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F U N C T I O N S O F C O N V E X I T Y A N D D IMENS ION 

T O M A S Z K U L P A 

A b s t r a c t . T w o dual sequence functions describing some kind of local convexity 
and dimension of subspaces of linear metric spaces are introduced. It is shown that 
the functions give a useful tool in the investigations of fixed point properties of the 
Schauder type. 

Notations and conventions. By a linear metric space we mean a topological 
real vector space E which is metrizable. By Kakutani theorem (see for instance [6]) 
E is equipped with an F-norm such that ||x + y|| < + and ||ta;|| < ||x|| for 
each t £ [—1,1]. Such an F-norm induces an equivalent translation-invariant metric 
p on E given by the formula, p(x,y) := \\x — y\\. A linear space with a metric 
induced by an F-norm is said to be an F-metric linear space. Let us denote by; 
B(a, r) := {x £ E : p(x, a) < r} — the ball with centre a and radius r, 
B(A, r) := \J{B(a, r) : a £ A} for each nonempty set A, 
diam A := {p(x, y) : x,y £ E} — the diameter of the set A, 
conv A := {x £ E : x = X ^ o ^ i ! X}i=o^ = 1> U > 0, a, £ i , u E N } — the 
convex hull of the set A. 

In this paper we want to construct a tool to estimate approximative fixed points. 
Our aim will be reach by constructing two dual sequences of functions describing 
dimension and local convexity. 

Sequence function of dimension. For any family W of subsets of a metric 
space (Y, p) let us define mesh and order of the family W: 

mesh W < e provided that diam W < s for each W £ W, 
ord W < n provided that \{W £ W : x £ W}\ < n + 1 for each x £Y. 

Let us recall the definition of covering dimension, dim Y, of a topological space 
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Y; dim Y < n provided that for each open finite covering W there exists an open 
finite covering U of order < n, ord U < n, being a refinement of W 
(i.e., for each U eU there is W € W such that U C W). 

For a given metric space (Y, p) define a sequence function of dimension Wy-
N-> [0,oo): 

^y(n) := inf{e > 0 : 3 finite covering W of Y, mesh W < e and ord W < n}. 

Let us list without proof the following properties of the function ^ y : 

1. * y (n ) > * y ( n + 1) > 0 for each n € N. 

2. If y is a compact then lim™-^ ^y(n) = 0. 

3. If dim Y < oo and V is compact then * y (n ) = 0 for each n > dim Y'. 

4. * y (n ) = for the Hilbert cube Y = [0,1]°°, with the metric 

oo 1 

t = l Ł 

THEOREM. Let E be an infinite-dimensional F-metric linear space. Then for 
each decreasing sequence So > e\ > .. . > 0 of reals there is a closed convex subset 
C of infinite dimension such that 

^c(n) < sn for each n € N. 

PROOF. We shall define by induction a sequence of affine independent points 
ao, o i , . . . € £ , a sequence of families W n , n e N, of open sets, and a sequence of 
positive reals <5i > 82 > • • • > 0, 5i < Ej such that: 

(1) meshW n <£ „ and ord W n < n for each n € N, 

(2) C„ := conv { oo , . . . , a „ } C ( J W n C B ( C „ _ i , J „ ) C B ( C „ _ i , 2 J n ) C ( J w „ _ i . 

Inductive Construction. 

Step 0. Choose a 0 G S \ {0} and define C0 := {a0} and W 0 := {̂ }. 

5tep n + 1. Asume that we have defined affinely independent points ao , . . . , an 

families Wo,. . •, W n of open sets and reals 5i,...,5n satisfying (1) and (2). 
Since Cn is compact, there exists a positive real Sn+i; 0 < <5„+i < 6n, 25n+i < 

e n +i, such that 

Cn C B(Cn,6n+1) C B{Cn,25n+1) C ( J W n 

Choose a point a„+i e B(Cn, <^n+i)\ span C„. The points a 0 , . . . , o„+i are affinely 
independent. Note that 

C„+i := conv {ao,..., a n + i } C B ( C n , <J„+i). 
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To see this, fix x G C n + i - Then 

n+l n+l 

x = y^Uai, = 1 and ij > 0. 
i=0 i=0 

Choose b £ Cn such that ||a n + i — 6|| < 5n+i and put 

n 

y •= y ^ t j Q i + * n + l ^ -

Then it is clear that y G C n and 

I I * - 3/11 = l l*n+i (on+i - b)\\ < \\an+1 - b\\ < 5n+1. 

