

You have downloaded a document from RE-BUŚ repository of the University of Silesia in Katowice

Title: A characterization of functions with dense graph in the plane or halfplane

Author: Zbigniew Gajda

Citation style: Gajda Zbigniew. (1986). A characterization of functions with dense graph in the plane or half-plane. "Annales Mathematicae Silesianae" (Nr 2 (1986), s. 37-46).

Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych Polska - Licencja ta zezwala na rozpowszechnianie, przedstawianie i wykonywanie utworu jedynie w celach niekomercyjnych oraz pod warunkiem zachowania go w oryginalnej postaci (nie tworzenia utworów zależnych).

ZBIGNIEW GAJDA*

A CHARACTERIZATION OF FUNCTIONS WITH DENSE GRAPH IN THE PLANE OR HALF-PLANE

Abstract. Let R be the set of all real numbers. In the present paper we shall characterize functions $f: R \to R$ which are either linear or have graph contained and dense in the plane or half-plane determined by a linear function. For this purpose we consider functions satisfying certain limitary conditions which are related to the additivity equation but considerably weaker than that.

Let us introduce the following

DEFINITION. A function $f: \mathbf{R} \to \mathbf{R}$ is called *limit-additive* iff the following conditions are fulfilled:

(1)
$$\bigwedge_{\substack{x, y \in R \\ z_n \in R \text{ } n \in N}} \bigvee_{\substack{z_n \in R \\ z_n \in R \text{ } n \in N}} \left[z_n \xrightarrow[n \to \infty]{} x + y, f(z_n) \xrightarrow[n \to \infty]{} f(x) + f(y) \right],$$

(2)
$$\bigwedge_{\substack{x, y \in R \ (x_n)n \in N, \ (y_n)n \in N \\ x_n, y_n \in R, n \in N}} \bigvee_{\substack{x_n \neq \infty \\ x_n, y_n \in R, n \in N}} \left[x_n \xrightarrow[n \to \infty]{} x, y_n \xrightarrow[n \to \infty]{} y, f(x_n) + f(y_n) \xrightarrow[n \to \infty]{} f(x+y) \right],$$

(3)
$$\bigwedge_{\substack{x \in R \\ x_n \in R, n \in N}} \bigvee_{\substack{(x_n)_{n \to \infty} \\ x_n \in R, n \in N}} \left[x_n \xrightarrow[n \to \infty]{} x, 2f(x_n) \xrightarrow[n \to \infty]{} f(2x) \right].$$

Conditions (1) and (2) are, in a sense, mutually symmetric. Condition (3) can not be obtained from (2) by setting x = y, since even then sequences $(x_n)_{n \in \mathbb{N}}$ and $(y_n)_{n \in \mathbb{N}}$ occurring in (2) may not coincide. Adding condition (3) we obtain the possibility of the choice of a common sequence in the case where x = y.

Clearly, every additive function is limit-additive (it suffices to take constant sequences). There exist, however, limit-additive functions which are not additive. Indeed, one can easily check that an arbitrary function $f: R \to R$ with the graph being dense on the plane R^2 is limit-additive. Let us note that if a function $f: R \to R$ is limit-additive and continuous then it is additive and consequently has the form

$$f(x) = ax, x \in \mathbf{R}$$

where a is a constant.

Received March 15, 1982.

AMS (MOS) subject classification (1980). Primary 39B40, 26A99.

^{*} Instytut Matematyki Uniwersytetu Śląskiego, Katowice, ul. Bankowa 14, Poland.

Now, we are going to give some necessary and sufficient conditions for a limitadditive function to be continuous.

