

You have downloaded a document from RE-BUŚ
 repository of the University of Silesia in Katowice

Title: Functions of convexity and dimension

Author: Tomasz Kulpa

Citation style: Kulpa Tomasz. (2005). Functions of convexity and dimension. "Annales Mathematicae Silesianae" (Nr 19 (2005), s. 23-29).

Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych Polska - Licencja ta zezwala na rozpowsze chnianie, przedstawianie i wykonywanie utworu jedynie w celach niekomercyjnych oraz pod warunkiem zachowania go w oryginalnej postaci (nie tworzenia utworów zależnych).

FUNCTIONS OF CONVEXITY AND DIMENSION

Tomasz Kulpa

Abstract

Two dual sequence functions describing some kind of local convexity and dimension of subspaces of linear metric spaces are introduced. It is shown that the functions give a useful tool in the investigations of fixed point properties of the Schauder type.

Notations and conventions. By a linear metric space we mean a topological real vector space E which is metrizable. By Kakutani theorem (see for instance [6]) E is equipped with an F-norm such that $\|x+y\| \leq\|x\|+\|y\|$ and $\|t x\| \leq\|x\|$ for each $t \in[-1,1]$. Such an F -norm induces an equivalent translation-invariant metric ρ on E given by the formula, $\rho(x, y):=\|x-y\|$. A linear space with a metric induced by an F -norm is said to be an F-metric linear space. Let us denote by; $B(a, r):=\{x \in E: \rho(x, a)<r\}$ - the ball with centre a and radius r, $B(A, r):=\bigcup\{B(a, r): a \in A\}$ for each nonempty set A, $\operatorname{diam} A:=\{\rho(x, y): x, y \in E\}$ - the diameter of the set A, $\operatorname{conv} A:=\left\{x \in E: x=\sum_{i=0}^{n} t_{i} a_{i}, \sum_{i=0}^{n} t_{i}=1, t_{i} \geq 0, a_{i} \in A, n \in \mathbb{N}\right\}$ - the convex hull of the set A.

In this paper we want to construct a tool to estimate approximative fixed points. Our aim will be reach by constructing two dual sequences of functions describing dimension and local convexity.

Sequence function of dimension. For any family \mathcal{W} of subsets of a metric space (Y, ρ) let us define mesh and order of the family \mathcal{W} :
mesh $\mathcal{W}<\varepsilon$ provided that $\operatorname{diam} \mathcal{W}<\varepsilon$ for each $W \in \mathcal{W}$, ord $\mathcal{W} \leq n$ provided that $|\{W \in \mathcal{W}: x \in W\}| \leq n+1$ for each $x \in Y$.

Let us recall the definition of covering dimension, $\operatorname{dim} Y$, of a topological space

[^0]$Y ; \operatorname{dim} Y \leq n$ provided that for each open finite covering \mathcal{W} there exists an open finite covering \mathcal{U} of order $\leq n$, ord $\mathcal{U} \leq n$, being a refinement of \mathcal{W} (i.e., for each $U \in \mathcal{U}$ there is $W \in \mathcal{W}$ such that $U \subset W$).

For a given metric space (Y, ρ) define a sequence function of dimension Ψ_{Y} : $\mathbb{N} \rightarrow[0, \infty):$
$\Psi_{Y}(n):=\inf \{\varepsilon>0: \exists$ finite covering \mathcal{W} of $Y, \operatorname{mesh} \mathcal{W}<\varepsilon$ and $\operatorname{ord} \mathcal{W} \leq n\}$.
Let us list without proof the following properties of the function Ψ_{Y} :

1. $\Psi_{Y}(n) \geq \Psi_{Y}(n+1) \geq 0$ for each $n \in \mathbb{N}$.
2. If Y is a compact then $\lim _{n \rightarrow \infty} \Psi_{Y}(n)=0$.
3. If $\operatorname{dim} Y<\infty$ and Y is compact then $\Psi_{Y}(n)=0$ for each $n \geq \operatorname{dim} Y$.
4. $\Psi_{Y}(n)=\frac{1}{2^{n}}$ for the Hilbert cube $Y=[0,1]^{\infty}$, with the metric