This yields x G B(Cn,Sn+i). Since dim Cn+i = n + l, according to theorems on 
shrinkings and swellings of families of sets (see [1], Theorems 1.7.8 and 3.1.2), one 
can find a family W n + i of open sets in E such that 

m e s h W n + i < en+i, o r d W n + i < n + l , Cn+i C (JWn+i C B(Cn,5n+1). 

This completes the inductive construction. Now, let us put 

oo 

C := ( J Cn. 
n=0 

Note that 
oo 

Ccf)B(Cn,5n+1), 
i=0 

because \J™=0 C„ C f|~=o £ (C„ , < J n + i ) . Thus from (1) and (2) we infer that C C 

\jWn for each n € N, and therefore ^fc{n) < mesh W n < e„. • 

Sequence function of convexity. For a given subset Y C E of a linear metric 
space (E, p) define a sequence function of convexity $ y : N x [0, oo) —» [0, oo); 

$y (n , r ) := i n f { i > r : VK>L3s>rVy,c0,...,cn€Y c 0 , . . . ,c„ £ S(j/,s) => 
conv {c 0,..., Cn} C if)}-

The function $ y has the following properties: 

1. $ y (n , r) < <3>y (n + 1, r) and $ ( 7 1 , r) < $(n, s) for each n G N and r < s. 

2. $ z ( n , r) < $ y ( n , r) for Z c K 

3. If II • ||) is a normed space, then $y (n , r ) = r for each n € N and r > 0. 

4. If (I?, p) is an F-metric linear space, then $y (n , r) < (n + l)r. 

To see this, let CQ, ..., c n € s). Choose x € conv {co,..., c n } C B(y, s). Then 

n n n 

i=0 i=0 i=0 
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< Y^wuici -y)\\<Yl w* - y\\ z (n+ i ) s , 
i=0 i=0 

where 

^U = l, U>0, K >(n + l )r , r <s< y ii = i , tj u, r\ s yn T III, T V a — . 
^—' n + 1 
i=0 

5. F ix 0 < p < 1. Recall that the Lebesgue space L p is defined to be an F-metric 
space of all the Lebesgue measurable functions / : [0,1] —> R with an F-norm such 
that 

||/||:= f |/(t)|" dt < oo. 
Jo 

One can verify that $y (n , r) < r (n + l ) 1 _ p . 
Raughly speaking, a function of convexity $ y describes some kind of n-local 

convexity of nonlocally convex F-metric spaces. This function together with a se
quence function of dimension gives a better tool for investigations of a fixed 
point property, than a sequence function of the Kuratowski measure of noncom-
pactness [5]. Some methods of measure of noncompactness which are intensively 
exploit the reader will find in [7]. 

6. In a paper [4] due to Olga Hadźić it is investigated a notion of a set of 
Z^-type. In our terminology a subset Y C E of an F-metric linear space E is said 
to be of Z^-type if there exists a function <p '• [0> oo) —> [0, oo) such that for each 
r > 0 

conv [(Y -Y)D B(0, r)] C B(0,4>(r)). 

From this condition it follows that 

$ y (n , r) < 4>(r) for each n € N, r > 0. 

7. In the same paper, for the Lebegue space Lo; 

Lo := {/ : [0,1] —» R : ||/|| = £ ^J^dt < oo}, 

it is shown that for the convex set 

YA := {/ G L 0 : < A for each t G [0,1]}, where A > 0, 

the function <j> is given by the formula: 

</>(r) = (1 + 2A)r. 

