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O N A P A P E R O F M A W H I N O N S E C O N D O R D E R 

D I F F E R E N T I A L E Q U A T I O N S 

T A D E U S Z D Ł O T K O 

Abstract . The first part of the paper deals with classification of solutions 
to the equations 

ti" + ag(t, u ( < )) = 0, i = 0,1; a3 = 1, f > 0. 

The second part is devoted to systems of the form 

u"(t) = A{t)uW(t)-g(t,u(h(t)), «'(/>(*)))> t6[0,l] 

u ( 0(0) = ti ( , )(l) = 0, .1 = 0,1. 

A wide literature has been devoted to the study of the differential equ
ations 

(1) u"(t)+g(t,u(t)) = f(t), t € [ 0 , l ] , 

or 

(2) u"(t)+g(t,u'(t)) = /(*), f € [0,1], 

with the Neumann: u'(0) = u'(l) = 0 or the periodic boudary value problem: 
«(0) - «(1) = u'(0) - tt'(l) = 0. 

In recent years interesting results on these problems have been reported 
in [1], [3], [7]. 

Using elementary methods we demonstrate here for (1) and (2) certain 
nonoscillatory and oscillatory results, connected with these problems. 

1991 Mathematics Subject Classification. AMS classification: 34K10, 34K15, 34B15. 
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In the second part we demonstrate sufficient conditions for the existence 
of solutions to generalizations of (1) and (2). The proofs are based on topo
logical degree theory. Certain results are related to those in paper [7]. 

I . Let us consider the second order differential equation 

(3) u"(t) + crg{t,u'(t)) = 0, a2 = 1, 

in which the function g(t, u) is continuous for (t, u) € [0, oo) x R 1 with values 
in R 1 . 

We consider solutions u(t) of (3) which exists in [0, oo) and u(t) ^ const, 
in every interval (a, fi) C [0, oo). 

We assume that 

(4) g(t,u)u>0 for u ^ 0. 

Instead of (3) let us consider 

(5) v'(t) + ag{t, v{t)) = 0, t> 0, v(t) = u'{t), a2 = 1. 

Then the following theorem is true. 

T H E O R E M 1. Let v(t) denote the solution of ( 5 ) . Then this solution has 
the following properties: 

When v(0) > 0 (< 0), then v(t) > 0 (< 0) for t > 0. When a = - 1 
and u(0) > 0 (< 0), then additionally v(t) is decreasing (increasing) and 
v(t) -> 0 ( c ^ 0). 

When a = 1 and u(0) > 0 (< 0), then additionally v(t) is increasing 
(decreasing) for t^0 and tends to elimit g ^ oo —oo). 

Of course v = 0 is a solution of (5) satisfying u(0) = u(l) = 0. 

P R O O F . For i > 0, a = - 1 and u(0) > 0 (< 0) we have g(t, v(t)) > 0 (< 0) 
and v(t) is monotonie for t ^ 0. 

Let us suppose that there exists t2 > 0 and a neighbourhood Ut2 of tt 
such that for every t\, t% C. Ut2, t\ < ti < t$ we have 

v{h)v(t3) < 0. 

Then the function v2(t) is monotonie because of v(t) and 

v2(t3) - v2{h) = (v{t3) - vM)(u(t3) + v{h)). 

The left hand side and the first factor of the right hand side of the last 
equality are of constant sign. The second factor changes its sign and we get 
a contradiction. Hence v(t) is monotonie for t ^ 0. 
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When a = 1 and v(0) > 0, then v(t) > 0 for t ^ 0, < 0 and 
there exists a finite limit c = l imv(i) ^ 0 when t -¥ oo. When a = - 1 
and u(0) > 0, then v(t) > 0 for t > 0, t?'(t) = g{t,v(t)) > 0 and a limit 
lim u (i) = c ^ oo, i —> oo exists. The other situations can be treated similarly. 

We shall now consider the equation 

(3') u"(t) + ag{t, u{t)) = 0, a2 = 1, t^. 0, (see also [2]). 

Under the same assumptions as before: g(t, u) is continuous for (t, u) 6 
[0, cc) x R 1 with values in R 1 and g(t, u)u > 0 for u ^ 0. Again we consider 
only solutions u(t) const at every interval (a,/?) C R 1 . 

T H E O R E M 2. When (4) ts satisfied and a = —1, then for every solution 
u(t) of (3') which exists in [0, oo) the set 

{t: t e [0 ,oo) , u{t)u'{t) = 0} 

has at most one point. 

P R O O F . Let us consider the function <f>{t) = u(t)u'(t) where u(t) satisfies 
(3'). Then <f>'{t) = (u'{t))2 + u{t)g{t,u{t)) > 0. 