LEMMA 1. Let $f: \mathbb{R} \to \mathbb{R}$ be a limit-additive function. Then, for any $k \in \mathbb{N}$, $k \ge 2$, and each points $x_1, \ldots, x_k \in \mathbb{R}$, there exists a sequence $(z_n)_{n \in \mathbb{N}}$ of real numbers such that

$$z_n \xrightarrow[n \to \infty]{} x_1 + \ldots + x_k \text{ and } f(z_n) \xrightarrow[n \to \infty]{} f(x_1) + \ldots + f(x_k).$$

Proof. For k=2 the assertion of the lemma coincides with condition (1). Suppose that our lemma holds true for some $k \in \mathbb{N}$, $k \ge 2$ and for any system of k points $x_1, \ldots, x_k \in \mathbb{R}$. Fix k+1 points $x_1, \ldots, x_{k+1} \in \mathbb{R}$. On account of our assumption, there exists a sequence $(u_n)_{n \in \mathbb{N}}$ such that

$$u_n \xrightarrow[n\to\infty]{} x_1 + \ldots + x_k, f(u_n) \xrightarrow[n\to\infty]{} f(x_1) + \ldots + f(x_k).$$

In view of (1), for each $n \in N$ one can find a sequence $(w_{n,m})_{m \in N}$ such that

$$w_{n,m} \xrightarrow[m \to \infty]{} u_n + x_{k+1}$$
 and $f(w_{n,m}) \xrightarrow[m \to \infty]{} f(u_n) + f(x_{k+1})$.

Hence

$$\left| \bigwedge_{n \in \mathbb{N}} \bigvee_{m'_n \in \mathbb{N}} \bigwedge_{m \geqslant m'_n} \left| w_{n,m} - u_n - x_{k+1} \right| < \frac{1}{n}, \right|$$

$$\left| \bigwedge_{n \in \mathbb{N}} \bigvee_{m''_n \in \mathbb{N}} \bigwedge_{m \geqslant m''_n} \left| f(w_{n,m}) - f(u_n) - f(x_{k+1}) \right| < \frac{1}{n}.$$

We put $m_n := \max(m'_n, m''_n)$, $n \in \mathbb{N}$ and $z_n := w_{n,m_n}$, $n \in \mathbb{N}$. Then we have

$$\begin{aligned} \left| z_{n} - x_{1} - \dots - x_{k+1} \right| &\leq \\ \left| w_{n,m_{n}} - u_{n} - x_{k+1} \right| + \left| u_{n} - x_{1} - \dots - x_{k} \right| &\leq \frac{1}{n} + \left| u_{n} - x_{1} - \dots - x_{k} \right| \frac{1}{n + \infty} \to 0, \\ \left| f(z_{n}) - f(x_{1}) - \dots - f(x_{k+1}) \right| &\leq \\ \left| f(w_{n,m_{n}}) - f(u_{n}) - f(x_{k+1}) \right| + \left| f(u_{n}) - f(x_{1}) - \dots - f(x_{k}) \right| &< \\ &\leq \frac{1}{n} + \left| f(u_{n}) - f(x_{1}) - \dots - f(x_{k}) \right| \xrightarrow[n \to \infty]{} 0, \end{aligned}$$

whence

$$z_n \xrightarrow[n \to \infty]{} x_1 + \dots + x_{k+1}$$
 and $f(z_n) \xrightarrow[n \to \infty]{} f(x_1) + \dots + f(x_{k+1})$

which, by induction, completes the proof.

THEOREM 1. If a limit-additive function $f: \mathbb{R} \to \mathbb{R}$ is continuous at a point then it is continuous everywhere.

Proof. Assume that f is continuous at the point $x_0 \in \mathbb{R}$.

(a) Let $(x_n)_{n \in \mathbb{N}}$ be an arbitrary sequence of real numbers convergent to zero. Since

$$x_0 = (x_0 - x_n) + x_n, n \in \mathbb{N}$$

from (1) it follows that, for each $n \in \mathbb{N}$, there exists a sequence $(z_{n,m})_{m \in \mathbb{N}}$ such that

$$z_{n,m} \xrightarrow[m \to \infty]{} x_0$$
, $f(z_{n,m}) \xrightarrow[m \to \infty]{} f(x_0 - x_n) + f(x_n)$.