$$
\rho(x, y):=\sum_{i=1}^{\infty} \frac{1}{2^{i}}\left|x_{i}-y_{i}\right| .
$$

Theorem. Let E be an infinite-dimensional F-metric linear space. Then for each decreasing sequence $\varepsilon_{0}>\varepsilon_{1}>\ldots>0$ of reals there is a closed convex subset C of infinite dimension such that

$$
\Psi_{C}(n)<\varepsilon_{n} \quad \text { for each } n \in \mathbb{N}
$$

Proof. We shall define by induction a sequence of affine independent points $a_{0}, a_{1}, \ldots \in E$, a sequence of families $\mathcal{W}_{n}, n \in \mathbb{N}$, of open sets, and a sequence of positive reals $\delta_{1}>\delta_{2}>\ldots>0, \delta_{i}<\varepsilon_{i}$ such that:

$$
\begin{equation*}
\operatorname{mesh} \mathcal{W}_{n}<\varepsilon_{n} \text { and ord } \mathcal{W}_{n} \leq n \text { for each } n \in \mathbb{N} \tag{1}
\end{equation*}
$$

(2) $C_{n}:=\operatorname{conv}\left\{a_{0}, \ldots, a_{n}\right\} \subset \bigcup \mathcal{W}_{n} \subset B\left(C_{n-1}, \delta_{n}\right) \subset B\left(C_{n-1}, 2 \delta_{n}\right) \subset \bigcup \mathcal{W}_{n-1}$.

Inductive Construction.
Step 0. Choose $a_{0} \in E \backslash\{0\}$ and define $C_{0}:=\left\{a_{0}\right\}$ and $\mathcal{W}_{0}:=\{E\}$.
Step $n+1$. Asume that we have defined affinely independent points a_{0}, \ldots, a_{n} families $\mathcal{W}_{0}, \ldots, \mathcal{W}_{n}$ of open sets and reals $\delta_{1}, \ldots, \delta_{n}$ satisfying (1) and (2).

Since C_{n} is compact, there exists a positive real $\delta_{n+1} ; 0<\delta_{n+1}<\delta_{n}, 2 \delta_{n+1} \leq$ ε_{n+1}, such that

$$
C_{n} \subset B\left(C_{n}, \delta_{n+1}\right) \subset B\left(C_{n}, 2 \delta_{n+1}\right) \subset \bigcup \mathcal{W}_{n}
$$

Choose a point $a_{n+1} \in B\left(C_{n}, \delta_{n+1}\right) \backslash$ span C_{n}. The points a_{0}, \ldots, a_{n+1} are affinely independent. Note that

$$
C_{n+1}:=\operatorname{conv}\left\{a_{0}, \ldots, a_{n+1}\right\} \subset B\left(C_{n}, \delta_{n+1}\right)
$$

To see this, fix $x \in C_{n+1}$. Then

$$
x=\sum_{i=0}^{n+1} t_{i} a_{i}, \quad \sum_{i=0}^{n+1} t_{i}=1 \text { and } t_{i} \geq 0
$$

Choose $b \in C_{n}$ such that $\left\|a_{n+1}-b\right\|<\delta_{n+1}$ and put

$$
y:=\sum_{i=0}^{n} t_{i} a_{i}+t_{n+1} b
$$

Then it is clear that $y \in C_{n}$ and

$$
\|x-y\|=\left\|t_{n+1}\left(a_{n+1}-b\right)\right\| \leq\left\|a_{n+1}-b\right\|<\delta_{n+1} .
$$

This yields $x \in B\left(C_{n}, \delta_{n+1}\right)$. Since $\operatorname{dim} C_{n+1}=n+1$, according to theorems on shrinkings and swellings of families of sets (see [1], Theorems 1.7.8 and 3.1.2), one can find a family \mathcal{W}_{n+1} of open sets in E such that

$$
\operatorname{mesh} \mathcal{W}_{n+1}<\varepsilon_{n+1}, \operatorname{ord} \mathcal{W}_{n+1} \leq n+1, C_{n+1} \subset \bigcup \mathcal{W}_{n+1} \subset B\left(C_{n}, \delta_{n+1}\right)
$$

This completes the inductive construction. Now, let us put

$$
C:=\overline{\bigcup_{n=0}^{\infty} C_{n}} .
$$

Note that

$$
C \subset \bigcap_{i=0}^{\infty} \overline{B\left(C_{n}, \delta_{n+1}\right)},
$$

because $\bigcup_{n=0}^{\infty} C_{n} \subset \bigcap_{n=0}^{\infty} \overline{B\left(C_{n}, \delta_{n+1}\right)}$. Thus from (1) and (2) we infer that $C \subset$ $\cup \mathcal{W}_{n}$ for each $n \in \mathbb{N}$, and therefore $\Psi_{C}(n) \leq$ mesh $\mathcal{W}_{n}<\varepsilon_{n}$.

