Title: The Borel formula for integrable distributions

Author: Urszula Sztaba

THE BOREL FORMULA FOR INTEGRABLE DISTRIBUTIONS

URSZULA SZTABA

Abstract. The purpose of this paper is to give a new proof of the Borel formula for the convolution product of integrable distributions.

Let \(f \) and \(g \) be in \(L^1(\mathbb{R}^n) \). Put \(h(x) = \int_{\mathbb{R}^n} f(x - y)g(y)dy \). The function \(h \) is called the convolution product of \(f \) and \(g \). The function \(\mathcal{F}f, \mathcal{F}f(\sigma) = \int_{\mathbb{R}^n} e^{ix\sigma}f(x)dx \), where \(x\sigma = x_1\sigma_1 + \cdots + x_n\sigma_n \) is said to be the Fourier transform of \(f \).

THEOREM. If \(f \) and \(g \) are in \(L^1(\mathbb{R}^n) \), then the following Borel formula

\[
\mathcal{F}(f \ast g)(\sigma) = \mathcal{F}f(\sigma)\mathcal{F}g(\sigma)
\]

holds.

In this note we present a natural proof of (1) when \(f \) and \(g \) are any integrable distributions. We recall now a definition of integrable distributions. Let \(B \) denote the set of smooth functions \(\varphi \) defined in \(\mathbb{R}^n \) such that its all derivatives \(\frac{\partial^{\vert \alpha \vert}}{\partial x^\alpha}\varphi, \alpha \in \mathbb{N}^n \) are bounded.

DEFINITION 1. We say the a sequence \((\varphi_\nu), \nu \in \mathbb{N}, \varphi_\nu \in B \) converges to the zero in the space \(B \) if it satisfies the following two conditions:

\[
\begin{align*}
\text{(a)} & \quad \text{there exist positive real numbers } A_\alpha \text{ such that} \\
& \quad \left| \frac{\partial^{\vert \alpha \vert}}{\partial x^\alpha}\varphi_\nu(x) \right| \leq A_\alpha \text{ for } x \in \mathbb{R}^n \text{ and } \alpha \in \mathbb{N}^n, \\
\text{(b)} & \quad \text{the sequence } \left(\frac{\partial^{\vert \alpha \vert}}{\partial x^\alpha}\varphi_\nu \right) \text{ uniformly converges to the zero} \\
& \quad \text{on every compact set } K \in \mathbb{R}^n \text{ for } \alpha \in \mathbb{N}^n.
\end{align*}
\]

1991 *Mathematics Subject Classification.* AMS classification: 44A35.
DEFINITION 2. A linear continuous form \(\Lambda \) with respect to (\(\beta \)) convergence over \(B \) is said to be integrable distribution. The vector space of all integrable distributions will be denoted by \(D'_L_1 \).

We know that every integrable distribution \(\Lambda \) can be written as follows

\[
\Lambda(\varphi) = \sum_{|\alpha| \leq m} (-1)^{|\alpha|} \int_{\mathbb{R}^n} f_\alpha(x) \frac{\partial^{|\alpha|}}{\partial x^\alpha} \varphi(x) \, dx \quad \text{for} \quad \varphi \in B,
\]

where \(f_\alpha \in L^1([3], \text{p. 201}) \).

Note that for \(f \) and \(g \) belonging to \(L^1 \) we have

\[
\int_{\mathbb{R}^n} (f \ast g)(x) \varphi(x) \, dx = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f(x) g(y) \varphi(x+y) \, dx \, dy.
\]

This equality we can write in the following form

\[
\int_{\mathbb{R}^n} (f \ast g)(x) \varphi(x) \, dx = (f \otimes g_y)[\varphi(x+y)],
\]

where \(f \otimes g \) denotes the tensor product of \(f \) and \(g \) ([3], p. 106-7). Assume now that \(S \) and \(T \) are in \(D'_L_1 \) and \(\varphi \in B \), then the symbol \((S_x \otimes T_y)[\varphi(x+y)] \) is sensible for \(\varphi \in B \). The equality (3) suggest us how to define the convolution product \(S \ast T \) ([3], p. 204). Namely we should take

\[
(S \ast T)(\varphi) = (S \otimes T_y)[(\varphi(x+y))].
\]

