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ON SOME SOLUTIONS OF THE SCHRODER EQUATION
IN BANACH SPACES

JANUSZ WALORSKI

Abstract. The aim of this paper is to prove results on solutions of the
Schréder equation (1) defined on cones in Banach spaces and having some
properties connected with monotonicity and boundedness.

We consider the Schroder equation

(1) o(f(z)) = pp(2)

in which ¢ is an unknown function and the function f is given. In [4; Ch.
VI, §4] equation (1) is considered in the real case, among others in the class
of functions such that the function "z — ¢(z)/z" is monotonic (see also
[5; section 2.3F]). This class of functions is connected with classes of convex
(concave) functions. In the paper we propose to study equation (1) for
functions defined on cones in Banach spaces under an assumption which in
the real case means that the function "z — ¢(z) — 2" is either monotonic
or bounded.

Let (X,||-||) be a Banach space and K # {8} be a closed cone in X with
non empty interior, i.e. (cf. [3; Definition 2.1]), K is a closed subset of X
such that K + K C K, tK C K forevery t > 0, KN (-K) = {6} and Int
K #0. ‘We define a (partlal) order < on X by

rly<=y-—z€ek
and note the following simple lemma (cf. [3; p. 208]).
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LEMMA 1. Suppose x, € X forn € N. If limy o ¥, = 6. then for every’
a € IntK there exists an N € N such that z,, < a forn> N.

Let A: X — X be a completely continuous linear operator, i.e. A is linear
and maps bounded subsets of X mto relatively compact ones. We assume
addltlona.lly that

AI\" CK

and for every = € K \ {6} there exists a positive integer n such that A%z €
Int K. By the Krein-Rutman theorem [3; Theorem 6.3] there exist exactly
one vector © € Int K and exactly one continuous linear functional g: \' — R
such that
Au = pu,
9(Az) = pg(z), =€ X,
9(z) >0, zek\{6},
lull =1, g(u)=1,

where p denotes the spectral radius of A:

p = lim ||A™}/".

kA de o]
Of course p > 0.
1. Assume _
o p#1l
~and let f: K — K be a function such that f(6) = 6 and
2 mnﬁu) zeK.

LEMMA 2. Let ¢ : K — R be a monotonic solution of (1) such that
99(a) =0 for some a € IntK. If either ¢ is mcreasmg and cp(() ) > —n0, or ¢
is decreasmg and ¢(f) < oo, then ¢ = 0.

ProoF. We may (and we do) assume, that ¢ is increasing. Then o(8) <
¢(a) = 0. In particular 99(0) is finite. Hence, since ¢ iz a solution of (1),
©(8) = 0. Now, if z € K is arbitrarily fixed then according to (2) and
Lemma 1 there exists a positive integer n such that

f(@)<a
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whence : ‘
0=p"p(0) < p*e(z) = p(f™(z)) < p(a) = 0
and ¢(z) = 0. O

Arguing similarly we can prove also the following lemma.

LEMMA 3. Let o : K — R be a monotonic solution of (1) such that
l¢(a)| < oo for some a € IntK. If either ¢ is increasing and @(0) > —o0, or
¢ is decreasing and ¢(8) < oo, then ¢ is finite-valued.

Denoting
Ao = Alk, go:=glk,
we have the following result.
THEOREM 1. Assume that the function f is increasing and f — Ag is

monotonic. Then:
(i) For every z € K the sequence

(3) (9(f*(2))/P" )nen
is monotonic and the function o : K — [0,00] given by the formula
(@ o(e) = lim HLED

is an increasing solution of (1).

(ii) Suppose f — Ao is increasing. Then the function %o — go is increasing,
and if p: K — R is a solution of (1) such that ¢ — go is increasing and
©(0) > —oo [resp. o — go is decreasing and ¢(8) < oo] then po < ¢ [resp.
¢ <@o)and :

(a) = go(a) < oo for some a € IntK implies ¢ = ©0-

(ili) Suppose f — Ag is decreasing. Then o is finite-valued, the function
®o — go is decreasing and if o : K — K is a solution of (1) such that ¢ — g is
increasing and () > —oo [resp. ¢ — go is decreasing and ©(8) < o] then
o < ¢ [resp. ¢ < o] and

1

¢(a) = po(a)  for some a€ IntK implies ¢ = ¢y.