Sequence function of convexity. For a given subset $Y \subset E$ of a linear metric space (E, ρ) define a sequence function of convexity $\Phi_{Y}: \mathbb{N} \times[0, \infty) \rightarrow[0, \infty)$;
$\Phi_{Y}(n, r):=\inf \left\{L>r: \forall_{K>L} \exists_{s>r} \forall_{y, c_{0}, \ldots, c_{n} \in Y} \quad c_{0}, \ldots, c_{n} \in B(y, s) \Longrightarrow\right.$ $\left.\operatorname{conv}\left\{c_{0}, \ldots, c_{n}\right\} \subset B(y, K)\right\}$.

The function Φ_{Y} has the following properties:

1. $\Phi_{Y}(n, r) \leq \Phi_{Y}(n+1, r)$ and $\Phi(n, r) \leq \Phi(n, s)$ for each $n \in \mathbb{N}$ and $r \leq s$.
2. $\Phi_{Z}(n, r) \leq \Phi_{Y}(n, r)$ for $Z \subset Y$.
3. If $(E,\|\cdot\|)$ is a normed space, then $\Phi_{Y}(n, r)=r$ for each $n \in \mathbb{N}$ and $r \geq 0$.
4. If (E, ρ) is an F-metric linear space, then $\Phi_{Y}(n, r) \leq(n+1) r$.

To see this, let $c_{0}, \ldots, c_{n} \in B(y, s)$. Choose $x \in \operatorname{conv}\left\{c_{0}, \ldots, c_{n}\right\} \subset B(y, s)$. Then

$$
\rho(x, y)=\left\|\sum_{i=0}^{n} t_{i} c_{i}-y\right\|=\left\|\sum_{i=0}^{n} t_{i} c_{i}-\sum_{i=0}^{n} t_{i} y\right\|
$$

$$
\leq \sum_{i=0}^{n}\left\|t_{i}\left(c_{i}-y\right)\right\| \leq \sum_{i=0}^{n}\left\|c_{i}-y\right\| \leq(n+1) s
$$

where

$$
\sum_{i=0}^{n} t_{i}=1, \quad t_{i} \geq 0, \quad K>(n+1) r, \quad r<s<\frac{K}{n+1}
$$

5. Fix $0<p<1$. Recall that the Lebesgue space L_{p} is defined to be an F-metric space of all the Lebesgue measurable functions $f:[0,1] \rightarrow \mathbb{R}$ with an F-norm such that

$$
\|f\|:=\int_{0}^{1}|f(t)|^{p} d t<\infty
$$

One can verify that $\Phi_{Y}(n, r) \leq r(n+1)^{1-p}$.
Raughly speaking, a function of convexity Φ_{Y} describes some kind of n-local convexity of nonlocally convex F-metric spaces. This function together with a sequence function of dimension Ψ_{Y} gives a better tool for investigations of a fixed point property, than a sequence function of the Kuratowski measure of noncompactness [5]. Some methods of measure of noncompactness which are intensively exploit the reader will find in [7].
6. In a paper [4] due to Olga Hadžić it is investigated a notion of a set of Z_{ϕ}-type. In our terminology a subset $Y \subset E$ of an F-metric linear space E is said to be of Z_{ϕ}-type if there exists a function $\phi:[0, \infty) \rightarrow[0, \infty)$ such that for each $r>0$

$$
\operatorname{conv}[(Y-Y) \cap B(0, r)] \subset B(0, \phi(r))
$$

From this condition it follows that

$$
\Phi_{Y}(n, r) \leq \phi(r) \text { for each } n \in \mathbb{N}, \quad r>0
$$

7. In the same paper, for the Lebegue space L_{0};

$$
L_{0}:=\left\{f:[0,1] \rightarrow \mathbb{R}:\|f\|=\int_{0}^{1} \frac{f(t)}{1+f(t)} d t<\infty\right\},
$$