By virtue of (2) we have

\[
(S \ast T)(\varphi) = \sum_{|\alpha| \leq m_1} \sum_{|\beta| \leq m_2} (-1)^{|\alpha|+|\beta|} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f_\alpha(x) g_\beta(y) \frac{\partial^{|\alpha|+|\beta|}}{\partial x^\alpha \partial y^\beta} \varphi(x+y) \, dx \, dy.
\]

Note that

\[
\left(\frac{\partial^{|\alpha|}}{\partial x^\alpha} f_\alpha \otimes \frac{\partial^{|\beta|}}{\partial y^\beta} g_\beta \right)[\varphi(x+y)]
\]

\[
= (-1)^{|\alpha|+|\beta|} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f_\alpha(x) g_\beta(y) \frac{\partial^{|\alpha|+|\beta|}}{\partial x^\alpha \partial y^\beta} \varphi(x+y) \, dx \, dy,
\]

where \(\frac{\partial^{|\alpha|}}{\partial x^\alpha} f_\alpha \) and \(\frac{\partial^{|\beta|}}{\partial y^\beta} g_\beta \) are the distributional derivatives of order \(\alpha \) and \(\beta \) of \(f_\alpha \) and \(g_\beta \) respectively. For simplicity of notations we put \(S_\alpha = \frac{\partial^{|\alpha|}}{\partial x^\alpha} f_\alpha \) and \(T_\beta = \frac{\partial^{|\beta|}}{\partial y^\beta} g_\beta \). Hence the formula (5) can be written as follows

\[
(S \ast T)(\varphi) = \sum_{|\alpha| \leq m_1} \sum_{|\beta| \leq m_2} (S_\alpha \ast T_\beta)(\varphi).
\]
Taking into account the above equality we need only prove that (1) holds for \(S_\alpha \) and \(T_\beta \).

