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D I F F E R E N T I A L E Q U A T I O N S O F T H E S E C O N D 

O R D E R W I T H M E A S U R E S A S C O E F F I C I E N T S 

W Ł A D Y S Ł A W K I E R A T A N D U R S Z U L A S Z T A B A 

Abstract. The note deals with differential equations of the second order 
with Borel measures as coefficients. The problem of existence and uniqueness 
of solutions is discussed. The Ritz-Galerkin method is used for determining 
of approximate solutions 

1. We shall consider the boundary value problem 

-u" + HiU = H2 
u(a) = u(b) = 0, 

where fj.\ and \iz are real Borel measures, fi\ > 0. 
If and /i2 are integrable functions with respect to the Lebesgue mea

sure, then the Ritz-Galerkin method is often used to investigate Problem 
(1) . Here we shall show that this method may be applied to solving Prob
lem (1) under the above assumptions, too. We are looking for a continuous 
function u vanishing at the end points a, b and fulfilling Equation (1) in the 
weak (distributional) sense. This means that 

6 6 & 

(2) —J u(p"dx + J uipdlll(x) = J <pd,j,2(x) for <p e D(a,b), 

a a a 

b b 

where /<^dM2(x) := /(pqd^(x), |/x2| is the variation of fj,2 and \q(x)\ = 1 
a a 

a.e. ([3], p. 137) and D(a, b) denotes the Schwartz space of the test functions 
with support contained in (a, b). Received October 25, 199Ą. 
A M S ( 1 9 9 1 ) subject classification: 3 4 A 1 2 , 3 4 A 4 5 . 
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We shall start with presenting some facts concerning the Sobolew space 
([1], p.22). 

D E F I N I T I O N 1. 

Wl'2{a,b) ={u& L2(a,b) : Du € L2(a,b), where Du is 

the distributional derivative} 

The natural norm of u in Wx'2(o,6) is ||u|| := (||ii||2
2 + H-Dull2^)*- The 

space W1,2(a, b) is complete with respect to this norm. 

D E F I N I T I O N 2. Wo1,2(a,6) is the closure of D(a,b) in W 1 , 2(a,6) with 
respect to the norm || • ||. 

One can show that 

WQ'2(CI,b) = {u : u is absolutely continuous, u(a) = u(b) = 0 

and Du E L2(a,b)} . 

For simplicity of notation we put 

6 b 

a(ip,ip) := jD(pDipdx + j(pipd^ix), 

for (p,ip G Wo'2(a,b). It is easy to check that a is a bilinear symmetric 
positive definite form on Wl'2{a, b) and /3 is a linear form on W^'2(a, b). If 
we are looking for a solution u in WQ , 2(a, b), then Equation (2) is equivalent 
to the equation 

6 b b 

(3) J Du<p'dx + Juipd^x) = Jpd^ix), ip£D(a,b). 
a a a 

or, using the above notation, too 

a(u, <p) = /%>), <p E D(a, b). 
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In the sequel we shall need the following two norms 

\\u\\a:=[a(u,u)}* and \\u\\D := \\Du\\L2 

for u in W0
X'2(a, b). 

Now we are in a position to state 

T H E O R E M 1. The following norms || • ||, || • ||r> and || • ||a are equivalent on 

Wt'2(a,b)-

P R O O F . It is easy to see that \<p(x)\ < (6 - a)̂ |Mb for a; € [a,b] and 
¥>€ Wo'2(a,b). Since 

(4) IMU~ <(&-<*)* 1Mb 

and 

(5) \\<ph><(b-a)\\<p\\D 

it follows that the norm || • || and || • |b are equivalent on the space Wo1,2(a, 6). 
Note that 

IMU < 1Mb + H V » I U » M . FOR *> 6 <'2(a, b). 

Therefore we have 

1Mb < IML < 1Mb + I M I L ^ for v e WQ
l'2(a, 6). 

By (4) we obtain 

Mb* < IMIi-MM) < (&-«)IMIi> MM!)-

Finally we get 

(6) 1Mb < |MU < [l + ((6-a)^([o,6]))*] 1Mb-

Thus the proof of our theorem is finished. 
Let (-,-)i2 and ( ' J O L 2 / * ! denote the ordinary inner product on the space 

L2(a,b) and L2/j,i(a,b). We set 

(V>, 4>)D -(D^, D4>)L2, <p,4>e W t f ' V b); 

6 - Annales. 
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and thus we have 

for ¥>,^S Wo'2(a,b). 
We know that {WQ1'2 [a, b), (•,-)) is a Hibbert space. 

C O R O L L A R Y 1. The spaces (WQ'2(O,b), (•, and (Wd'2(a,b),a(-, •)) axe 
Hilbert spaces, too. 

Now, we are in a position to prove the main 

T H E O R E M 2. Problem (1) has exactly one solution in W0
1,2(a,b). 

P R O O F . By the definition of W0
1,2(a,b), the set D(a,b) is dense in 

WQ '2(a, 6) so there exists at most one solution of Problem (1) in W Q , 2(a, b). 
Since the space (WQ'2(a,b), (•,•)) is a Hilbert space and /? is a continuous 
linear form on W Q ' 2 ( O , 6) there exists a function u in W^'2(a,6) such that 
(3) holds. This finishes the proof. 

