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M A R E K PIĘTKA* 

UNIQUENESS OF THE SOLUTION OF THE CAUCHY 
PROBLEM FOR THE PARTIAL DIFFERENTIAL 

EQUATIONS AND THE CONVOLUTION EQUATIONS 

Abstract. The method of construction of classes of uniqueness of solutions for differential and 
convolutional equations (containing the classical partial difierential equations) is presented in this 
paper. It tries to explain the anomaly of uniqueness of solutions for the Laplace and wave 
equations and non-uniqueness for the equation of heat. 

Introduction. This paper present the method of the construction of classes of 
the uniqueness of the Cauchy problem for the linear partial differential 
equations of order n with constant coefficients and equations with convolution. 
The method takes the advantage of the operational calculus given by 
J. Mikus iński in [1]. Some preliminary notes connected to the operational 
calculus wi l l be given nearer. 

The operational function i n the Mikusinski ' s sense is the function defined 
on the interval J x R with values in the field <& of Mikusinski 's operators [1]. In 
this paper we wi l l consider the special case of the operational functions of the 
form 

where qeW and y(-, •) is the function defined on J x R + (J — an interval 
included i n R) with values i n R or C . If the function y(-, ) belongs to the class 
^ ( B ) on J x R+ we say that x(-) belongs to #(") in the operational sense. 

The derivative of such a function x(-) we define by the formula 

The definition of the derivative fulfils the fundamental condition: if 
x'(k) = 0 on the interval J then x(X) = const on the interval. 

Similarly we may define the n-th derivative of the function x(-). 
In the case when q = 1 the function x(-) is called the parametric function. 
It is the one-to-one transformation of parametric functions of the class # ( n ) 

(in the operational sense) to the set of real (complex) functions of two variables 
of the class & n ) . 
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x{X) = q{y(X, t)}, 
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It is given in [1] that there is the similarity between linear differential 
equations considered i n the set of operational functions and linear partial 
differential equations with solutions in the class ^ M by applying the differential 
operator s e f . F o r example the equation 

82x(X, t) d2x{X, t) 

ex2 ~a
 8t2 

with the init ial conditions: 
x(X, 0) = 0, 

Q 
j - x ( A , 0) = 0 
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transforms to the operational form 

x"(X)-as2x(X) = 0. 

Similarly the equation of heat 

82x(X, t) _ 8x(X, t) 
8X2 ~~U dt 

with the init ial condition 

x(X, 0) = 0 

transforms to the operational equation 

x"{X)-asx{X) = 0. 

Problems of the uniqueness of the solution for the last equation (in the 
halfplane) were considered by A . Tychonoff in [3]. The similar results were 
given by J . Mikusi r i sk i in [1] taking the advantage of the estimation of 
operational functions of the exponential type [2]. The solution of the linear 
operational differential equation is formed by the sum of exponential functions 
with polynomial coefficients. Apply ing the estimation of such functions he gave 
the sufficient conditions which formed the class of uniqueness of the Cauchy 
problem i n the halfplane for the heat equation. 

Preliminary theorems. The operational equation has the form 
m 

(1) £ AtDlx{X) = f(X). 
1 = 0 

Methods used in solving the operational equation are similar to ones 
applied i n the ordinary differential equation with constant coefficients and the 
solution has the similar from 

(2) u(X)= £ " i V ' ^ + W ) , 
i=1j=0 

where w ; are certain roots of the characteristic equation 

(3) £ A,w' = 0 
z = o 
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in the field of operators <&. rt means the mulitiplicity of the root wt and ctj are 
operators belonging to h(-) is a certain solution of the equation (1). Each 
root of the equation (3) has the form 

00 

(4) w = £ V " * . 
1 = 0 

where p, qeQ (the set of rational numbers), q^O and bteC (the set of complex 
numbers). 

The root w generates the exponential function ewX i f and only i f p < 1 or in 
the case p = 1 and fo0eR. 

L E M M A 1.1. J / p < — 1 then w given by form (4) is a classical continuous 
function. 

The proof is given in [1]. 
L E M M A 1.2. / / / e # [ 0 , an4 t n e n there exists a continuous function 

H(-, •) defined on R x R + such that the exponential function eXf has the form 

e v = 1 + {H(A, t)}. 

The proof is given in [1]. 
L E M M A 1.3. Let T>0 be fixed and H(-, •) be the function given by Lemma 1.2. 

