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Int rod uction 

In [CPS] we have observed that each class of Witt equivalent quadratic 
number fields, except for the singleton class containing only Q(yCT), con
tains a field whose class group has 2-rank as large as we wish. 
Here we generalize this o bservation from the case of quadratic number fields 
to fields of arbitrary e11en degree n. We prove that each class of Witt equiva
lent number fields of even degree n > 2 contains a field K with the 2-rank 
of class group as large as we wish. In fact, we prove a stronger result saying 
that the field in question has large 2-rank of S-class group for a finite set 
S of primes of K containing all infinite and all dyadic primes of the field. 

We combine here an interpretation of the parity of S-class numbers in terms 
of a localization map (Proposition 6) with a valuation-theoretic result of En
dler on the existence of fields with prescribed completions. The latter has 
been used in [Sz] to construct fields with prescribed Witt equivalence inva
riants. Here we discuss this technique again to make elear its applicability 
in constructing, in a given Witt class, number fields with special properties. 

1. Localization

Let K be an algebraic number field, O = O(K) the collection of all primes 
in K. We write 02 = 02 ( K) for the set of all dyadic primes of K and 
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g = g(K) for the cardinality of Q2. By 5 C Q we shall denote a finite set of 
primes which includes, at least, the set = Ci^K) of all infinite primes 
in K. We have 

#Qoo = r + c, 

where r = r(AT) and c = c(î ) are the numbers of real and complex infinite 
primes, and [K : Q] = r + 2c. 
We define the group E(S) C K*/K*2 of even square classes as follows. 

E(S) - {xK*2 € K*/K*2 : ordp x = 0 (mod 2) Vp e Q \ 5}. 

When S = ftoo, the group E(S) is also written Kev. 
The group was used already by Hecke [H] in his 1923 book. We give 
here a survey of results on E(S) needed in our discussion of the class number 
parity questions in Witt equivalence classes of number fields. Most of these 
results appeared already in [Cz] in the case when S = QQO U J^- We give 
a slightly more general version following Conner's manuscript [Con]. Our 
presentation appears to be simple and elementary due to Conner's approach. 
We have found it convenient to rearrange Conner's arguments and to replace 
his use of class field theory with a more elementary argument due to Czogala 
([Cz], Lemma 2.6). 

We consider the group of 5-units 

Us = {y G K* : ordpy = 0 V p e n \ S } . 

An S—unit is a square in K if and only if it is the square of an 5—unit. 
Consequently we have an injective homomorphism 

U{S) := Us/Uj -> K*/K*2 

of the group U(S) of square classes of 5 -units into the group of global square 
classes K*/K*2. The group U(S) is a finite elementary Abelian 2-group, and 
according to the Dirichlet 5-Units Theorem, we have rk2 U(S) = #5. 
The 5-ideal class group Cs(K) is the quotient of the ordinary ideal class 
group, C(K), by the subgroup generated by the ideal classes of the finite 
primes in S. We shall be concerned with the quotient group Cs{K)/Cs(K)2 

and the subgroup 2Cs{K) of Cs{K), 

2Cs(K) = {BeCs(K): B2 = leCs(K)}. 

The groups 2Cs(K) and Cs{K)/Cs(K)2 are finite elementary Abelian 
2-groups. Recall that the 2-iank of a finite Abelian group equals the number 
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of direct summands in a decomposition of the Sylow 2-subgroup of the group 
into direct sum of cyclic groups. Hence, by elementary group theory, 

rk2 CS(K) = rk2 2CS{K) = rk2 CS(K)/CS(K)2. 

The group U(S) is a subgroup of the group E(S) of even square classes, but 
in general the containment is proper. As the following Proposition shows, 
the 2-ranks of the two groups differ by rk2 Cs{K). 

PROPOSITION 1. rk2 E{S) = #5 + rk2 CS(K). 

