

You have downloaded a document from RE-BUŚ
 repository of the University of Silesia in Katowice

Title: A theorem on spaces of finite subsets

Author: Szymon Plewik

Citation style: Plewik Szymon. (1986). A theorem on spaces of finite subsets. "Annales Mathematicae Silesianae" (Nr 2 (1986), s. 108-110).

Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych Polska-Licencja ta zezwala na rozpowszechnianie, przedstawianie i wykonywanie utworu jedynie w celach niekomercyjnych oraz pod warunkiem zachowania go w oryginalnej postaci (nie tworzenia utworów zaleznych).

SZYMON PLEWIK*

A THEOREM ON SPACES OF FINITE SUBSETS

Abstract

We give conditions under which iterated hyperspaces of finite subsets, with Ochan's topology, are homeomorphic.

Introduction. In [2] and [3] Ochan introduced a new topology on the space of subsets of a given space X. His topology is generated by sets $[x, V]=\{y \subset X: x \subset$ $\subset y \subset V\}$, where x is a closed subset of X and V is an open subset of X. Then Pixley and Roy [4] proved that non-void finite subsets of reals, with the Ochan's topology creates an important example of a Moore space. Later some other authors investigated the Pixley-Roy hyperspaces and generalizations of the Pixley and Roy's construction (see for instance Douven [1], Przymusiński [6] or Plewik [5]).

The main theorem. Let $\mathscr{F}[X]$ be the set of non-void finite subsets of a T_{1}-space X. Equip $\mathscr{F}[X]$ by topology induced from the Ochan's topology. Let $\langle x, V\rangle=[x, V] \cap$ $\cap \mathscr{F}[X]$. Observe that sets $\langle x, V\rangle$ are closed-open and that they form a base.

LEMMA. Let X be a T_{1}-space and let λ be a regular cardinal. If for each point $x \in X$ there exists a decreasing and well ordered family $U(x)=\{x(\alpha): \alpha<\lambda\}$ of open neighbourhoods such that $\cap U(x)=\{x\}$, then for every n there exists a collection \mathscr{D}_{n} of open subsets of $\mathscr{F}[\mathscr{F}[X]]$ such that:
(1) every collection \mathscr{D}_{n} covers the subspace $\{y \in \mathscr{F}[\mathscr{F}[X]]:|y|=n\}$,
(2) every collection \mathscr{D}_{n} is discrete in the subspace $\{y \in \mathscr{F}[\mathscr{F}[X]]:|y| \geqslant n\}$,
(3) $|B \cap\{y \in \mathscr{F}[\mathscr{F}[X]]:|y|=n\}|=1$ for each $B \in \mathscr{D}_{n}$.

Proof. If $y=\left\{y_{1}, \ldots, y_{n}\right\}$, then let $y(\alpha)=\left\langle y, y_{1}(\alpha) \cup \ldots \cup y_{n}(\alpha)\right\rangle, y_{k}=\left\{y_{k}^{1}, \ldots\right.$, $\left.y_{k}^{r}\right\} r=r(k)$, and $y_{k}(\alpha)=\left\langle y_{k}, y_{k}^{1}(\alpha) \cup \ldots \cup y_{k}^{r}(\alpha)\right\rangle$.

Let $\alpha=\alpha(y)$ be the least ordinal such that if $t \in y_{i}$ and $t \notin y_{k}$, then $t \notin y_{k}^{1}(\alpha) \cup \ldots$ $\ldots \cup y_{k}^{r}(\alpha)$, i.e. $\{t\} \cup y_{k} \notin y_{k}(\alpha)$.

Let $\mathscr{D}_{n}=\{y(\alpha):|y|=n$ and $\alpha=\alpha(y)\}$. So, it is easy to verify, that collections \mathscr{D}_{n} satisfied conditions (1), (2), (3).

[^0]Any space $\mathscr{F}[Z]$ can be partitioned into closed-open sets as follows. Let A_{*} be the set of isolated points of $\mathscr{F}[Z]$ and let $A_{0}=\{x \in \mathscr{F}[Z]$: there is an open subset $V^{x} \subset Z$ such that $\left.\left|\left\langle x, V^{x}\right\rangle\right| \leqslant \aleph_{0}\right\} \backslash A_{*}$.