T H E O R E M 3. Let us suppose that for u(t) > 0 (< 0) for t ^ 0 and u(t) 
nondecreasing (nonincreasing) in [0, oo) we have 

oo 

jg{t, u{t))dt = +oo (-oo). 

Then all solutions of (3') with (7 = 1 are oscillating in [0, oo). 

P R O O F . Let us suppose that there exists a solution u(t) of (3) with a = 1 
such that u(t) > 0 for t > t0 ^ 0. Then 

and from (4) u'(t) is decreasing for t ^ tx. It is impossible that u'(t) ^ 0 for 
t Ź * i , otherwise u'(t) -> -oo when t -» oo. Hence there exists t2 > h such 
that u'(t2) < 0 and 

u'(t) = u'(t2)- j g(T,u(T))dr 
t3 
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is negative and decreasing, in contradiction with u(t) > 0 for t ^ to. Hence 
we get that u(t) change its sign. This is true for every fixed t2 ^ h and u(t) 
is oscillating. 

Using elementary methods it is possible to derive theorems on the mono-
tonicity of extrema of oscillating solutions to the equation 

(6) u"(t) + a{t)4>(u(t))4>'u(u(t)) = 0, t Ź 0. 

We now assume that <j> G C 1 ( [ ( -oo,+oo) ,R 1 ] ) , <f>(u)<j>'u(u)u > 0 for u ^ 0. 
a(t) 6 C 1 ( [0 , o o ) ^ 1 ) and a'(t) is of constant sign for t ^ 0. The following 
theorem is then true. 

T H E O R E M 4. Under the previous assumptions, for every oscillatory solu
tion u(t) of equation (6) the following properties are true: 

1. When a'(t) ^ 0, then the sequence of consecutive maxima is nonin-
creasing and the sequence of consecutive minima nondecreasing. 

2. When a'(t) ^ 0, then the sequence of consecutive maxima is nonde
creasing and the sequence of consecutive minima is nonincreasing. 

3. If additionally <j>{—u)(j>'u{—u) = <$>{v)<f>'u(u), then the sequence of mo
duli of consecutive extrema is monotonie. 

4. If a(t) — const. > 0, then the sequence of consecutive moduli of 
extrema is constant. 

P R O O F . Let us consider the function 

(7) ^(«) = W « ( * ) ) ) a + («'(*))* W*))" 1, 

where u{t) denotes a solution of (6). 
We have 

<t>'(t) = -(u'(t))2a'(t)(a(t))-2. 

When a'(t) > 0, then <p'(t) ^ 0 and <j>(t) is nonincreasing. Denoting by 
ti, t2,... the abscisae of the consecutive moduli of extrema, we obtain 

cf>{u(ti)) > 0, u'(ti) = 0 and = (<t>(u{ti)))2. 

But we have <f>'(t) ^ 0 and the assumption on <f> show that the sequence u{U) 
is nonincreasing. The proof may be finished in the same manner. 

I I . The next part of the paper will be devoted to certain boundary value 
problems for systems of equations with deviated argument 

(8x) u"{t) = A(t)u^(t) +g(t,u{h{t)),u'{k{t))), i = 0,1 
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(8 2 ) «W(0) = « ( i ) ( l ) = 0, i = 0,1, t e [0,1] 

We assume that A is a n x n matrix, (•, •) the inner product in R " 

(9) (Au, u) > -m(u, u), m < 7T2 for u ^ 0, 

g(t, u, v) is locally Caratheodory in [0,1] X R 2 n with values in R n , 

(10) \g(t, u, U)|R» < M(|u |g„ + |v|&,) for some 0 < a, /3 < 1 

and constant M. The deviations h(t), k(t) of the argument t are continuous, 
h,k: [0,1] -> [0,1], h(0) = 0. 

Under the assumptions given above we have: 

T H E O R E M 5. The problem (8i), (82) with i = 0 has at least one solution 
u € W 2 , 1 ( [ 0 , l ] , R n ) . 