PROOF. Denote
F .= f-: Ao.
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Since F(68) = 6 and F is monotonic, we have
0< F or F <o,

i.e.

ALf or f< A

In the first case

- 9(f(2)) 2 9(Az) = pg(z), =z €K,

which shows that for every z € K the sequence (3) is increasing. In the
second case it is a decreasing sequence. Moreover,

y(f";:(w)) ~ p lim W)

N— 00 pn+1

po(f(z)) = lim = pyo(x)
for every z € K, i.e. g is a solution of (1).

Of course the function (g is increasing. Using induction it is easy to check
that

o ALED +Zy(F(f"(w)))

1 , ze€ K, neN.

Therefore

k T
E g(F({-}-(l D) _ = po(z) —g(z), =z€kK.

Consequently, if F is increasing [resp. decreasing] then so is (o — go.

Suppose now that F is increasing and let ¢ : K — K be a solution of
(1) such that ¢ — go is increasing and ¢(8) > —oo. Then gy < ¢ and,
consequently,

) 9W"@) P )
p" p"

= ¢(z), z€e K, neN,

whence g < . Assume now that ¢(a) = ¢p(a) < oo for some @ € Intk.
According to Lemma 3, ¢ is finite-valued. Denoting

Yi=9-go
we have n n
P(f"(2)) = o(z) - ﬁf_@, re Kk, neN,

p" p
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whence
(7) n]i_l}go d)(fpn(l)) — '19(1‘) _ 990(1'), z€ K.

In particular, ¢ — g is an increasing function. Since it is also a non-negative
solution of (1) and vanishes at a, according to Lemma 2 it vanishes every-
where, i.e. ¢ = . In the case where ¢ — gy is decreasing we argue similarly.

Finally suppose that F is decreasing. As we noted, for every = € K the
sequence (3) is then decreasing and, consequently, ¢, is now finite-valued.
Let ¢ : K — R be a solution of (1) such that ¢ ~ go is increasing. Then
(6) holds and this gives ¢y < ¢. Assume now that @(a) = ¢o(a) for some
a € IntK'. As previously (cf. in particular (7)) we see that p—¢yq is a solution
of (1) which is increasing, non-negative and vanishes at a. An application
of Lemma 2 gives ¢ = g and ends the proof. O

REMARK 1. If p € (0,00) and A : R — R is given by the formula Az = pz
then the vectors obtained from the Krein-Rutman theorem for this A (and
K = [0,00)) are: u = 1, g = idg. Consequently, we have the following
corollary.

COROLLARY 1. Let p € (0,1) and assume that f : [0,00) — [0,00) is an
increasing function such that

nlilléo fM(z) =0, z € [0,00),
and the function
(8) "t — f(z) - pz, z €[0,00)"
is monotonic. Then:

(i) For every z € [0, 00) the sequence (f*(z)/p")nen is monotonic and the
function y: [0,00) — [0, 00] defined by

)= lim L)
(9) ¢o(z) := lim o
is an increasing solution of (1).
(ii) Suppose (8) is increasing. Then the function "z — po(z) ~ z, z €
[0,00)" is increasing, and if ¢ : [0,00) — K is a solution of (1) such that

(10) "2 — p(z) -2, z € [0, 00)"
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is increasing and p(0) > —oo [resp. (10) is decreasing and ¢(0) < oc] then
¥o < ¢ [resp. ¢ < o] and

¢(a) = po(a) < oo for some a € (0,00) implies ¢ = ¢y.

(iii) Suppose (8) is decreasing. Then o is finite-valued, the function
"t — @o(z) — 2, £ €d0,00)" is decreasing, and if ¢ : [0,00) — R is a
solution of (1) such that (10) is increasing and ¢(0) > —oo [resp. (10) is
decreasing and ¢(0) < oo} then g < ¢ [resp. ¢ < o] and

w(a) = ¢(a) for some a € (0,00) implies ¢ = ¢q.