Hence

$$\bigwedge_{n \in N} \bigvee_{m'_n \in N} \bigwedge_{m \geqslant m'_n} \left| z_{n,m} - x_0 \right| < \frac{1}{n},$$

$$\bigwedge_{n \in N} \bigvee_{m'' \in N} \bigwedge_{m \geqslant m'''} \left| f(z_{n,m}) - f(x_0 - x_n) - f(x_n) \right| < \frac{1}{n}.$$

Put $m_n := \max(m'_n, m''_n), z_n := z_{n,m_n}, n \in \mathbb{N}$. Then

$$\left|z_n-x_0\right|<\frac{1}{n},\ n\in\mathbb{N}$$

and

$$|f(z_n)-f(x_0-x_n)-f(x_n)|<\frac{1}{n},\ n\in N,$$

whence

(4)
$$z_n \xrightarrow[n \to \infty]{} x_0 \text{ and } f(z_n) - f(x_0 - x_n) - f(x_n) \xrightarrow[n \to \infty]{} 0.$$

By the continuity of f at x_0 we have

$$f(z_n) \xrightarrow[n \to \infty]{} f(x_0)$$
 and $f(x_0 - x_n) \xrightarrow[n \to \infty]{} f(x_0)$

which, together with (4), gives

(5)
$$f(x_n) \xrightarrow[n \to \infty]{} 0$$
, for any sequence $(x_n)_{n \in N}$ such that $x_n \xrightarrow[n \to \infty]{} 0$.

(b) Fix an $x \in \mathbb{R}$ and write 0 = x + (-x). Using condition (1) again we find a sequence $(z_n)_{n \in \mathbb{N}}$, $z_n \xrightarrow[n \to \infty]{} 0$, for which

$$f(z_n) \xrightarrow[n\to\infty]{} f(x) + f(-x)$$
.

Hence and from (5) it follows that

$$f(-x) = -f(x), x \in \mathbf{R}.$$

(c) Now, choose an arbitrary $x \in \mathbb{R}$ and a sequence $(x_n)_{n \in \mathbb{N}}$, $x_n \xrightarrow[n \to \infty]{} x$. On account of Lemma 1, for each $n \in \mathbb{N}$ one can find a sequence $(z_{n,m})_{m \in \mathbb{N}}$ such that

$$z_{n,m} \xrightarrow[m \to \infty]{} x_n - x + x_0$$

and

(7)
$$f(z_{n,m}) \xrightarrow[m \to \infty]{} (x_n) + f(-x) + f(x_0) = f(x_n) - f(x) + f(x_0).$$

In view of (6) and (7) we have

$$\bigwedge_{n \in N} \bigvee_{m'_n \in N} \bigwedge_{m \geqslant m'_n} \left| z_{n,m} - (x_n - x + x_0) \right| < \frac{1}{n},$$

$$\bigwedge_{n \in \mathbb{N}} \bigvee_{m' \in \mathbb{N}} \bigwedge_{m \geqslant m''} \left| f(z_{n,m}) - \left(f(x_n) - f(x) + f(x_0) \right) \right| < \frac{1}{n}.$$

We put $m_n = \max(m'_n, m_n)$, $z_n = z_{n,m_n}$, $n \in \mathbb{N}$. With the aid of this notion we get

$$\left|z_n-x_0\right| \leq \left|z_{n,m_n}-(x_n-x+x_0)\right| + \left|x_n-x\right| < \frac{1}{n} + \left|x_n-x\right|_{\frac{n\to\infty}{n\to\infty}} 0,$$

$$\left| f(z_n) - \left(f(x_n) - f(x) + f(x_0) \right) \right| < \frac{1}{n} \xrightarrow[n \to \infty]{} 0.$$

Consequently,

$$z_n \xrightarrow[n\to\infty]{} x_0$$
 and $f(z_n) - f(x_n) + f(x) - f(x_0) \xrightarrow[n\to\infty]{} 0$.

Hence and from the continuity of f at the point x_0 it follows that

$$f(x_n) \xrightarrow[n \to \infty]{} f(x),$$

which implies that f is continuous at x.

LEMMA 2. If a function $f: \mathbb{R} \to \mathbb{R}$ is limit-additive and bounded in a neighbourhood of a point $x_0 \in \mathbb{R}$ then it is bounded in a neighbourhood of zero.

Proof. Suppose that there exist M > 0 and $\delta > 0$ such that

$$|f(y)| \leq M$$
, for $y \in (x_0 - \delta, x_0 + \delta)$.

