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TADEUSZ DŁOTKO* 

ON PERIODIC BOUNDARY VALUE PROBLEM 
FOR A DIFFERENTIAL EQUATION OF n-TH ORDER 

Abstract. The problem (1) is investigated. New sufficient conditions are derived for the existence 
of at least one solution in the space t>f0~l\- The proof is based on the topological degree method in 
the Banach space of solutions. 

Let us consider the following problem 

[(Lx)(t)-P(t,x(t),...,x^2)(t)). x(t) = Q(f,x(i) , . . . ,x ( "- 2 >(t)), 

[x(i)(0) = x(i)(w), i = 0 , 1 , . . . , n - 1 , te[0, w], n^2, 

in which 

Lx(t) = £ fl^("~°(0» 0; = const, 
> = o 

P: [0, w ] x R " _ 1 - • R 1 is continuous, | P ( - ) | ^ M = const, 
Q: [0, w ] x R " _ 1 - » R 1 is continuous and 

w 

l i m r _ 1 J sup\Q(t, x)\dt = 0 for x = ( x t , . . . . x J e R " - 1 , | x | <r. 

* Our aim is to demonstrate a sufficient condition for the existence of 
a solution of problem (1). 

The solution x is here a function x : [0 , w ] - » R \ xe^o'^, satisfying 
problem (1). 

Let us take the following definitions and assumptions: 
^[o, w] denotes the space of k times continuously differentiable real functions 

in [0, w] with the norm 
k 

\x\ = £ max|x ( , ) (*) | 
i = o [0, w] 

or 

(2) | x | = max (max|x ( , )(r)|), 
i = 0, ...k [0,n>] 
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or 

(3) | x | = max(|x(0)|, |JC'(O)|,...,| JC<"" 1>(0)|, max|x(">(0|), 
. , tO.w] 

respectively. 
R E M A R K . When P, Q are w-periodic in teR1, then the solutions of problem 

(1) are w-periodic in t. 
Let us now consider the differential operator 

(Lx)(t) = a0x(n\t) + ... + an_1x{t) + a„, a0*0, te[0, w], n^ 1, 

x ( i )(0) = x(i){w), i = 0 , l , . . . , n - l , 

and assume that the characteristic equation 

W(X) = a0Xn + ... + an 

has nonzero and distinct characteristic roots Xl,...,Xn. 
L E M M A 1. For every characteristic polynomial W(X) there exists a real 

number p. that the characteristic equation 

W^X) = aBX" + ... + (an_ 1+p)X + a„ 

has distinct and nonzero characteristic roots. 
This fact is a consequence of the continuous dependence of the characte­

ristic roots of W^X) on its coefficients. WJ^X) is related to the differential 
operator 

(L„x)( t ) = a o x ( n ) (0 + . . . + a B _ 2 x"( t ) + (a n - 1 +^)x ' ( t ) + anx(0. 

R E M A R K . It can happen that problem (1) has many solutions, e.g. 

x" + 4x = sin2t, x(0) = X(TI), X'(0) = X'(TI), 

has a general solution of the form 

x(t) = C i cos 2t + C 2 s i n 2 t + 1 / 1 6 sin 2 t - l / 4 c o s 2 t 

and for every ( C 1 ( C 2 ) we get a solution of the problem. In this case 

exp(Aj-w) = e x p ( ± 2 j u ) = 1. 

But if we consider the problem 

x " + 4x = sint , x(0) = x(n), x'(0) = x'(rc), 

then the general solution is of the form 

x(t) = C x cos It + C2 sin It +1/3 s in 3 t cos It - 1 / 3 cos 3 t sin It +1/2 cos t sin It, 

and it contains no solution of the problem. 
L E M M A 2. The problem 

(4) (Lx) (t) = ę(t), ę is given, x ( 0 (0) = x ( 0 (w), i = 0 , 1 , . . . , n - 1 , 

has exactly one solution if and only if the problem 
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(5) (Lx) (t) = O, x«(0) = xw(w), i = 0,1,2, . . . . n - 1 , 

has only the zero solution. 
L E M M A 3. / / the characteristic roots of the differential operator (5) are 

nonzero, distinct and exp(Aj w) ^ 1 for j = 1, 2 , . . . , n, then the solutions of (4) are 
of the form 

w 
(6) x(t) = |G(t, s)<p(s)ds, 

o 

n 
£ fc, exp(2/ t -s)) /o r 0 < s < K w , 

G(t. s ) = V = „ 1 

£ fe; exp(2,(£—s —w)) /o r 0 ^ t < s < w, 

and 

ft, = W(Xj)/(l- exp(kjw)), j = l,2,...,n. 