it is shown that for the convex set

$$
Y_{A}:=\left\{f \in L_{0}:|f(t)| \leq A \text { for each } t \in[0,1]\right\}, \text { where } A>0
$$

the function ϕ is given by the formula:

$$
\phi(r)=(1+2 A) r .
$$

The concept of Z_{ϕ}-set was originated in Zima's paper [8], where a fixed point property of the Schauder type was established for some nonlocally F-metric spaces. From the results of the next part of our paper it will be follow that for this space Y_{A} each continuous compact map $g: Y_{A} \rightarrow Y_{A}$ has a fixed point.

Mixed sequence of functions of convexity and dimension. A function $\chi_{Y}: \mathbb{N} \rightarrow[0, \infty)$, where Y is a subset of a linear metric space E, defined by the formula

$$
\chi_{Y}(n):=\Phi_{Y}\left[n, \Psi_{Y}(n)\right]
$$

is said to be a mixed sequence function of convexity and dimension. The real number

$$
\chi(Y):=\inf \left\{\chi_{Y}(n): n \in \mathbb{N}\right\}
$$

is said to the convexity-dimension characteristic of the subset Y of E.
The following properties of the function χ are easy to deduce.

1. If (E, ρ) is an F-metric linear space, then $\chi_{Y}(n) \leq(n+1) \Psi_{Y}(n)$ for each $n \in N$.
2. If E is a normed space, then $\chi_{Y}(n)=\Psi_{Y}(n)$, for each subset $Y \subset E$, and consequently:
3. If Y is a subset of a normed space E, then $\chi(Y)=0$.
4. If Y is a compact subset of an F-metric space E and $\operatorname{dim} Y<\infty$, then $\chi(Y)=0$.
5. Let Y be a set of Z_{ϕ}-type in an F-metric space E. Then $\chi_{Y}(n) \leq \phi\left(\chi_{Y}(n)\right)$ and $\chi(Y) \leq \lim _{n \rightarrow \infty} \phi\left(\Psi_{Y}(n)\right)$.
6. For each subset $Y \subset L_{p}$, if $0 \leq p<1$ then $\chi_{Y}(n) \leq(n+1)^{1-p} \Psi_{Y}(n)$.

Now, we are going to show some applications in investigating of a fixed point property of the Schauder type.

Main Theorem. Let $Y \subset X \subset E$ be an arbitrary subset of a convex set X of a linear metric space E. Fix $n \in N$ and $K>\chi_{Y}(n)$. Then for each continuous map $g: X \rightarrow Y$ there is a point $c \in X$ such that $\rho(c, g(c))<K$.

Proof. By definition $K>\chi(n)$ means that

$$
\begin{equation*}
\Phi_{Y}\left[n, \Psi_{Y}(n)\right]<K \tag{1}
\end{equation*}
$$

and let us put

$$
\begin{equation*}
r:=\Psi_{Y}(n) \text { and } L:=\Phi_{Y}(n, r) \tag{2}
\end{equation*}
$$

According to the definitions of functions Φ_{Y} there is $s>r$ such that for each $y, c_{0}, \ldots, c_{n} \in Y$

$$
\begin{equation*}
c_{0}, \ldots, c_{n} \in B(y, s) \Longrightarrow \operatorname{conv}\left\{c_{0}, \ldots, c_{n}\right\} \subset B(y, K) \tag{3}
\end{equation*}
$$

Now, from the definition of the function Ψ_{Y} there exists a finite relatively open covering $\mathcal{W}=\left\{W_{0}, \ldots, W_{m}\right\}$ of Y such that

$$
\begin{equation*}
\operatorname{ord} \mathcal{W} \leq n \text { and } \operatorname{mesh} \mathcal{W}<s \tag{4}
\end{equation*}
$$

Choose points $c_{i} \in W_{i}$ for each $i=0, \ldots, m$.
We shall show that there exists a point $c \in X$ and a sequence of indices $0 \leq$ $i_{0}<\ldots<i_{k} \leq m$ such that

$$
\begin{equation*}
c \in \operatorname{conv}\left\{c_{i_{0}}, \ldots, c_{i_{k}}\right\} \cap g^{-1}\left(W_{i_{0}}\right) \cap \ldots \cap g^{-1}\left(W_{i_{k}}\right) . \tag{5}
\end{equation*}
$$