Take an $x \in (-\delta, \delta)$. Then $x + x_0 \in (x_0 - \delta, x_0 + \delta)$ and there exists a sequence $(z_n)_{n \in \mathbb{N}}$, $z_n \xrightarrow[n \to \infty]{} x + x_0$ such that $f(z_n) \xrightarrow[n \to \infty]{} f(x) + f(x_0)$.

For almost every $n \in N$ we have

$$z_n \in (x_0 - \delta, x_0 + \delta)$$
 and $|f(z_n)| \le M$

whence

$$\left|f(x)+f(x_0)\right|\leqslant M.$$

Thus

$$|f(x)| \le M + |f(x_0)|$$
, for $x \in (-\delta, \delta)$.

THEOREM 2. If $f: \mathbf{R} \to \mathbf{R}$ is a limit-additive function bounded (in absolute value) on a set $A \subset \mathbf{R}$ such that int $A \neq \emptyset$ then f is continuous.

Proof. Taking Lemma 2 into account, we may suppose that there exist M > 0 and $\delta > 0$ such that

(8)
$$|f(x)| \leq M \text{ for } x \in (-\delta, \delta).$$

Assume that there exists a sequence of real numbers $(x_n)_{n\in N}$, $x_n \to 0$ such that the sequence $(f(x_n))_{n\in N}$ is not convergent to zero. Then there exist an $\varepsilon>0$ and a subsequence $(x_{n_k})_{k\in N}$ of the sequence $(x_n)_{n\in N}$ with the property $|f(x_{n_k})| \ge \varepsilon$, $k\in N$. From the sequence $(x_{n_k})_{k\in N}$ one can still choose either a subsequence $(x_{n_k})_{p\in N}$ such that $f(x_{n_k}) \ge \varepsilon$, $p\in N$ or a subsequence $(x_{n_k})_{s\in N}$ such that $f(x_{n_k}) \le -\varepsilon$, $s\in N$. Suppose, for instance, that we have a sequence $(y_n)_{n\in N}$, $y_n \to 0$ such that $f(y_n) \ge \varepsilon$, $n\in N$. Let us choose numbers $N\in N$ and $n_0\in N$ so that $N\varepsilon>M$ and $Ny_{n_0}\in (-\delta, \delta)$. According to Lemma 1, there exists a sequence $(z_m)_{m\in N}$ such that $z_m \to 0$ $N\cdot y_{n_0}$ and $f(z_m)_{m\to\infty} Nf(y_{n_0}) \ge N\varepsilon>M$.

Hence

(9)
$$\bigvee_{m_1 \in N} \bigwedge_{m \geqslant m_1} z_m \in (-\delta, \delta),$$

$$(10) \qquad \bigvee_{m_2 \in N} \bigwedge_{m \geqslant m_2} f(z_m) > M.$$

For $m \ge \max(m_1, m_2)$ conditions (9) and (10) are incompatible with (8). If we have a sequence $(y_n)_{n \in \mathbb{N}}$, $y_n \xrightarrow[n \to \infty]{} 0$ such that $f(y_n) \le -\varepsilon, n \in \mathbb{N}$, we obtain the contradiction in a similar manner, using the boundedness of f from below. So we have

(11)
$$f(x_n) \xrightarrow[n \to \infty]{} 0$$
, for any sequence $(x_n)_{n \in N}$ such that $x_n \xrightarrow[n \to \infty]{} 0$.

Putting x = y = 0 in (1), we obtain the existence of a sequence $(z_n)_{n \in \mathbb{N}}$, $z_n \xrightarrow[n \to \infty]{} 0$, for which $f(z_n)_{n \to \infty} 2f(0)$. This, jointly with (11), implies f(0) = 0. Consequently we obtain the continuity of f at zero. In virtue of Theorem 1, f is continuous everywhere on R.

Now, we are going to investigate some properties of discontinuous limit-additive functions. It follows from Theorem 2 that such functions can not be bounded in absolute value on any non-degenerate interval. In the sequel, the word "interval" will always mean a bounded non-degenerate interval. The example of an arbitrary function $f: \mathbf{R} \to \mathbf{R}$ which has the graph contained and dense in one of the half-planes $\{(x, y) \in \mathbf{R}^2 : y \ge 0\}$ or $\{(x, y) \in \mathbf{R}^2 : y \le 0\}$ shows that a discontinuous limit-additive function may be bounded from one side. In the same way as in the proof of Lemma 2 one can show that any limit-additive function bounded below (above) on some interval is bounded below (above) on every interval.