PROOF. There is a natural short exact sequence 

1 -»• U{S) -»• E[S) iCs{K) -»• 1, 

where rj is defined as follows. Por x e K* with xK*2 € E(S) we have 

xOK = a-b2, where a= J I p", b = J J q6. 
pes\n„ qen\s 

Setting )j(ilf*J) = cl(b) G Cs{K) we obtain a well defined homomorphism. 
Observe that xK*2 e ker »7 if and only if there is a y e K* and an ideal 
Oi = Ilpes\n Pa satisfying ai • (y) = b. This is equivalent to 

xy~20K = aa\ 

meaning xy~2 € Us and xK*2 € U(S). This shows that ker 77 = U(S). On 
the other hand, it is obvious that cl(b) € 2Cs(^), and im rj = 2Cs(-K"). Thus 
the sequence is exact. Now it follows that 

rk2 E{S) = rk2 U(S) + rk2 2CS(K). 

To finish the proof it is sufficient to recall that 

rk2 U(S) = #S and rk2 2CS{K) = rk2 CS{K). • 

COROLLARY. rk2 Kev = r + c + rk2 C{K). • 

At each prime p € 5 we have the completion /fp and the group of local 
square classes K*/Kp2. Let 

G(S) •.= n K;/K;2. 
pes 
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PROPOSITION 2. / / fi2 C S, then rk2 G(S) = 2(#5). 

PROOF. G(S) is a finite elementary Abelian 2-group and its order is easily 
shown to be 4#s (see [O'M], p. 178). Hence the result. • 

At each prime p G S we have a localization homomorphism 

VP:K*IK«^K;/K;\ 

These may be assembled into an epimorphism 

vs = Yl up : K*/K*2 -¥ G(S). 
pes 

We will write us = vs\E(s) • E(S) -> G(S) for the restriction of us to £7(5). 
Since G(S) is a finite elementary Abelian 2-group we define an F2-inner 
product space structure as follows. For X,Y € G(S) write 

X = {xp}p€S, Y = {yp}pes 

with xp,yp e K*/K*2 and define P{X,Y) e F 2 = {0,1} by using Hilbert 
symbols 

( - 1 ) « ^ = II (^^)P-
pes 

Then (G(5), /3) is a bilinear space over F 2 . It is, in fact, nonsingular, that is, 
an inner product space, since it can be viewed as the product of nonsingular 
bilinear spaces (Kp/K*2,0p), where 

(-l)W*'V> = (i,y) p for x,yeK;/K;2. 

PROPOSITION 3. / / fi2 c S, then the image subgroup vs(E(S)) C G(5) 
is a totally isotropic subspace of (G(S), (3). 

PROOF. For xK*2,yK*2 € E(S) we have 

(ar,y)p = +l V p e ^ \ 5 , 

since x, y lie in the unit square classes in Kp/Kp

2 and all p € Q\S are finite 
nondyadic primes. Hence, by the Hilbert Reciprocity, 

l[(x,y)p = +l. 
pes 
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Hence f3(fS(x), us{y)) = 0 e F 2 for all x, y € E(S). • 

PROPOSITION 4. If Q2 C 5, i/ien rk2 i/s^S)) < #5. 

PROOF. A totally isotropic subspace i>s(E(S)) of dimension d is contained 
in a 2d-dimensional metabolic subspace of G(S). Hence 

2d^rk 2 G(5) = 2(#S), 

andrk 2 i / s (£(S)) = d^ #S. • 

PROPOSITION 5. If J22 C 5, Merc rk2kerj/s ^ r^CsC^O-

PROOF. If vs is injective, there is nothing to prove. So assume that ker vs 
has positive dimension. Let biK*2,... ,btK*2 be a basis for ker vs- By a 
classical theorem (see [H], Satz 169), for each j there are infinitely many 
prime ideals satisfying 

(SH- 1* , = 1 \ 
where Sij is the Kronecker's delta. Clearly we can choose the ideals q̂  out
side S. We assert that the ideal classes cl(qi),... ,cl(qt) e Cs{K) belong 
to linearly independent cosets of Cs{K)/Cs{K)2. Otherwise, after renum
bering the ideals ąx,... , qt if necessary, we would arrive at an x e K* such 
that 

xOK = (\i---qe-ab2, 

where a is a product of powers of ideals in 5, and b is a product of powers 
of ideals outside S. We claim that 