Indeed, if not, then conv $\left\{i_{0}, \ldots, i_{k}\right\} \subset F_{i_{0}} \cup \ldots \cup F_{i_{k}}$ for each set $0 \leq i_{0}<$ $\ldots<i_{k} \leq m$ of indices, where $F_{i}=X \backslash g^{-1}\left(W_{i}\right)$. Then according to the KKMprinciple (see [2] , Theorem 1.2, p. 73 or [3] Theorem 8.2, p.97) the intersection $\bigcap\left\{F_{i}: i=1, \ldots, m\right\}$ is a nonempty set. This contradicts the fact that the family $\left\{g^{-1}\left(W_{i}\right): i=, \ldots, m\right\}$ is a covering of X.

From (4-5) and $c_{i} \in W_{i}$ it follows that

$$
\begin{equation*}
k \leq n \text { and } c_{i_{0}}, \ldots, c_{i_{k}} \in B(g(c), s) . \tag{6}
\end{equation*}
$$

From (3) we get

$$
\begin{equation*}
c \in \operatorname{conv}\left\{c_{i_{0}}, \ldots, c_{i_{k}}\right\} \subset B(g(c), K) . \tag{7}
\end{equation*}
$$

Finally, we have obtained $\rho(c, g(c))<K$.
Theorem. Let $Y \subset X \subset E$ be a compact subset of a convex set X of a linear metric space E such that $\chi(Y)=0$. Then every continuous map $g: X \rightarrow Y$ has a fixed point.

Proof. According to Main Theorem for each $\varepsilon>0$ there exists a point $c_{\varepsilon} \in X$ such that $\rho\left(g\left(c_{\varepsilon}\right), c_{\varepsilon}\right)<\varepsilon$. Using compatness arguments we may assume that there is a point $c \in X$ such that $c_{\varepsilon} \longrightarrow c$ as $\varepsilon \longrightarrow 0$. The continuity of g yields $g(c)=c$.

If we assume that balls $B(x, r)$ are convex then it is clear that $\Psi_{Y}(n, r)=r$ for each $n \in N$ and $r>0$ and consequently $\chi(Y)=0$ for each compact subspace of E. Thus, we immediately obtain:

Corollary 1. (The Schauder fixed point theorem). Let X be a convex subset of a metric linear space E such that open balls are convex. Then each continuous map $g: X \rightarrow X$, where $\overline{g(X)}$ is compact, has a fixed point.

From the properties of the function χ we also obtain
Corollary 2. Let $Y \subset X \subset E$ be a compact subset of a convex subset of an F-metric space E. If $\operatorname{dim} Y<\infty$, then each continuous map $g: X \rightarrow Y$ has a fixed point.

References

[1] Engelking R., Dimension Theory, PWN. North-Holland Publishing Company, Warszawa-Amsterdam-Oxford-New York 1978.
[2] Dugundji J., Granas A., Fixed Point Theory, PWN, Warszawa 1982.
[3] Dugundji J., Granas A., Fixed Point Theory, Springer Monographs in Mathematics, Springer-Verlag, New York 2003.
[4] Hadžić O., Some properties of measures of noncompactness in paranormed spaces, Proc. Amer. Math. Soc., 102(4) (1988), 843-849.
[5] Kuratowski K., Sur les espaces completes, Fund. Math., 15 (1930), 301-309.
[6] Rolewicz S., Metric Linear Spaces, PWN. D. Reidel Publishing Company, Warszawa-Dordrecht-Boston-Lancaster 1984.
[7] Wędrychowicz S., Compactness Conditions for Nonlinear Differential and Integral Equations, Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków 2001.
[8] Zima K., On Schauder's fixed point theorem with respect to para-normed space, Comment. Math. Prace Mat., 19 (1977), 421-423.

University of Silesia
Institute of Mathematics
ul. Bankowa 14
40-007 Katowice
Poland
e-mail: tkulpa@ux2.math.us.edu.pl

[^0]: Received: February 23, 2005. Revised: June 07, 2005.
 (1991) Mathematics Subject Classification: $54 \mathrm{H} 25,47 \mathrm{H} 10$.

 Key words and phrases: the Schauder fixed point theorem, measure of convexity and dimension.