For any function $f: \mathbf{R} \to \mathbf{R}$ bounded below on every interval, the function $\varphi_f: \mathbf{R} \to \mathbf{R}$

(12)
$$\varphi_f(x) := \sup_{\delta > 0} \inf \{ f(z) : z \in (x - \delta, x + \delta) \}, \ x \in \mathbf{R}$$

is well defined.

Analogously, for any function $f: \mathbf{R} \to \mathbf{R}$ bounded above on every interval we define the function $\psi_f: \mathbf{R} \to \mathbf{R}$ by the formula

(13)
$$\psi_f(x) := \inf_{\delta > 0} \sup \left\{ f(z) : z \in (x - \delta, x + \delta) \right\}, \ x \in \mathbf{R}.$$

LEMMA 3. If $f: \mathbf{R} \to \mathbf{R}$ is bounded below (above) on every interval, then the function φ_f (function ψ_f) is lower (upper) semi-continuous.

For the proof see e.g. [2] or [3].

Up to now, we have only made use of property (1) from the definition of limit-additive functions. From now on, we shall be applying properties (2) and (3), too.

LEMMA 4. If $f: \mathbf{R} \to \mathbf{R}$ is a limit-additive function bounded below (above) on every interval, then the function φ_f (function ψ_f) is additive.

Proof. We proceed only with the proof for the function φ_f . Fix numbers $x, y \in \mathbb{R}$, $\varepsilon > 0$, $\delta > 0$, $\eta > 0$, arbitrarily. We have

(14)
$$\bigvee_{u_0 \in (x-\delta, x+\delta)} f(u_0) < \inf \{ f(u) : u \in (x-\delta, x+\delta) \} + \frac{\varepsilon}{3}$$

and

(15)
$$\bigvee_{w_0 \in (y-\eta, y+\eta)} f(w_0) < \inf \{ f(w) : w \in (y-\eta, y+\eta) \} + \frac{\varepsilon}{3}.$$

Observe that $u_0 + w_0 \in (x + y - \delta - \eta, x + y + \delta + \eta)$. It follows from (1) that there exists a sequence $(z_n)_{n \in \mathbb{N}}$, $z_n \xrightarrow[n \to \infty]{} u_0 + w_0$ such that

$$f(z_n) \xrightarrow[n\to\infty]{} f(u_0) + f(w_0)$$
.

Hence

$$(16) \qquad \bigvee_{u_0 \in N} \bigwedge_{n \geqslant n_0} \left[z_n \in (x+y-\delta-\eta, x+y+\delta+\eta), f(z_n) < f(u_0) + f(w_0) + \frac{\varepsilon}{3} \right].$$

(14), (15) and (16) yield

$$\inf \left\{ f(z) : z \in (x + y - \delta - \eta, x + y + \delta + \eta) \right\} \le f(u_0) + f(w_0) + \frac{\varepsilon}{3} \le$$

$$\le \inf \left\{ f(u) : u \in (x - \delta, x + \delta) \right\} + \inf \left\{ f(w) : w \in (y - \eta, y + \eta) \right\} + \varepsilon.$$

Since $\varepsilon > 0$ has been chosen arbitrarily, we have

(17)
$$\inf \{ f(z) : z \in (x + y - \delta - \eta, x + y + \delta + \eta) \} \le \inf \{ f(u) : u \in (x - \delta, x + \delta) \} + \inf \{ f(w) : w \in (y - \eta, y + \eta) \} \le \varphi_f(x) + \varphi_f(y).$$

As inequality (17) holds for all $\delta > 0$, $\eta > 0$, we obtain the subadditivity of φ_f :

(18)
$$\varphi_f(x+y) \leq \varphi_f(x) + \varphi_f(y), \ x, y \in \mathbf{R}.$$

Fix again numbers $x, y \in \mathbb{R}$, $\varepsilon > 0$, $\delta > 0$ arbitrarily. We have