(h,x)qi = -l and (6i,z)r = l 

for all primes r, finite or infinite, distinct from qx. For simplicity, a unit up 
to a square at *P will be called a unit at ̂ 3, and similarly, a prime up to a 
square at <p will be called a prime at ̂ 3. First observe that biK*2 € E(S), 
hence b\ is a unit at eachriprime outside S. Since a; is a prime at qi and qi 
is nondyadic, this explains the first asserted value of the Hilbert symbol. If 
r e 5, or if t = q_,- for some j > 1, then bi is a square at c. On the other 
hand, if t is outside S and distinct from all q;, then b\ and x are units at t 
and t is a nondyadic ideal. This proves our claim. But the claim contradicts 
Hilbert Reciprocity. This proves the linear independence we are after and 
establishes the Proposition. • 

file:///i---qe-ab2
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PROPOSITION 6. / / Q2 C 5, then 

rk2 vs(E(S)) = #5 and rk2 ker us = rk2 CS{K). 

PROOF. Prom the isomorphism vs(E(S)) = F(S)/keri/ s, and from Pro
position 1, 

rk2 vs(E{S)) + rk2 ker us = rk2 E{S) = #5 + rk2 CS(K). 

This combined with Propositions 4 and 5 gives the asserted result. • 

COROLLARY. The S-class number hs(K) is odd if and only if the 
homomorphism v$ is injective. • 

2. Fields with prescribed completions 

For a number field F and a prime p of F (finite or infinite) an m-tupel 
(F^,... , Fp

m^) of finite extensions of Fp in a fixed algebraic closure of Fp 

is said to be a p—prescription over F of length m and degree n if 

m 

t=i 

An extension field K of F is said to be a solution for the p—prescription 
(and the prescription is said to be solvable) if A" has the following three 
properties: 

(a) [K :F] = n, 
(b) There are exactly m primes *Pi,... ,*pm in K lying over p, and 
(c) K% = Fli] for t = 1,... ,m. 

Endler's result in ([En], Satz 7 and Korollar on p. 97) asserts that any 
prescription is solvable, and more generally, given a finite set of primes 
pi , . . . ,pfc of a number field F and any pj-prescriptions of degree n, there 
exists a number field K of degree n over F solving simultaneously all the 
prescriptions. 

REMARK 1. We show here how to obtain from Endler's result Hasse's 
theorem on the existence of number fields with prescribed prime ideal fac
torization of (finite) sets of prime ideals of a base field. The point is that 
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factorizations can be prescribed in terms of completions. We recall some de
tails. Suppose p is a prime ideal of the number field F. Let ei,fi,m,n be 
positive integers satisfying 

TO 

^2 afi = n. (1) 
«=1 

To find an extension field K of F of degree n such that p has the prime ideal 
decomposition 

P = ̂ I1---^TO" (2) 
in K, where tyi is a prime ideal with degree f{tyi\p) = fi, i = 1,..., m, we 
set up a p-prescription (Fp1^,... , Fp

m^) in the following way. 
Let L be an unramified extension of Fp of degree /< (so that L is a splitting 
field of the polynomial xW' - X over the field Fp, see [O'M], 32:9). Let 
F^ — L(a), where a is a zero of an Eisenstein polynomial over L of degree 
e;. Then F^ is a fully ramified extension of L of degree e* (see [O'M], 
32:15) and its degree over Fp is rii = eifi. The extension Fp^/Fp has the 
ramification index e; and the inertia degree /j . Hence, in a solution field K to 
the p-prescription (F^,... , F^), the prime ideal p has the decomposition 
(2). 
Furthermore, given any finite set of primes pi , . . . , p* of F and any set of k 
relations of the type (1), there exists a common solution K to the related k 
prescriptions. Hence in K the given primes pi have prescribed prime ideal 
decompositions. And we can impose other extra conditions on K expressed 
in terms of prescriptions for primes outside {pi,... ,pfc}. 