In general there exist no more regular solutions of Problem (1), apart 
from those belonging to W0

1,2(a,b). 

E X A M P L E 1. Let us consider the defferential equation 

-x" + Six = f 

with the boundary condition 

z(0) = x{l) = 0, 

where Si is the Dirac measure concentred at the point t = \ and / G -Ł 1 (0,1). 
It is easy to see that this problem has no classical solutions (belonging to 

W2'2(0,1)). 

2. In this section we use the Ritz-Galerkin method to determine approx
imate solutions of Problem (1). We begin with a formulation of the Ritz 
theorem. 

Let E be a real vector space and a : E x E -> Rbe a. bilinear symmetric 
positive definite form. Moreover, let ft : E -» R be a linear form. Let us 
consider the quadratic form 

, : F(x):=^a(x,x)-/3(x). 
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T H E O R E M 3. (Ritz) ([2], p. 21). The following conditions are equivalent: 

(I) a(x,y)=0(y) for yeE 
(II) F(x) = inf F{y). 

We introduce the norm \\x\\a = [a(x,x)]t in the space E. If we assume that 
(E, || • ||a) is complete, then (E,a(-,-)) is a Hilbert space. Let {xn : n = 
1,2,...} be a sequence of elements xn belonging to E such that 

(7) cl(lin{a;n: n = 1,2,...}) = E, 

where lin {xn : n = 1,2,...} denotes the vector space spanned by the 
elements xn. Let En be the space spanned by elements x\...xn. Let x* be 
an element in En such that F(x„) = inf F(y). It is known that ||rc* - x||a 

tends to zero, when F(x) = inf F(y). 
y€E 

The above information will be used to determining approximate solutions 
of Problem (1) in the space WO

1,2(0,1). 
Now, we construct a sequence { / „ } in the space Wo'2(0,1) which has 

property (7). For m = 2 we put f2(t) = t for 0 < t < \, f2(t) = 1 - 1 for 
I < t < 1. In the general case we take 

( Of / _ 2fc-2 f 2fc-2 < f < 2fc-l 
2? + 1 2"+» — ' ^ 2"+' 

/*»(*) = < - 2 ? * + ^ for <*< 

> 0 for other t in [0,1], 

where m = 2n + k, 1 < ft < 2", n = 1,2,... 

T H E O R E M 4. The functions / „ , n = 2,3,... constitute a complete or-
thonormal system in (WQ '2(0,1), (•, -)uJ. 

P R O O F . Note that the Haar function Xn is the distributional derivative 
of / „ . For / € Wo1,2(0,1) we have 

X 
f(x) = j g(t)dt 

o 

for some je l 2 (0 , l ) , x G [0,1]. The function g has the Fourier representa
tion 

(8) g = / S0c)<te + C„Xn 
i n=2 
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1 
with respect to the Haar functions. It is clear that / g{x)dx = 0. Since the 

o 
space (WQ'2(Q,1),(-,-)D) is complete therefore there exists a function / in 
W0

1,2(0,1) such that 

(9) £ > / » = / . 
n=2 

Series (9) converges in the distributional sense. Hence we have 

oo 

(10) ^ c n X „ = £>/. 
n=2 

It is known that series (10) converges to Df in the space L2(0,1) (also a.e.). 
This implies that Df = g a.e. on [0,1]. From this we obtain that f{x) — f(x) 
for each x G [0,1]. Finally we have 

oo 

/(*) = E(/,/«)i>/«-
n=2 

This completes the proof of the theorem. 

C O R O L L A R Y 2. cl( lin { /„ : n = 2,3,... }) = W0
1,2{0,1) with respect to 

the norm || • ||a. 

Let En be the vector space spanned by the functions / j j . v j/o- The 
quadratic form F takes the following form 

F(y)=G(A 2 , . . . ,A n ) 
i 

(U) 
Ą E E ^ i /DfiDfjdx + J^T,^, f /</j<W(*) 

« ) 
- O J i=2 0 

where y = A2/2 + • • • + A„/ n . 
Formula (11) may be rewritten in matrix form 

G(A) = ^ A T ( r + A)A - ATP, 



where 
A 2 ( /2 , /2 )u •• ( /2 , /n)D 

A = , r = \ 
A„ [fn,h)D •• • (/n,/n)i? 

1 

! hfnd^x) 
0 

1 

Jf2dli2{x) 
0 

1 

! hfnd^x) 
0 

, p = 

1 

0 

1 

Jfnd^ix) 
0 

It is easy to check that 

when 

(12) 

G(A*) = inf G(A), 

(r + A)A* = P. 

Obviously T is a diagonal matrix. For the differential equation 

(13) 

we obtain the following matrix equation 

- x" + S^x = 1 

x{0) = x(l) = 0 

! o 0 A 2 a 2 

0 1 

: 0 * 
* "•• '•• 0 
0 . . . . . . 0 1 A 2m+i 

a2fc+j = 2 - V - 2 for / 1,2,.. . ,2k, k = 
exact solution of (13) is 

for 0 < t < I { 2 20 ^ 

The following graphs compare x and x*n for n = 2,4,8. 

where a?, = 4, 1,... ,m. The 
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