REMARK 2. Let p € (0,00). If a function f : [0,00) — [0,00) is convex
[resp. concave], f(0) = 0 and pz < f(z) [resp. f(z) < pz] for z € [0, 00),
then the function "z — f(z) — pz, z € [0,00)" is increasing [resp. decreas-
ing]. >

Proor. Consider the case where f is convex, fix z,y € [0 oo ) such that
z <yandlett==z/y. Then : L

f(z) = pz = f(ty) — pty < tf(y) — pty = 1(f(y) — py) < fly) - /w |

REMARK 3. In the real case we have a condition of Seneta (sce [5; Theo-
rem 1.3.2]) which guarantees that ¢ is finite-valued.

The following example shows that the solution g need be neither convex
nor concave.

ExaMPLE 1. The functions
0 for z €]0,2],
—F(z):= %z -1 for 2€(2,4],
1 for z € (4,00)
and
f(z) := —:1: +.F(z), z € [0, 00),

are increasing, and
¢

OSf(x)S%z, z>0.
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Since '
‘ 27" for 2 €[0,2],
Az) =4 27! for =€ (2,4],

9Q=N4 _ .2—n+1 for z € (4,6], .
- and p = } the function wol[o,6) given by (9) is of the form

T for x€1]0,2],
wolx) = ¢ 2 for 2 €(2,4],

z -2 for 2 € (4,6].

Hence ¢gljo,6) is neither convex nor concave. (Let us observe even more: the

function "z — o(z)/z, 2 € (0,6)" is not monotonic.) Consequently also -
14 y T

o is neither convex nor concave.

Our next example shows that equation (1) may have a lot of solutions @
such that the function ¢ — go is increasing.

EXAMPLE 2. Let p € (0,1) and let f(z) = pa, 2 > 0. Then @g(a) =
z, ¥ 2 0. Using a standard argument (see, e.g., [5; the proof of Theorem
2.2.3]) it is casy to prove that if @ > 0 and & : [pa, a] — R is a function such
that the function "¢ — @(z) — z, z € [pa, a]’ is increasing,

&(pa) = p3(a)

and :
T < ¢(z), x € [pa,d],

then there exists exactly one solution ¢ : [0,00) — R of (1) such that
®l{pa,a) = @; moreover the function "z — () -z, z € [0,00)" is in-
creasing. In particular, there are solutions ¢y, ¢; : [0,00) — R of (1) such
that ©1(a) = pa(a), functions "z — @;(z) — 2, 2 € [0,00)", i € {0,1}, are
increasing, but ¢; # ¢,. .

2. Now we pass to solutions ¢ of (1) such that ¢ — gg is bounded. Let
f: K — K be an arbitrary function.

THEOREM 2. Assume p > 1 and let f — Ay be bounded. Then:

(i) For every z € K the sequence (3) converges.

(ii) The function @o : K — [0,00) given by the formula (4) is a non-zero
solution of (1) such that ¢y — gq is bounded.

(iii) If ¢ : K = R is a solution of (1) such that for some 7 € R the function
® — ngo is bounded then ¢ = nypy.
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ProoFr. Putting F := f — Ag and taking into account boundedness of
this function we infer that the series

goFof"
Z e

uniformly and absolutely converges and its sum is a bounded function. Hence
and from (5) it follows that for every z € K the sequence (3) converges and
@o — go is a bounded function. In particular, o # 0.

Assume now that ¢ : ' — R is a solution of (1) such that the function
X := ¢ — 151go is bounded (by a constant M). Then

1 PC ))“ _|x @)

plz) — T n o
whence ¢ = 7¢g. a

Ipn, zel, neN,

We should mention here that the idea of examining the Schréder equation
(1) with the aid of the Krein-Rutman theorem has come up while the author
was thinking on generalization to the infinite-dimensional case of some re-
sults from the papers [1] by F. M. Hoppe and [2] by A. Joffe and F. Spitzer
where the finite-dimensional case is considered with the aid of the Frobenius
theory.
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