(19)
$$\bigvee_{z_0 \in (x+y-\delta, x+y+\delta)} f(z_0) < \inf \{ f(z) : z \in (x+y-\delta, x+y+\delta) \} + \frac{\varepsilon}{2}.$$

One can choose $u_0 \in \left(x - \frac{\delta}{2}, x + \frac{\delta}{2}\right)$ and $w_0 \in \left(y - \frac{\delta}{2}, y + \frac{\delta}{2}\right)$ so that $z_0 = u_0 + w_0$. In view of (2) there exist sequences $(u_n)_{n \in \mathbb{N}}$ and $(w_n)_{n \in \mathbb{N}}$, $u_n \xrightarrow[n \to \infty]{} u_0$, $w_n \xrightarrow[n \to \infty]{} w_0$ such that $f(u_n) + f(w_n)_{n \to \infty} f(z_0)$. Hence

$$(20) \bigvee_{n_0 \in N} \bigwedge_{n \ge n_0} \left[u_n \in \left(x - \frac{\delta}{2}, x + \frac{\delta}{2} \right), w_n \in \left(y - \frac{\delta}{2}, y + \frac{\delta}{2} \right), f(u_n) + f(w_n) < f(z_0) + \frac{\varepsilon}{2} \right].$$

From (19) and (20) we obtain

$$\inf \left\{ f(u) : u \in \left(x - \frac{\delta}{2}, x + \frac{\delta}{2} \right) \right\} + \inf \left\{ f(w) : w \in \left(y - \frac{\delta}{2}, y + \frac{\delta}{2} \right) \right\} \le$$

$$\le f(z_0) + \frac{\varepsilon}{2} < \inf \left\{ f(z) : z \in (x + y - \delta, x + y + \delta) \right\} + \varepsilon.$$

Letting ε tend to zero we get

(21)
$$\inf \left\{ f(u) : u \in \left(x - \frac{\delta}{2}, x + \frac{\delta}{2} \right) \right\} + \inf \left\{ f(w) : w \in \left(y - \frac{\delta}{2}, y + \frac{\delta}{2} \right) \right\} \le$$

$$\leq \inf \left\{ f(z) : z \in (x + y - \delta, x + y + \delta) \right\} \le \varphi_f(x + y).$$

Since inequality (21) holds true for all $\delta > 0$, the function φ_f is superadditive:

(22)
$$\varphi_f(x) + \varphi_f(y) \leq \varphi_f(x+y), \ x, y \in \mathbf{R}.$$

Conjunction of conditions (18) and (22) gives the additivity of φ_f . In the same manner one may prove that condition (1) leads to superadditivity of ψ_f and condition (2) to its subadditivity.

As is well known any lower (upper) semi-continuous function is bounded below (above) on every compact interval. Hence and from Lemmas 3 and 4 as well as from the properties of the additive functions we obtain immediately the following

THEOREM 3. If $f: \mathbf{R} \to \mathbf{R}$ is a limit-additive function bounded below (above) on every interval, then the function φ_f (function ψ_f) is additive and continuous.

LEMMA 5. Let $f: \mathbb{R} \to \mathbb{R}$ be a limit-additive function. For any $x \in \mathbb{R}$ and each $k \in \mathbb{N}$ there exists a sequence of real numbers $(x_n)_{n \in \mathbb{N}}$ such that

$$x_n \xrightarrow[n \to \infty]{} x$$
 and $2^k f(x_n) \xrightarrow[n \to \infty]{} f(2^k x)$.

Proof. For k = 1 the assertion of our lemma coincides with condition (3). Suppose that this assertion holds true for any $x \in \mathbb{R}$ and some $k \in \mathbb{N}$. Therefore, for arbitrarily fixed $x \in \mathbb{R}$ there exists a sequence $(y_n)_{n \in \mathbb{N}}$ such that

$$y_n \xrightarrow[n \to \infty]{} 2x$$
 and $2^k f(y_n) \xrightarrow[n \to \infty]{} f(2^{k+1}x)$.