Together with (6) let us consider the vector field 

(7) m ® = x(t)-(Fx)(t), 

or in the explicit form 

(8) (4>x)(t) = x(0 + lG^, S ) ( [P(s ) x( S ) , . . . ,x<"- 2 ) (s ) ) + /x]x(S) 
0 

+ g(s, x(s),..., x<"- 2>(s))) ds; x e <f}5:# 

We can now show, that the operation 

($x)(t)-x(t) = ]GJit,s){lP(s,x(s),...,x^2\s)) + fi-]x(s)) 
0 

+ e(s,x(s),. . . ,x ("- 2 )(s)))ds 

is completely continuous in the space #[37$. 
L e t ( xm}m = i ,2 , . . . ^\b~w\ and | x m | ^JV, where |-| denotes the norm. 

F r o m the last inequality it follows that 

\xJf)\<N, \x'm(t)\^N, I x J j ^ ' W K i V , m = l , 2 , . . . 

and te[0, w]. So we can take a subsequence {xmtt(t)} such that 

xmk(t)^x(t), x'mk(t)^x'(t), x£:X)(t)=txP'-1>{t), mt->oo f te[0, w]. 

F o r the derivatives x^k(t), i = l , 2 , . . . , n —2, we have the formulae 
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+ Q(s,x(s),...,x("-2\s)j)ds. 

F r o m our assumptions for the functions P, Q and (9) it follows that 

(10) ((F xmk) {t)T ((F x) (t)f\ i = 0,1, . . . , n - 2. 

F o r i = n - \ we have | x £ k

_ 1 ) ( t ) | < N, xmk(t) =t x(t), so 

(11) ((Fxmk)(0"-1) = V" ffi' S\{P(s,x(s),...,x%k-»(s)) + rixmk(t) 

+ 6 ( , . . . . x L V 2 > ( S ) ) ] d s +

P ( t ' ^ ( t ) ' - - < " 2 ) ( t ) + ^ m k ( t ) . 

The right hand side terms of (11) converge uniformly as mk -» oo, so the same is 
true for 

(12) ( ( F x . J d " " 1 ' , m t ^ o o and te[0, w]. 

Relations (10), (11) and (12) guarantee that the operation F denned in (7) and 
(8) is completely continuous in the space ^{o~^. Together with the vector field 
(8) let us consider 

(13) m{t) = x(t)-]GM(t, s)lP(s,x(s),...,x«-2\s)) + n-]x(s)ds, xe<g&:#. 
o 

Zero vectors of (7) and (8) and (13) with p. = 0 are solutions of problem (1) or 

'(Lx{t)-[_P(t,x(t),...,x<n-2)(t)) + n-]x(t) = 0, 

x<0(0) = xw(w), i = 0,1, . . . , n - 1 , 

respectively. 
N o w we can formulate the following theorem. 
T H E O R E M . / / we assume that there exists a real number p such that the 

problem 

(L„x) (0 = 0, x ( , )(0) = x«>(w), i = 0,1, . . . , n - 1 , 

is invertible, and the Green function GJif, s) satisfies the condition 

VGfi, s)| 
(14) " i max J 

j = o [0, w] o dtJ 
ds<- 1 

M + \p\ 

where \P(t, x(t), x ( " 2 ) ( t ) ) | < M for x e ^ j ] , then problem (1) has at least 
one solution in the space ^[o'^. 
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R E M A R K . If we take the space #{0, $ with norm (2) or (3) respectively, then 
condition (14) has the form 

(15) 

or 

max max I | 
[0, w ] \ o 

G{?(t, s) ds < 
1 

(16) max I max \Gf{t, s)ds max 
[0,w] 

JG<T - I ) ( t , s)ds 
1 

~M + \n\ 
P r o o f . First we discuss the vector field (13). It is completely continuous 

and we shall prove that it is non singular on the sphere SR = {x : xe 
\x\ = R}. We have the following inequality 

x(t) - J G„(t, s) (P(s, x(s),..., x<"- 2>(s)) + |i) x(s) ds 

But 

j G „ ( t , s)(P + ii)x(s)ds 

So we have 

^ R ( l - ( M + |/i|)) X max f |G„( t , s)|ds >0. 
\ ; = 0 [ 0 , w ] o / 

F r o m the last inequality it follows that i^(x) ^ 0 for xeSR. 
R E M A R K . It follows form the nonsingularity of ^ on SR for arbitrary R > 0 

that the problem 

<j(Ltlx)(t) = (P(t,x(t),...,x<"-2)(t) + (i)x(t), t e [0 , w], 

|x<'">(0) = x«(w) , j = 0 , 1 , . . . , n - 1 , 

has only the zero solution. 
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N o w we can see that 
)#, SR) ¥= 0, 

where y(i//, SR) denotes the rotation of the vector field \\i on SR. Let us consider 
tlje difference 

A(x) = tl/(x) — X\\i{ — x) for xeSR and X>0. 