If sets A_{β} are defined for $\beta<\alpha$, then let $A_{\alpha}=\{x \in \mathscr{F}[Z]$: there is an open subset $V^{x} \subset Z$ such that $\left.\left|\left\langle x, V^{x}\right\rangle\right| \leqslant \aleph_{\alpha}\right\} \backslash \bigcup\left\{A_{\beta}: \beta<\alpha\right\} \cup A_{*}$.

THEOREM. Let λ be a regular cardinal and let X be a T_{1}-space with no or infinite many of isolated points such that for each point $x \in X$ there exists a decreasing and well ordered base $\{x(\alpha): \alpha<\lambda\}$ of open neighbourhoods, then $\mathscr{F}[\mathscr{F}[X]]$ is homeomorphic with $\mathscr{F}[\mathscr{F}[\mathscr{F}[X]]]$.

Proof. Denote by A_{α} and \mathscr{A}_{α} elements of the above defined partition for spaces $\mathscr{F}[X]$ and $\mathscr{F}[\mathscr{F}[X]]$, respectively, instead of a space Z. Observe that $\left|A_{\alpha}\right|=\left|\mathscr{A}_{\alpha}\right|$ for all $\alpha \geqslant 0$ and $\left|A_{*}\right|=\left|\mathscr{A}_{*}\right|$.

Let $\alpha \geqslant 0$ and let $y(\beta)$ be defined as in the proof of Lemma and let \mathscr{D}_{n} denotes families which satisfy conditions (1), (2), (3). We define partitions $R_{\beta}=\{\langle x, V(x, \beta)\rangle$: $\left.x \in B_{\beta}\right\}$ of A_{α} consisting of closed-open sets for $\beta<\lambda$ such that:
(i) R_{β} is a refinement of R_{γ} iff $\gamma \leqslant \beta$,
(ii) $B_{\beta} \subset B_{\gamma}$ iff $\beta \leqslant \gamma$,
(iii) $\left|R_{1}\right|=\left|A_{\alpha}\right|$,
(iv) $\left\{V: V \in R_{\beta}\right.$ and $\left.\beta<\lambda\right\}$ is a base for A_{α},
(v) $\left|\cap\{\langle x, V(x, \beta)\rangle: \beta<\gamma\} \cap B_{\gamma}\right|=\aleph_{\alpha}$ for each $x \in \bigcup\left\{B_{\beta}: \beta<\gamma\right\}$.

We can do this as follows: Let $R_{1}^{1}=\left\{\langle x, V(x, 1)\rangle \subset A_{\alpha}:|x|=1\right\}$ refines \mathscr{D}_{1} and $\{y(1):|y|=1\}$. If collections R_{1}^{k} are defined for $k<n$, then let $R_{1}^{n}=\{\langle x, V(x, 1\rangle$ $\left.\subset A_{\alpha} \backslash \bigcup\left\{\bigcup R_{1}^{k}: k<n\right\}:|x|=n\right\}$ refines \mathscr{D}_{n} and $\{y(1):|y|=n\}$. Let $R_{1}=$ $\bigcup\left\{R_{1}^{n}: n=1,2, \ldots\right\}$ and $B_{1}=\left\{x:\langle x, V(x, 1)\rangle \in R_{1}\right\}$.