Then for XeR+ 

max \H(l t)\ < A M / ( T ) e x p [ r A M / ( T ) ] , 
where , e [ 0 - r ] 

Mf(T) = max |/(t)|. 
Ie[0,T] 

P r o o f . The function H(-,) has more precise characterization ([1]) 

m i t)= x V ' 

where / * denotes the convolution of k functions / . 
By the method of the mathematical induction we get that 

m a x | / t ( t ) | ^ r " - 1 [ M / ( T ) ] * . 
te[0,T] 

Hence by the form of the function H we get the estimation. 
The method used by J. Mikus iński for the heat equation wi l l be applied to 

the differential-convolutional equation of the order n. In the construction of the 
class of uniqueness of the solution for such equations we wil l apply the 
generalization of the theorem given in [2]. 

The generalization reads as follows. 
T H E O R E M 1.1. Let the operational function 

(6) x{l) = e 1 ' - 1 ; 

be defined on R + , where for / e{2 , n} 

p1>pl, p , e ( - l , 1) and pxe(0, 1), 
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bteC, ft, = + dt, e , e R and d x < 0 
and 

(7) k 1 | < | d 1 | ( l - 2 1 / ' » ) c t g | > 1 ( " / 2 ) ] . 

Then the function x(X) = {F(X, t)}, i.e. x(-) is the parametric function for X>0. 
Moreover, there exist positive constants C± and C2 such that if X, t>0 and 
X/t>C1 and X/(tp,)>C2 then there exist positive constants G1 and G2 such that 
the inequality 

(8) \F(X, O K G ^ T ^ T e x p _ G 2 

X \ _ i _ l 
— i - p i 
tpi) _ 

holds. 
The proof is given i n [4]. 
L E M M A 1.4. Let the function x(-) fulfil the assumptions given in Theorem 1.1. 

Let /(•) and g(-) belong to the set of the continuous functions defined on R + . Then 
the function 

(9) Y(X) = Xhb'sPl)" {g{t)} = {N(X, t)}, 

i.e. Y(-) is the parametric function for X>0. Moreover, for each T > 0 there exist 
positive constants C3, G 3 and G 4 such that if X>C3 and O^t^T then 

(10) \N(X, t)\< max | 3 ( t ) | G 4 e x p [ - G 3 - " * > ] . 
te[0, T] 

P r o o f . Fo l lowing Lemmas 1.1, 1.2, 1.3 and Theorem 1.1 we have that7(A) 
is the parametric function. Moreover, we get the estimation 

T 
max\N(X, t K max\g(t)\{l + TXMf{T)exp[.TXMf(Ty]}UF(X, t)\dt. 

te[0, r] te[o, n o 

F o r X>max { C j T , C2TPl} we have 

I - P I 
T 1 T 1 
$\F(X, t^dKG^-pi Jt"i-piexp 
0 0 

Thus, changing the variable 
i i 

W = GyXl~Pi t~l~Pl 
we get the estimation 

]\F(k, t)\dt<%xp 

tp> 
dt. 

G2 

G2T~i 
PI i ~| 
-p i X1~PI \. 

Hence and following the fact that A e x p [ T M / ( T ) A ] > l for A > m a x { l , CXT, 
C 2 T P 1 } we get 

max \N(X, t)\ < 
t e l 0 ' T ]

 r P l i 
< max \g{t)\-^ll + TMf(T)-]-Xexp[_TMf(T)X-G2T-T^Fi ^ ] . 

te[0, T] G 2 
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Let us denote 

G3 = ̂ l l + TMf(T)l 

Fol lowing the inequalities 

V ( l - P i ) > l and G 2 r - [ p i / ( 1 - p i > 1 > 0 

we get that there exists a constant G0(T) such that for X>G0(T) 

Xexp[TMf{T)X-(1/2)G2T~T=Vr xrhi]>i. 
Hence, putting 

G 4 = ( 1 / 2 ) G 2 T T ^ 7 , 

we get condition (10) for l > m a x { l , G 0 ( T ) , C^T, C2TPl} = C 3 . 
Theorem 1.2 wi l l show that if one of roots of the characteristic equations is 

generated by p = 1 and b0eR then solution (2) does not generate the 
parametric function. 

T H E O R E M 1.2. Let p = 1 and 0 *>0eR and 0 c e f f/ien ce w A (w nas 
/orm (4)) is not the parametric function defined on the whole real axis. 