REMARK 2. We describe here the prescriptions whose solution is a field 
in a prescribed Witt equivalence class. This has been found in [Sz] but we 
give it here in a version which is slightly simplified and easier to apply. 
So let K be a class of Witt equivalent number fields. According to [Ca] and 
[PSCL] the class K, is completely determined by the following invariants 

( n,r,s,g; (n,-,*,-), i=l,...,g). 

Here s is the level of any field K in the class K and S{ are the levels of dyadic 
completions KPi of K, and rii = [KPi : Q2]. 
We consider first the case when s ^ 1. We set up three prescriptions over 
F = Q of degree n corresponding to the primes oo, 2, P of Q, where P is 
an arbitrary rational prime = 3 mod 4. 
The oo-prescription (R^1),... ,R(r+c)) is defined by choosing 

R ( , ) = R for « = l , . . . , r and R ( i ) = C for i = r + 1,..., r + c. 
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The 2-prescription (Q2

l\ • • • , Q2

3^) *s d e n n e<i a* follows. 

If nj = 1 mod 2 and Sj = 4, take Q 2^ any extension of Q 2 of degree . 
If n, = 0 mod 2 and Sj = 1, take Q 2^ any extension of Q 2 (\ /- l) of degree 
jHj. Alternatively, take any unramifled extension Li D Q 2 of degree jn* 
and set Q (

2° = Li(y/^1). 
If nj = 0 mod 2 and s< = 2, take Q2

1^ any unramifled extension of Q 2 of 
degree raj. 

Now we choose an arbitrary rational prime P = 3 mod 4 and define the 
P-prescription (Q (p },... , Q(p]) by setting Q J ? = QP for i = 1,... , n. 
As in [Sz] we can show that the oo— 2- and P-prescriptions have as a 
solution a field K in the class K. 

Now assume that s = 1. Let F = Q(\/—l) and let q be the dyadic prime 
of F (so that 20F = q2 and q = (1 + y/^\)0F)- Then we consider the 
q-prescription {F^\ ... , F,9^) over F of degree \n, where F,'' is an arbi
trary extension of F Q of degree JRJ. The solution field K to this prescription 
belongs to the class K. 

PROPOSITION 7. Let K be a class of Witt equivalent number fields of 
degree n > 1. Let T be a finite set of odd rational primes when 1, or 
a finite set of nondyadic primes of Q(\/-T) when n > 2 and s = 1. Let 
V be a set of prescriptions for primes in T. Then there exists a field K 
in the class K, with the property that all the primes in T have prescribed 
in V prime ideal decompositions in K. 

PROOF. A common solution K to the oo—, 2—, and P—prescriptions in 
Remark 2 together with the p-prescriptions, p € T, described in Remark 1, 
will do. • 

3. Even degree Witt classes 

For a finite set Q = {ci,..., of rational primes and for a number field 
K we write £2Q (K) for the set of all primes q of K lying over the primes in 
the set Q. 

THEOREM. Let K. be a class of Witt equivalent number fields of degree 
n and let Q be a finite set of rational odd primes. If n is even and K is 
not the singleton class consisting of the field Q(</—1), then K contains 
a field K with even S—class number, where 

S = Q00(K)UQ2{K)UQQ{K). 



2—ranks of class groups of Witt equivalent number fields 61 

In fact, given a positive integer t, the class K contains a field with the 
2—rank of S—class group at least t. 

PROOF. TO get a field in the class K, with the 2-rank of the 5-class 
group at least t, we use Proposition 7 to ensure that the constructed field 
has ker vs of 2-rank at least t, and then we apply Proposition 6. 
Let Q = • . . To start the construction let us take an arbitrary 
positive integer t, and pick up rational primes pi,-..,pt all congruent to 
1 mod 8qi •••qk-
Observe that, for every number field K, each prime pi is a square at all the 
primes in the set S = Qoo{K) U n2{K) U C2Q(K). 
Hence if pi € E(S), then pi 6 ker vs- Thus we need a field K in the given 
class K with the property that 

and, moreover, the square classes of the p;'s in K are multiplicatively inde
pendent in K*/K*2. 
The first condition will be satisfied if we require that for each pi there is a 
prime ideal qi of K satisfying 