For this purpose we use the regularizations \(S_\alpha * h_\varepsilon \) and \(T_\beta * h_\varepsilon \), where
\[
 h_\varepsilon(x) = h_\varepsilon(x_1) \cdots h_\varepsilon(x_n), \quad \text{and} \quad h_\varepsilon(t) = \frac{\varepsilon}{\pi \varepsilon^2 + t^2}.
\]
Exactly we have
\[
(S_\alpha * h_\varepsilon)(x) = (-1)^{|\alpha|} \int_{\mathbb{R}^n} f_\alpha(x - \xi) \frac{\partial^{|\alpha|}}{\partial \xi^\alpha} h_\varepsilon(\xi) d\xi
\]
\[
(T_\beta * h_\varepsilon)(y) = (-1)^{|\beta|} \int_{\mathbb{R}^n} g_\beta(y - \xi) \frac{\partial^{|\beta|}}{\partial \xi^\beta} h_\varepsilon(\xi) d\xi.
\]
Since \(f_\alpha, g_\beta \) and \(h_\varepsilon \) are in \(L^1 \) therefore \(S_\alpha * h_\varepsilon \) and \(T_\beta * h_\varepsilon \) belong to \(L^1 \), too. Moreover
\[
\mathcal{F}[(S_\alpha * h_\varepsilon) * (T_\beta * h_\varepsilon)](\sigma) = \mathcal{F}f_\alpha(\sigma) \mathcal{F}g_\beta(\sigma) \mathcal{F}\left(\frac{\partial^{|\alpha|}}{\partial x^\alpha} h_\varepsilon * \frac{\partial^{|\beta|}}{\partial y^\beta} h_\varepsilon\right)(\sigma).
\]
Hence
\[
(6) \quad \mathcal{F}[(S_\alpha * h_\varepsilon) * (T_\beta * h_\varepsilon)](\sigma) = \mathcal{F}f_\alpha(\sigma) \mathcal{F}g_\beta(\sigma) (-i\sigma)^{|\alpha+\beta|} e^{-2\varepsilon(\sum_{i=1}^n |\sigma_i|)}.
\]
We shall now show that \((S_\alpha * h_\varepsilon) * (T_\beta * h_\varepsilon) \) tends to \(S_\alpha * T_\beta \) in \(S' \) as \(\varepsilon \to 0 \).
Indeed, note that
\[
(S_\alpha * h_\varepsilon) * (T_\beta * h_\varepsilon)(x) = \frac{\partial^{|\alpha+\beta|}}{\partial x^\alpha \partial y^\beta} [f_\alpha * g_\beta * h_{2\varepsilon}](x).
\]
Hence we obtain
\[
\int_{\mathbb{R}^n} \frac{\partial^{|\alpha+\beta|}}{\partial x^\alpha \partial y^\beta} [f_\alpha * g_\beta * h_{2\varepsilon}](x) \varphi(x) dx = (-1)^{|\alpha+\beta|} \int_{\mathbb{R}^n} [f_\alpha * g_\beta * h_{2\varepsilon}](x) \frac{\partial^{|\alpha+\beta|}}{\partial x^\alpha \partial y^\beta} \varphi(x) dx
\]
for \(\varphi \in \mathcal{S} \) ([3], p. 233). Since \(f_\alpha * g_\beta \) is in \(L^1(\mathbb{R}^n) \), therefore \((f_\alpha * g_\beta) * h_{2\varepsilon} \)
tends to \(f_\alpha * g_\beta \) in \(L^1 \) as \(\varepsilon \to 0 \) ([1], p. 6).
This implies that
\[(-1)^{|\alpha+\beta|} \int_{\mathbb{R}^n} [(f_\alpha * g_\beta) * h_\varepsilon](x) \frac{\partial^{|\alpha+\beta|}}{\partial x^\alpha \beta} \varphi(x) dx \]
tends to
\[(-1)^{|\alpha+\beta|} \int_{\mathbb{R}^n} (f_\alpha * g_\beta)(x) \frac{\partial^{|\alpha+\beta|}}{\partial x^\alpha \beta} \varphi(x) dx = \frac{\partial^{|\alpha+\beta|}}{\partial x^\alpha \beta} (f_\alpha * g_\beta)(\varphi) = \]
\[= \left[\left(\frac{\partial^{|\alpha|}}{\partial x^\alpha} f_\alpha \right) * \left(\frac{\partial^{|\beta|}}{\partial y^\beta} g_\beta \right) \right] (\varphi) = (S_\alpha * T_\beta)(\varphi). \]

By continuity of the Fourier transformation in S' ([3], p. 251) we infer that
\[\mathcal{F}[(S_\alpha * h_\varepsilon) * (T_\beta * h_\varepsilon)] \rightarrow \mathcal{F}(S_\alpha * T_\beta) \]
in S' as $\varepsilon \rightarrow 0$. Taking into account (6) by the Lebesque dominated convergence theorem one can observe that
\[\int_{\mathbb{R}^n} (-i\sigma)^\alpha \mathcal{F}f(\sigma)(-i\sigma)^\beta \mathcal{F}g_\beta(\sigma) e^{-2\varepsilon(1+\ldots+1)} \varphi(\sigma) d\sigma \]
tends to
\[\int_{\mathbb{R}^n} (-i\sigma)^\alpha \mathcal{F}f(\sigma)(-i\sigma)^\beta \mathcal{F}g_\beta(\sigma) \varphi(\sigma) d\sigma = \int_{\mathbb{R}^n} \mathcal{F}S_\alpha(\sigma) \mathcal{F}T_\beta(\sigma) \varphi(\sigma) d\sigma \]
as $\varepsilon \rightarrow 0$.

From this by virtue of (7) we get
\[\mathcal{F}(S_\alpha * T_\beta) = \mathcal{F}S_\alpha * \mathcal{F}T_\beta. \]

This statement finishes the proof of (1) if f and $g \in D'_{L^1}$. The formula (1) is also true if f and g are in D'_{L^2} ([2], p. 43).
REFERENCES

INSTITUTE OF MATHEMATICS
SILESIAN UNIVERSITY
40-007 KATOWICE
POLAND