P r o o f . Let w has form (4), i.e. 
QO 

1 = 0 

Let us denote by w 0 the power series 

w0 = b1s1-q + b2s1-2q+ ... 

Fol lowing [1] we obtain that there exists a function 0 a e ^ 0 0 ' (in the 
classical sense) such that gew°l is the parametric function on R. 

Let us suppose that there exists 0 ̂  c e f such that C e ( f c o s + w o , A is the 
parametric function on R (it is a contradiction to the thesis of the theorem). We 
do not loose the generality i f we suppose that c e f „ . We wi l l make the 
additional assumption that b 0 > 0 . The proof in the case b0<0 is similar. The 
function Ce(boS+WoU being the parametric one on R is, of course, the parametric 
function for X>0. Let us put {M(X, t)} = cdbos+Wo)X (M(-, •) means a continuous 
complex function defined on R x R + ) . By a simple calculation we have 

g c = e-siboX)l{M(X, t)}ge-WoXl 

where the function g is that one for which ge~WoX is the parametric function on R. 
The values of the operational function e~s<boX) are translation operators 

([1]). Denoting by Q(f) the support number of the function / , i.e. 

e ( / ) = sup{r : / (x ) = 0 if x < r } , 
we get 

Qigc) = 6 { e - s ( W ) [ { M ( 2 , t ) } 0 e - w o * ] } > M . 

The number X may be chosen arbitrarily and then cg = 0 on R + . Hence c = 0 
by Titchmarsh Theorem and we get a contradiction to the hypothesis. 
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Fol lowing the theorem we get that the solution of (1) being the parametric 
function may only be expected in the case p < l . 

The operational function (6) is the parametric one if and only if the each 
part of the sum is the parametric function. Hence coefficients pt are less than 
one. 

Main theorem. Let us consider the differential-convolutional equation 

( U ) I I «irWfi?uV' t ) + I I blr\{t-yr—lU{X, y)dy = / (A, t) 
; = 0r = 0 OA CV | = 0 r = 0 0 0 A 

with the init ial condition 

8r 

(12) — w(A, 0) = 0 for r = 0 , l , . . . , n 1 - l 
defined on the region R x R + . Constants alr, blr are complex numbers and 
c r e Q and cr> — 1. The function / ( • , •)g <K'RXR+-

A solution of (11), (12) is a smooth function on R x R + , fulfiling equation 
(11) and init ial conditions (12). J . Mikus ińsk i presented in [1] the connection 
between equation (11), (12) and the operational equation 

(13) £ Afi'uW = f(Ą 
1 = 0 

where m 3 = max{m1,m2}, 

(14) A,= t ^ + t + I f t f r n c r + 1 ) A 
r=0 r=0 

c— max { c r + l } , dr = c — cr— 1 for r e{0 , l , 2 , . . . , n 2 } , and 
r = 0,l ,2 n 2 

(15) /(A) = ?{f(l t)}. 

Let us denote by \ the set of smooth complex functions u(-, •) defined on 
R x R + such that for each fixed T > 0 there exist constants £ > 0 and M £ T > 0 
that the inequality 

(16) |u(A, t ) l < M ł T e x p [ | A | 1 « 1 - « > - r ] 

holds for (A, t ) e R x [ 0 , T ] . 
Theorem 2.1 wi l l present the sufficient condition for the class ^ in which 

equation (11) — (12) has at most one solution. 
T H E O R E M 2.1. Let equation (13) be the equation connected to equation (11) — 

— (12) and let its general solution has form (2), i.e. 

i=lj=0 

and all wt have the expansions 
QO 

(17) w , = E V r l " far ie{l,...,k}. 
1 = 0 
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Let 
Po = min {pt} and poe(0, 1). 

k) 
Let for je{l,...,k} b0j = d0j + ie0j, where d0j,eOjeR and 

(18) \e0J\< [1 -1 / (2" ) ] |d«y |ctg[p,(B/2)] 

and in the case when ps = pk 

(19) \e0j-e0k\<ll-l/2"q\d0j-d0k\ctg[I>j(n/2)l 

Then equation (11) — (12) has at most one solution in the class . 
0 

P r o o f . The previous remarks lead to the conclusion that the only 
interesting case of the proof is if al l P;e(0, 1). In the opposite case the solution 
of (13) (if it exists) is not a parametric function on R x R + . 