P R O O F . It is well known that for i = 0 there exists a Green function 
G(t, s) such that the solutions of 

(11) u"(t) = Au(t), u(0) = u(l) = 0, t € [0,1] 

and 

(12) u"{t) = Au{t) + g{t, u{h{t)),u'{k{t))), u(0) = w(l) = 0, t € [0,1] 

can be written in the form 

1 

(13) u(t) = jG(t,s)Au(s)ds 
0 

or 

1 

(14) u{t) = J G{t, s)[Au{s) + g{s, u{h{s)),u'{k{s)))]ds, 
0 

where G(t, s) satisfies the well known regularity and boundedness conditions. 
Instead of solutions to (11) and (12) we shall consider zero vectors of com

pletely continuous vector fields <f> and if) in the Banach space VT 2: 1([0, l ] , R n ) 

1 

(15) {<t>u){t) =: u{t) - JG(t,s)Au(s)ds, 
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and 

i 

(16) {tf>u)(t) =: u(t) - J G(t,s)[Au{s) + g{s,u(h(s)),u'{k{s))]ds. 
o 

Using the same method as in [4] it is clear that the vector fields <f>, ip are 
completely continuous in W 2 , 1 ( [0 , l ] , R n ) . Applying (9) we have 

(17) (0u)(t)#O for u € W 2 ' 1 ( [ 0 , l ] , R n ) and u £ 0. 

This is sufficient to conclude that problem (13) has only the u = 0 solution. 
In fact we have 

l l i 

J{Au(t),u(t))dt = j («"(«), u(t))dt = - J(u'{t), u'{t))dt 

(18) ° ° x

 0 , 

>-™>f (u(t),u(t))dt> - 7 T 2 j(u(t),u{t))dt. 
0 0 

But Wirtinger's inequality gives for u € W 2 , 1 ( [0 , l ] , R n ) , u{Q) = u(l) = 0. 

i i 

(19) 7T2 j{u{t),u{t))dt ^ J(u'(t),u'(t))dt. 
0 0 

Conditions (18) and (19) lead to 

i i i 

(20) 7T 2 J{u{t),u(t))dt ^ j(u'{t),u'{t))dt < 7T2 j{u{t),u(t)dt, 
0 0 0 

which is impossible. 
Hence the problem, (11) in P^ 2 , 1 ([0, l ] , R n ) has only the u = 0 solution 

and we can now consider the rotation SR) (see [6]) of the completely 
continuous vector field on the sphere 

(21) SR = {u: tte^2,1([0,l],Rn), M » r a . i = R > 0}. 

It is 

(22) <f>(-v) = 
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and -ri^Snj^O. 
We now discuss the difference 

i 

(23) {4>u - rprt){t) = / G{t, s)g{s, u{h(s)),u'(k(s)))ds. 

o 

Condition (10) together with 

(24) inf |<£«|jv2,i = R inf |0u|w2,i 

shows that 

(25) \<f>u - ipu\w2.i < {(frulw2-1 on spheres SR, 

with R sufficiently large. Thus problem (12) has at least one solution 
in ^ ( [ O . l L R " ) . 

R E M A R K . In the case of ordinary differential equations better results are 
known (see e.g. J . Mawhin [8]). 

Unfortunately the above method cannot be applied to the problem 

(27) «" = 0, u'(0) = tt'(l) = 0, u £ W^2,1([0, l ] , R n ) , t £ [0,1] 

is not invertible and hence it is impossible to transform (8i), (82) with i = 1 
into an integral equation. 

J . Mawhin in his paper [7] proposed a method which enables demonstra
tion of the existence of solution to equation 

but only for special forms of the function / . Such a situation is typical for 
system (81), (8 2 ) with i = 1 as can be shown from the following example. 

The equation 

(26) ^"(t)=Au'(t)+g(t,u(h(t)),u'(k(t))), t e [0,1] 

t»'(0) = t('(l) = 0, u(0) = u 0 € R n , 

The obstacle is that the problem 

(28) 
u"(t)=g(t, u'(t)) + f(t), t£ 

tt'(0) =«'(!) = 0 
[0,1] 

u"(t) = 4>{t)v!(t) + k<j>(t), tt'(o) = tt'(i) = 0 , t e [ 0 , 1 ] , 

k > 0 , <j> continuous are given 
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has a suitable form. Substituting u' = v we obtain 

\k + v{t)\ = fcexp <f>(s)ds^j . 

For t = 0 and i = 1, Ar = exp 

1 
When k > 0, J (f>(s)ds ^ 0 , this equation has no solution. When A; arbi-

o 
i 

trary and / <f>(s)ds = 0, then it has solutions, 
o 

Our aim now is a modification to (8i) , (82) with i = 1 of Mawhin's 
method. 

Let us denote by XQ the subspace of W L , 1 ( [ 0 , 1 ] , R " ) of the form 

Xo = {v: ve W L - L ( [ 0 , l ] , R n ) , t>(0) = ' « ( 1 ) = 0 } . 

We assume that A is a n x n matrix with integrable elements, g(t, u, v) is a 
locally Caratheodory function in [ 0 , 1 ] x R 2 n and 

\g{t,u,v)\K* ̂  M (\u\£n + , 0 ^ a,/3 < 1, M = const. 