Assume that there are defined partitions R_{β} for $\beta<\gamma$. Let $P_{\gamma}=\{\langle x, \bigcap\{V(x, \beta)$: $\beta<\gamma\}\rangle: x \in \bigcup\left\{B_{\beta}: \beta<\gamma\right\}$. Let $R_{\gamma}^{1}=\left\{\langle x, V(x, \gamma)\rangle \subset A_{\alpha}:|x|=1\right\}$ refines P_{γ} and $\{y(\gamma):|y|=1\}$. If collections R_{γ}^{k} are defined for $k<n$, then let $R_{\gamma}^{n}=\{\langle x, V(x, \gamma)\rangle \subset$ $\left.\subset A_{\alpha} \backslash \bigcup\left\{\bigcup R^{k}: k<n\right\}:|x|=n\right\}$ refines P_{γ} and \mathscr{D}_{n} and $\{y(\gamma):|y|=n\}$ in a such way that $\left|\cap\left\{V_{\gamma}(x, \beta): \beta<\gamma\right\} \backslash V(x, \gamma)\right|=\aleph_{\alpha}$ for each $x \in \bigcup\left\{B_{\beta}: \beta<\gamma\right\}$. Let $R_{\gamma}=$ $=\bigcup\left\{R_{\gamma}^{n}: n=1,2, \ldots\right\}$ and $B_{\gamma}=\left\{x:\langle x, V(x, \gamma)\rangle \in R_{\gamma}\right\}$. Analogously we define sets \mathscr{B}_{β} and partitions $\mathscr{R}_{\beta}=\left\{\langle x, V(x, \beta)\rangle: x \in \mathscr{B}_{\beta}\right\}$ of \mathscr{A}_{α} for $\beta<\lambda$.

Let us define a one-to-one function $f: A_{\alpha} \rightarrow \mathscr{A}_{\alpha}$ step by step on sets B_{β}. Let f be a one-to-one function from B_{1} onto \mathscr{B}_{1}. Further, by induction, let f be a one-to-one function from $B_{\gamma} \backslash \cup\left\{B_{\beta}: \beta<\gamma\right\}$ onto $\mathscr{B}_{\gamma} \backslash \cup\left\{\mathscr{B}_{\beta}: \beta<\gamma\right\}$ such that if $y \in\langle z, \cap$ $\{V(z, \beta): \beta<\gamma\}\rangle$, then $f(y) \in\langle f(z), \cap\{V(f(z), \beta): \beta<\gamma\}$ (there is a finite many of such points z only).

Observe that $f\left(A_{\alpha}\right)=\mathscr{A}_{\alpha}$ and $f(\langle x, V(x, \beta)\rangle)=\langle f(x), V(f(x), \beta)\rangle$ for every $\beta<\lambda$ and each $x \in A_{\alpha}$. Therefore the required homeomorphism is defined for α was taken arbitrarily.

The assumption of Theorem do not imply that $\mathscr{F}[X]$ is homeomorphic with $\mathscr{F}[\mathscr{F}[X]]$. For example, let X be the unit interval I, then $\mathscr{F}[I]$ satisfied the countable
chain condition, see [3], but $\mathscr{F}[\mathscr{F}[I]]$ contains a family $\{\langle\{\{t\}\},\langle\{t\}, \mathscr{F}[\mathscr{F}[I]]\rangle$: $t \in I\}$ of open pairwise disjoint sets of cardinality $2^{\text {mo }^{\text {o }} \text {. }}$

Let us note, that the proof of our main theorem is a generalization of methods from [5].

REFERENCES

[1] E. VAN DOUWEN, The Pixley-Roy topology on spaces of subsets, in Set-theoretic Topology, Academic Press, 1977.
[2] J. S. OCHAN, Space of subsets of a topological space, Dokl. Akad. Nauk SSSR 32 (1941), 107-109.
[3] J. S. OCHAN, Space of subsets of a topological space (in Russian), Mat. Sb. 12 (1943) 340- 352.
[4] C. PIXLEY, P. ROY, Uncompletable Moore spaces, in Procceding of the Auburn Topology Conference, 1969.
[5] SZ. PLEWIK, On subspaces of the Pixley-Roy example, Colloq. Math. 44 (1981), 41-46.
[6] T. PRZYMUSIŃSKI, Normality and paracompactness of Pixley-Roy hyperspaces, Fund. Math. 113 (1981), 201-219.

[^0]: Received November 14, 1982.
 AMS (MOS) subject classification (1980). Primary 54B20.

 * Instytut Matematyki Uniwersytetu Śląskiego, Katowice, ul. Bankowa 14, Poland.