F r o m the form of the general solution of (13) we may deduce that it is 
sufficient to prove that al l coefficients ctj s <& vanish (the only solution of the 
homogeneous equation is the trivial one). 

Let us assume, without loosing the generality, that wt are in the decreasing 
order considering their coefficients pt, i.e. Wj follows w{ if pt>Pj. Numbers pt 

may be equal for different w, and in this case wik follows wt if \d0i.\ >\d0ik\. The 
last case is when pik = ptj and \d0i] = \d0ik\ then wtj follows wik if dOik>0. 

Let us assume that a function u, being a solution of (13) and fulfilling 
previous assumptions belongs to <%po. Fol lowing (2) and (17) it has the form 

(20) { „ a « » _ i i'ClA4iy'--^ 
i=l j=0 

for (X, f ) e R x R + . Without loosing the generality we may assume that 
c y e # [ 0 ay It is enough to prove that for each (i, j) ctJ = 0 and then it follows 
that u vanishes on R. 

We wi l l show that for each T > 0 and (i, j) 

max |c y ( t ) | = 0. 
te[0, T] 

Taking the advantage of ordering of the parts of the sum (20) at first we wi l l 
estimate c 1 P l _ l 5 then cln_2 and so on up to c 1 0 , after that we wi l l estimate 
c2r2-i U P t o c 20 a n d then we wi l l follow the estimation up to ck0. The method 
of estimation wi l l be shown in the case of the function c l P l _ 1 . 

A t first we wi l l calculate c l r i _ 1 using the equality (20). We have 

oo r i — 2 

(2D {clri-M - Hi t)}x-<^Q-^obnsPl-l9l)x- X MW'-'1*1 

k n - 1 

i=2j=0 
- Z L {ciMXJ ev. = o 
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Without loosing the generality we may assume that dQ1 >0. We wi l l show that 
for X>0 each part of the sum on the right side of the last equality is the 
parametric function. In the case d01 < 0 we can prove it in the similar way for 
A < 0 . 

Let us consider the function 

e \ i = o = e M = O -e Vi = n+1 

where (i fulfils the conditions p1—fiq1> — I and pl — (p,+ l)q1 < — 1. If follows 
from Theorem 1.1 that the function 

e^i = o ' is parametric for A > 0 . 

Taking into account the conditions given on n and px and Lemma 1.1 we 

notice that —I £ bnsPl~l9l\ is the classical continuous function and then 
\ i = n+1 / 

e V I - M + I > = efX and / e « i ? [ 0 > < 1 0 ) . 

By virtue of Lemma 1.2 there exists a continuous function ff(-, •) such that 
= \ + {H{X, t)}. Hence the first part of sum (21), i.e. 

{u(X,, t ) } A r , 1 + 1 e ^' = « ; 

is the parametric function. The second part of sum (21), i.e. 

rizW)}*'-,i+i 

j = 0 

is the parametric function by the definition of parametric functions. The third 
part of sum (21) equals 

DO oo 

/ M U r +1 ( i M f i - ^ - E ^ i - ^ k 

I I { c y ( t ) } ^ - r i + 1eV« = o , = 0 t The function ' 2 J 0 ( oo oo 

„ 1 = 0 1=0 ' (22) 

is of the form 

e v
 I = o 

and it may be distributed into two parts 

( £ *»*i\x ( £ ( £ ' " " O * 

(23) e^i = o ' = e v i = o ' • e v ' = c + i 7 

where n fulfils conditions p M > — 1 and pli+l < — 1. O n account of Lemma 1.2 
the second exponential function on the right side of equality (23) has the form 
efX = 1 + {H(X, t)}. Tak ing into account the ordering of w{ (d01>0) and the fact 
that poe(0, 1) we see that the assumptions of Theorem 1.1 are fulfilled and the 
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first exponential function on the right side of equality (23) is the parametric 
function. Hence the third part of sum (21) is the parametric function. 

N o w we wi l l estimate each part of sum (21). Let us fix T > 0 . B y the 
assumptions of Theorem 1.2 we notice that the function 

( OD 00 

fulfils the assumptions of Lemma 1.4. Hence there exist constans C' 3

J , G'j, and 
Gll such that for X>Cll and t e [0 , T ] 

{c,(0} e ( . ? o f c " s P i " ' , i - 1 ? o i ' l s P l " , 1 > < max | c y ( t ) | G ! / « p [ - G V ^ ] . 
te[0, T] 

There also exist constans C 3 , G 3 and G 4 such that for X>C° 

l ' < max |u(A, t)\X~ri + 1 G ° e x p [ - G 2 / l 1 / ( 1 " p l ) ] . 

