension characteristic of the subset \(Y \) of \(E \).

The following properties of the function \(\chi \) are easy to deduce.

1. If \((E, \rho)\) is an F-metric linear space, then \(\chi_Y(n) \leq (n + 1)\Psi_Y(n) \) for each \(n \in \mathbb{N} \).

2. If \(E \) is a normed space, then \(\chi_Y(n) = \Psi_Y(n) \), for each subset \(Y \subset E \), and consequently:

3. If \(Y \) is a subset of a normed space \(E \), then \(\chi(Y) = 0 \).

4. If \(Y \) is a compact subset of an F-metric space \(E \) and \(\dim Y < \infty \), then \(\chi(Y) = 0 \).

5. Let \(Y \) be a set of \(\Phi \)-type in an F-metric space \(E \). Then \(\chi_Y(n) \leq \phi(\chi_Y(n)) \) and \(\chi(Y) \leq \lim_{n \to \infty} \phi(\Psi_Y(n)) \).

6. For each subset \(Y \subset L_p \), if \(0 \leq p < 1 \) then \(\chi_Y(n) \leq (n + 1)^{1-p}\Psi_Y(n) \).

Now, we are going to show some applications in investigating of a fixed point property of the Schauder type.

MAIN THEOREM. Let \(Y \subset X \subset E \) be an arbitrary subset of a convex set \(X \) of a linear metric space \(E \). Fix \(n \in \mathbb{N} \) and \(K > \chi_Y(n) \). Then for each continuous map \(g : X \to Y \) there is a point \(c \in X \) such that \(\rho(c, g(c)) < K \).

PROOF. By definition \(K > \chi(n) \) means that

(1) \[\Phi_Y[n, \Psi_Y(n)] < K, \]

and let us put

(2) \[r := \Psi_Y(n) \text{ and } L := \Phi_Y(n, r) \]

According to the definitions of functions \(\Phi_Y \) there is \(s > r \) such that for each \(y, c_0, \ldots, c_n \in Y \)

(3) \[c_0, \ldots, c_n \in B(y, s) \implies \text{conv} \{c_0, \ldots, c_n\} \subset B(y, K). \]

Now, from the definition of the function \(\Psi_Y \) there exists a finite relatively open covering \(\mathcal{W} = \{W_0, \ldots, W_m\} \) of \(Y \) such that

(4) \[\text{ord} \mathcal{W} \leq n \text{ and } \text{mesh} \mathcal{W} < s. \]
Choose points $c_i \in W_i$ for each $i = 0, \ldots, m$.

We shall show that there exists a point $c \in X$ and a sequence of indices $0 \leq i_0 < \ldots < i_k \leq m$ such that

$$(5) \quad c \in \text{conv} \{c_{i_0}, \ldots, c_{i_k}\} \cap g^{-1}(W_{i_0}) \cap \ldots \cap g^{-1}(W_{i_k}).$$

Indeed, if not, then $\text{conv} \{i_0, \ldots, i_k\} \subset F_{i_0} \cup \ldots \cup F_{i_k}$ for each set $0 \leq i_0 < \ldots < i_k \leq m$ of indices, where $F_i = X \setminus g^{-1}(W_i)$. Then according to the KKM-principle (see [2], Theorem 1.2, p.73 or [3] Theorem 8.2, p.97) the intersection $\bigcap \{F_i : i = 1, \ldots, m\}$ is a nonempty set. This contradicts the fact that the family $\{g^{-1}(W_i) : i = 1, \ldots, m\}$ is a covering of X.

From (4–5) and $c_i \in W_i$ it follows that

$$(6) \quad k \leq n \quad \text{and} \quad c_{i_0}, \ldots, c_{i_k} \in B(g(c), s).$$

From (3) we get

$$(7) \quad c \in \text{conv} \{c_{i_0}, \ldots, c_{i_k}\} \subset B(g(c), K).$$

Finally, we have obtained $\rho(c, g(c)) < K$. \hfill \square

Theorem. Let $Y \subset X \subset E$ be a compact subset of a convex set X of a linear metric space E such that $x(Y) = 0$. Then every continuous map $g : X \rightarrow Y$ has a fixed point.

Proof. According to Main Theorem for each $\varepsilon > 0$ there exists a point $c_\varepsilon \in X$ such that $\rho(g(c_\varepsilon), c_\varepsilon) < \varepsilon$. Using compactness arguments we may assume that there is a point $c \in X$ such that $c_\varepsilon \rightarrow c$ as $\varepsilon \rightarrow 0$. The continuity of g yields $g(c) = c$. \hfill \square

If we assume that balls $B(x, r)$ are convex then it is clear that $\Psi_Y(n, r) = r$ for each $n \in N$ and $r > 0$ and consequently $x(Y) = 0$ for each compact subspace of E. Thus, we immediately obtain:

Corollary 1. (The Schauder fixed point theorem). Let X be a convex subset of a metric linear space E such that open balls are convex. Then each continuous map $g : X \rightarrow X$, where $g(X)$ is compact, has a fixed point.

From the properties of the function x we also obtain

Corollary 2. Let $Y \subset X \subset E$ be a compact subset of a convex subset of an F-metric space E. If $\dim Y < \infty$, then each continuous map $g : X \rightarrow Y$ has a fixed point.
References