Suppose also that the boudary value problem 

1 

(29) v'(t) = A{t)v(t) - J A(s)v{s)ds, u(0) = u(l) = 0 
0 

has in XQ only the v = 0 solution. 
The deviations h, k : [ 0 , 1 ] —• [ 0 , 1 ] of the argument t are continuous and 

h(0) = 0 . 

R E M A R K . A sufficient condition for (29) is that 

sup |A(t)|C([o,i],R») < \ -

In fact let v 6 C ( 1 ) ( [ 0 , l ] , R n ) , v ^ 0, u(0) = u(l) = 0 denote a solution of 

(30) v(t) = J A(s)v(s)ds- J ^J A(t)v{t)dt^ dr, 
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and p =: max \v(t)\ > 0. 
te[o,i] v ' 

Then 

p ^ max ^ A(s)u(s)cte -l-^maxt ^ A(i)u(i)cft 

and 

The last inequality is posible only if p = 0 

Last time prof. Jean Mawhin showed me the following example. The 
integro-differential linear system with constant coefficients 

\ v 2 ( t ) ) - \ 2 T , 0 )\v2(t)J J \2K. 0 ) \ v 2 ( t ) J d t ' 
o 
v1(0) = v1(l) = 0 
v2(0) = v2(l) = Q 

has a family of nontrivial solutions 

wi (t) = C sin 27rt, v2 (t) = C (1 - cos 2?rt), C € R 1 

and has the form (30). 
Hence (30) is a linear system of integro-differential equations 

i 

v'{t) = Av(t), u(0) = 0, (Av){t) =: A(f)v(i) - ^ A(s)u(s)ds 

o 

with a non zero solution of the initial value problem u(0) = 0. 
Instead of (8i) , (82), i = 1 let us consider 

(31) 

MO 

v'(t)=Av(t)+g{t,uo+ j v(s)ds,v(k{t))), *e[0,l] 

1,(0) =u(l) = 0. 

Together with the system (31) we introduce two completely continuous vec
tor fields defined in the space XQ 

(32) (<h>)(t) = v(t) - J Av(s)ds +1 Av(t)dtj , te[0,1] 
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and 

(33) 

t j h(s) 

tyv) (t) = v(t) - J Av(s) + g Is, uo + J v(r)dr, v(k(s)) 

+ t 

o 
Hz) 

ds+ 

AAv(z) + g \z, uo + / v(s)ds, v{k(z)) dz 

J 

It is important that <f>, : XQ -> XQ and the vector fields (32 ) , (33) are 
completely continuous in X o . 

T H E O R E M 6. Under the assumptions formulated above the vector fields 
( 3 2 ) , ( 33 ) in XQ have at least one zero vector, therefore the problems 

i 

(34) v'{t) = Av(t) - J Av(t)dt, w(0) = v( l ) = 0, t 6 [ 0 , 1 ] 
o 

and 
(35) 

( 7 \ r 
v'(t) = Av{t)+g \t,UQ+ I v{s)ds,v{k{t)) - I Av{s)ds 

- j 9 J s, UQ + J v(z)dz, v'(k(s)) 
o \ o 

have at least one solution in XQ. 

ds, v{0) = v(l) = 0, t € [0 ,1 ] , 

P R O O F . Firstly we know from (29) that: 

(36) (<f>v = 0) o (v = 0) for v € XQ. 

The solution v(t) = 0 for i € [0 ,1 ] is the unique solution to the problem 

(37) v(t) = J A{s)v{s)ds - t J A(s)v{s)ds, v{0) = v(l) = 0 . 
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This last property together with 

<j>(-v) = -<f)(v) 

gives 

(38) 7 ( ^ 5 J O # 0 , R>0, 

and also 

(39) inf \<f>(v)\x0 = R inf |^(«) |x„, * > 0. 

Similarly as in theorem 5, for the difference {<pv - i>v)(t) we have 

From the sublinearity of the function g and (39) there exists such an Ro > 0 
that for v € 5A, C X0 

This last inequality shows the homotopy of the vector fields <f> and ip on 
SRO C - X O - Therefore 

Thus the vector field ip has at least one zero vector and this is equvalent to 
the existence of at least one solution to the problem (33). 

Acknowledgement. The author is thankful to prof. J . Mawhin for his 
valuable suggestions that improved the contents of this paper. 

5. Annates . . . 

(40) 

(41) \<jw- i)v\Xo < \<f>v\x0-

(42) 7 ( ^ , 5 ^ ) ^ 0 . 
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