This is why we assume that the field degree n is even. For if /;is the degree 
of qi, we have n = 2f{. 
The second condition is more involved. For each nonempty set 

we write aj = p^ • • -pit and we choose a rational prime pi outside the set 
{pi,... ,pt) with the Legendre symbol 

We require that each prime pi splits completely in the solution field K. 
Now suppose the square classes in K containing the primes pi,... ,pt are 
multiplicatively dependent. Then for a set J we would have ai 6 K*2, while 
ai £ K*2 for each prime p of K lying over pIt a contradiction. 
According to Proposition 7 there is a number field K in the class K with the 
prescribed splitting behavior of the primes p\,... ,pt and of the pj's. Then 

(Pi) = q?> i = i , . . . , t . 

/ = {ti, . . . ,s f c}C{l,. . . ,f} 
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the square classes of pi,... , pt are in the group ker vs and they generate a 
subgroup of 2-rank t. • 

COROLLARY. Let K be a class of Witt equivalent number fields of 
degree n. If n is even and K, is not the singleton class consisting of the 
field Q(\/- l); then K contains a field K with even class number. In 
fact, given any t ^ 1, there is a field K e K, with the 2-rank of class 
group at least t. • 

The following example shows that we cannot expect the fields in a Witt 
class to have arbitrarily prescribed class groups of a given 2-rank. 

EXAMPLE. The table below gives the representatives of the Witt equiva
lence classes of quadratic number fields with even class numbers, whenever 
available. When the class number is 4, we distinguish between the cyclic and 
Klein four-group of the class group C(K). The field Q(\/5) is represented 
by the squarefree number d. 
A blank entry occurs when there does not exist a field with the required 
property. The situation in the classes VI and VII was known from the very 
beginning. In particular, the class VI represented by Q(y/-17) consists exc
lusively of fields with class numbers divisible by 4 (see [CPS], p. 89). 

The nonexistence of a field in class IV with Klein four-group as class 
group has not been noticed earlier. It is known that there are exactly 54 
imaginary quadratic number fields Q(y/d) with class number 4. They satisfy 
14 ^ — d ^ 1555 (cf. [Ar]). Using the computational system Pari/GP one 
checks that none of the 54 fields with Klein four-group as class group belongs 
to the class IV. 
On the other hand, the field Q(\/-255) belongs to IV and has the ordinary 
class group C 6 © C2 of 2-rank two. 

Table 1 
Representatives of quadratic Witt classes with prescribed class groups 

I II III IV V VI VII 

c2 
c 4 

17 
65 
145 
1105 

2 
10 
82 
130 

7 
15 
791 
231 

-7 
-15 
-39 

-2 
-10 
-14 -17 
-21 -33 

-1 

C2@C2 

We do not know at the moment whether in the Theorem the restriction 
that n be even can be removed. In the case of cubic number fields there are 
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8 Witt equivalence classes and we know representatives having ideal class 
number one (see [JMS], corrigendum). Here we are interested in going in the 
opposite direction and to produce the representatives with even ideal class 
numbers. Using Pari/GP one can find such examples with class groups C2, 
d or c2ec2. 
The table below gives the coefficients (p, q) of the cubic polynomial X3 + 
pX + q whose zero generates a field having the Witt equivalence invariant 
given in the first column (in the notation of [Sz]) and the class group Ci, 
C2, CA or C2 ®C2. 

Table 2 
Representatives of cubic Witt classes with prescribed class groups 

c2 
c 4 C2 ®C2 

I (1,1) (7,1) (23,1) (26,2) 
II (5,4) (61,4) (157,4) (85,4) 
III (1,4) (17,4) (41,4) (81,4) 
IV (11,4) (19,4) (83,4) (227,4) 
V (-3,1) (-25,1) (-71,1) (-65,1) 
VI (-3,4) (-19,4) (-139,4) (-179,4) 
VII (-7,4) (-79,4) (-31,4) (-631,4) 
VIII (-13,4) (-317,4) (-149,4) (-1021,4) 
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