The concept of Z^-set was originated in Zima's paper [8], where a fixed point 
property of the Schauder type was established for some nonlocally F-metric spaces. 
From the results of the next part of our paper it will be follow that for this space 
YA each continuous compact map g :YA —> Y A has a fixed point. 
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Mixed sequence of functions of convexity and dimension. A function 
XY '• N —• [0,oo), where Y is a subset of a linear metric space E, defined by the 
formula 

Xr (n ) := $y [n , *y (n ) ] 

is said to be a mixed sequence function of convexity and dimension. The real 
number 

X(Y) := inf { X y(n) : n € N} 

is said to the convexity-dimension characteristic of the subset Y of E. 

The following properties of the function \ are easy to deduce. 

1. If (E, p) is an F-metric linear space, then XY(TI) < (n + l)\l>y(n) for each 
n £ N. 

2. If E is a normed space, then xy(n) = * y (n ) , for each subset Y C E, and 
consequently: 

3. If Y is a subset of a normed space E, then x(^) — 0. 

4. If y is a compact subset of an F-metric space E and dim Y < 0 0 , then 
x O O = 0. 

5. Let Y be a set of Z^-type in an F-metric space E. Then X v ( n ) < 0 ( xv ( n ) ) 
and x O O < l imn^oo 0 ( * y (n ) ) . 

6. For each subset Y C L p , if 0 < p < 1 then xy (n) < (n + l ) 1 _ p * y ( n ) . 

Now, we are going to show some applications in investigating of a fixed point 
property of the Schauder type. 

M A I N T H E O R E M . Let Y c X c E be an arbitrary subset of a convex set X of 
a linear metric space E. Fix n £ N and K > Xv ( n ) - Then for each continuous 
map g : X —» Y there is a point c £ X such that p(c,g(c)) < K. 

P R O O F . By definition K > x(") means that 

(1) $Y[n,VY(n)} < K, 

and let us put 

(2) r := * y (n ) and L := $ y (n , r ) 

According to the definitions of functions <3>y there is s > r such that for each 
y,co,...,Cn£Y 

(3) co , . . . , Cn £ B(y, s) conv {co,..., Cn) C B(y, K). 

Now, from the definition of the function Ńty there exists a finite relatively open 
covering W = {Wo,..., Wm} of Y such that 

(4) o r d W < n and mesh W < s. 
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Choose points Ą € Wj for each i = 0 , . . . , m. 
We shall show that there exists a point c € X and a sequence of indices 0 < 

io < ... < ik < m such that 

(5) c £ conv {cio,...,cik} n g-\wio) n ... n g-\Wik). 

Indeed, if not, then conv {i0,..., ik} C Fio U ... U Fik for each set 0 < in < 
... < ik < m of indices, where Fi — X \ g~1(Wi). Then according to the K K M -
principle (see [2] , Theorem 1.2, p.73 or [3] Theorem 8.2, p.97) the intersection 
f]{Fi : i = 1,..., m} is a nonempty set. This contradicts the fact that the family 
{g~1(Wi) : i =,..., TO} is a covering of X. 

From (4-5) and d € Wi it follows that 

(6) fe<nand C j 0 , . . . ,cik € B{g{c), s). 

From (3) we get 

(7) c e conv {ci0,...,Cik} cB(g(c),K). 

Finally, we have obtained p(c,g(c)) < K. • 

T H E O R E M . Let Y c X c E be a compact subset of a convex set X of a linear 
metric space E such that x(Y) — 0- Then every continuous map g : X —+Y has a 
fixed point. 

P R O O F . According to Ma in Theorem for each e > 0 there exists a point c e G X 
such that p(g(ce),cE) < e. Using compatness arguments we may assume that there 
is a point c € X such that c E —• c a s e —* 0. The continuity of g yields p(c) = c. 

• 
If we assume that balls B(x, r) are convex then it is clear that ^ , y (n , r) = r for 

each n£ N and r > 0 and consequently x(Y") = 0 for each compact subspace of E. 
Thus, we immediately obtain: 

C O R O L L A R Y 1. (The Schauder fixed point theorem). Let X be a convex subset 
of a metric linear space E such that open balls are convex. Then each continuous 
map g : X —> X, where g(X) is compact, has a fixed point. 

From the properties of the function x w e also obtain 

C O R O L L A R Y 2. Let Y c X c E be a compact subset of a convex subset of an 
F-metric space E. If dim Y < oo, then each continuous map g : X —• Y has a fixed 
point. 
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