Easy calculations lead to 

P(s,x(s),...,xO-2Hs)) 
A(x){t) = (l+X) 

W 

o 1 + A 
P( S ) -x(s) , . . . , -x<"- 2 ) (s)) 

1 + A 

F r o m the last inequality we have 

Mx) ( t ) -A t f r ( -x ) ( t ) | >(1 + A)(|x(t)l -

P(s, x(s), xin-2)(s)) + XP(s, -x(s), - x ( " - 2 ) ( s ) ) 
1+A 

~~ n— 1 w 

t(l + X)R 1 - X max J |G^( t , s)|(Af + ||t|)ds >0 . 
j = o t°- w] 0 

•J x(s) d s j . 

J x (s) ds ^ 

F r o m the last inequality it follows that the vectors </f(x) and — x) are not 
equiparallel i n the antipodal points x and — x on the sphere SR and 

y(<A. sR) ¥= o. 
N o w we can demonstrate that the vector field 4> defined by (8) is nonsingular 
on SR and 

sR) * o. 
Let us denote 

5 = (M + \n\) £ max J|Gj*(t. s)\ds. 
j = 0 [0, w] o 

Then <5e[0, 1) and 
\(ij/x)(t)\^R(l-d)>0 f o r x e S R . 

Let us take R = R0, so that 
w 

(17) i ? 0 ( l -<5)> sup | f GJt, s)Q(s,...,x(n~2){s))ds\ = const = c. 
[O, w] 

Then we have 
| t f ( x ) - W x ) | < c < U 0 ( l - f l < M * ) l , X*SRO> 

and finally 
|<P(x)-^(x)|<|^x)| , x e S ^ . 

If we assume that 

(18) l im 1/rJ sup\Q(t, x)|dt = 0 for x = ( x 1 ( x „ ) e R " , 
r->oo o l * l * r 
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then the last part of our demonstration must be changed. Beginning with the 
formula (17) it is to see, that for sufficiently large R0 we have 

(19) H 0 ( l - a ) > J s u p | G „ ( t , s)Q(t, x)\dt, xeR" 

In formula (19) the growth of the left hand side is linear in RQ and that of the 
right hand side is sublinear. This is, in fact the essence of assumption (18). 

As an example of (1) let us investigate 

XM(t)-P(t,x(t),...,X("-2)(t))x(t) = e(t (...,x<"-2 )(0) (20) 

x w ( 0 ) (1), 0 , 1 , . . . , n - 1 . 

Here (Lx)(t) = xw{i) and we replace (Lx)(t) by (L„xj(0- If we take p = a", 
0<e<^l, then simple calculations lead to the condition 

jG<?(r, s)ds = 
o 

for 0 < s < K l , 

n - 1 QXJ' 
X „ ; n - i - l for 0 < t < p ^ l , 

where X} are the characteristic roots of X" 

-1 _ p A j ( t - l ) 

-e" = 0. Condit ion (14) takes the form 

(21) max I max 
0 « » « n - l \ [0, 1] 

max 
[0, 1] 

n - 1 

j=0nAJ 

1 

M + \n\. 

and we can formulate the following remark: If the function P is such that 
|P |< |1 , then conditions (14), (15), (16) and (21) are satisfied provided M is 
sufficiently small. In other words the problem (20) always has solutions i f the 
number M is sufficiently small. 

R E M A R K . Various forms of problem (1) have been investigated by many 
authors (see [1] — a survey article and [2] — [7]). In the book [6] the linear 
form of (1) was discovered by an algebraic method. In [5] the Banach fixed 
point theorem was used to derive a sufficient condition for the existence of 
solutions. In [7] the Schauder fixed point theorem was applied and the author 
generalized certain results in [4]. 

In our article the existence of solutions of (1) has been proved using the 
topological degree method. This appears to be the first attempt to use this 
method for solving problem (1). 
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