J utt ing 
te[0, T] 

C 3 = max{C« C ° } , G 3 = m a x { G ^ G°}, G 4 = m a x { G « G 4 } 
('• J) (>. J) (i, j) 

we get for X>C3 

max k ^ - j W K max \u(X, t)\X~ri + 1 G 3 e x p [ - G 4 / t 1 / ( 1 - p > > ] 
fe[0, T] re[0, T] 

1-1-2 

+ £ max | C l j ( f ) | / ^ - " + 1 

i r ( - l 
+ G3f Z I max | c y ( t ) | ^ - " + 1 > ) 

\ , _ , : = n'e [0 , T] / , i = 2 j . = 0 r e [ 0 . T ] 

• e x p [ - G 4 A 1 / ( 1 - p i ) ] . 

The function u(-, O e ^ . Thus there exist e > 0 and MeT>0 such that for 
sufficiently large X 

max \u(X, t)\ < M E T e x p [ A i - p o « ] . 
*e[0, T] 

Fol lowing the fact that p 0 ^ P i a n ( l t n e n V ( l — Po) — e < V ( l — P i ) w e g e t 

l i m { G 3 max \u(X, t)\X~ri + 1 e x p [ - G 4 / l 1 / ( 1 - p i ) ] } = 0 . 
A-»oo Je[0, T] 

F o r each 7 , e { 0 , l , . . . , r 1 —2} we have ; — rj + l < 0 whence 
- r j - 2 

l im j X max \cij(t)\XJ-ri + 1 \ = 0. 
* - » ( . , = N *6[0, T] J •j = 0 

Final ly, due to the fact that - G 4 A 1 / ( 1 _ P 1 > < 0 , we obtain 

Mm W £ I max | c y W | ^ - ' 1 + 1 ) e x p [ - G 4 A 1 « 1 - ^ > ] } = 0 

A - o o ( . \ . = 2 ;. = 0 re[0, T] / J 
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and hence max |c A _ = 0. Then c x J t ) = 0 on [0, T ] and, consequently, 
t e [0, T] 

clri-! = 0 on R + , since the constant T was chosen arbitrarily. This means that 
in fact the function c l n _ 1 A n ~ 1 e w l 1 does not exist in sum (20). 

Repeating the applied method to the each coefficient ci} we get finally that 
each of them vanishes and this fact finishes the proof. 

R E M A R K S . The result obtained in Theorem 2.1 leads to the explanation of 
a certain anomaly lying in different behaviour of the uniqueness of the solution 
of the wave equation and the heat equation. The wave equation has only the 
trivial solution in the class of smooth functions defined on the halfplane but the 
uniqueness for the heat equation depends on the degree of increasing of the 
solution. 

The following example wi l l try to explain this anomaly. 
E X A M P L E . Let us consider the family of equations 

(24) u(k, t) = 1 \ ( t - r y ^ u ( l r)dr, 

where cn = (n— l)/(n +1). This family of equations is conneted to the family of 
operational equations 

(25) D2U{A)-SC" + 1U{X) = 0. 

Let us notice that for n = 1 equation (23) has the form 

(26) D2u{l)-su{X) = 0 

and operational equation (26) is connected to the heat equation with the nul l 
init ial condition. When n tends to infinity equations (24) transforms to the form 

(27) D2u{X)-s2u{l) = 0. 

Equat ion (27) is connected to the wave equation with nul l init ial conditions. 
The general solution of (24) is 

n n 

(28) u(k) = c 1 c , i r i l l + c2e'~irilx 

and the sets <%a consist of the smooth functions fulfilling the condition 

(29) \u(X, O I < e x p [ | A | n + 1 - £ ] , 

where e > 0 is arbitrarily small. It follows from (29) for n = 1 that <%a = "Ux and 
it is the same class of functions for which Tichonoff Theorem of uniqueness 
holds. In the case n -* oo, by (29), we get no restrictions, agreely to the 
d'Alembert Theorem of the existence and uniqueness of the solution of the 
wave equation. 
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