From (3) it follows that to each $n \in N$ there corresponds a sequence $(x_{n,m})_{m \in N}$ such that

$$x_{n,m} \xrightarrow[m \to \infty]{} \frac{y_n}{2}$$
 and $2f(x_{n,m}) \xrightarrow[m \to \infty]{} f(y_n)$.

Hence

$$\left| \bigwedge_{n \in N} \bigvee_{m'_n \in N} \bigwedge_{m \geqslant m'_n} \left| x_{n,m} - \frac{y_n}{2} \right| < \frac{1}{n}, \right|$$

$$\left| \bigwedge_{n \in N} \bigvee_{m'' \in N} \bigwedge_{m \geqslant m''} \left| 2f(x_{n,m}) - f(y_n) \right| < \frac{1}{n}.$$

Put $m_n := \max(m'_n, m''_n)$, $x_n := x_{n,m_n}$, for $n \in \mathbb{N}$. Then we get

$$\left|x_{n}-x\right| \leqslant \left|x_{n,m_{n}}-\frac{y_{n}}{2}\right| + \left|\frac{y_{n}}{2}-x\right| \leqslant \frac{1}{n} + \frac{1}{2}\left|y_{n}-2x\right| \xrightarrow[n\to\infty]{} 0$$

and

$$\left| 2^{k+1} f(x_n) - f(2^{k+1} x) \right| \le \left| 2^{k+1} f(x_{n,m_n}) - 2^k f(y_n) \right| + \left| 2^k f(y_n) - f(2^{k+1} x) \right| \le$$

$$\le 2^k \frac{1}{n} + \left| 2^k f(y_n) - f(2^{k+1} x) \right| \xrightarrow[n \to \infty]{} 0.$$

Consequently

$$x_n \xrightarrow[n \to \infty]{} x$$
 and $2^{k+1} f(x_n) \xrightarrow[n \to \infty]{} f(2^{k+1} x)$.

By induction, the assertion of our lemma holds true for any $k \in \mathbb{N}$.

LEMMA 6. Let $f: \mathbf{R} \to \mathbf{R}$ be a limit-additive function. For any $x \in \mathbf{R}$, $l, k \in \mathbf{N}$, $r := \frac{l}{2^k}$ there exists a sequence of real numbers $(x_n)_{n \in \mathbf{N}}$ such that $x_n \xrightarrow[n \to \infty]{} rx$ and $f(x_n)_{n \to \infty} rf(x)$.

Proof. Fix $x \in \mathbb{R}$, $l, k \in \mathbb{N}$, $r := \frac{l}{2^k}$. On account of Lemma 5 there exists a sequence $(y_n)_{n \in \mathbb{N}}$ with the property

$$y_n \xrightarrow[n \to \infty]{} \frac{x}{2^k}$$
 and $f(y_n) \xrightarrow[n \to \infty]{} \frac{1}{2^k} f(x)$.

Hence

$$ly_n \xrightarrow[n\to\infty]{} rx$$
 and $lf(y_n) \xrightarrow[n\to\infty]{} rf(x)$.

In view of (1), for each $n \in \mathbb{N}$ one can find a sequence $(x_{n,m})_{m \in \mathbb{N}}$ such that

$$x_{n,m} \xrightarrow[m \to \infty]{} ly_n$$
 and $f(x_{n,m}) \xrightarrow[m \to \infty]{} lf(y_n)$

which implies that

$$\bigwedge_{n \in N} \bigvee_{m'_n \in N} \bigwedge_{m \geqslant m'_n} \left| x_{n,m} - l y_n \right| < \frac{1}{n},$$

$$\bigwedge_{n \in \mathbb{N}} \bigvee_{m_n'' \in \mathbb{N}} \bigwedge_{m \geqslant m_n''} \left| f(x_{n,m}) - lf(y_n) \right| < \frac{1}{n}.$$

Setting $m_n := \max(m'_n, m''_n), x_n := x_{n,m_n}, n \in \mathbb{N}$ we obtain

$$\left|x_{n}-rx\right| \leqslant \left|x_{n,m_{n}}-ly_{n}\right|+\left|ly_{n}-rx\right| \leqslant \frac{1}{n}+\left|ly_{n}-rx\right|_{\xrightarrow{n\to\infty}} 0,$$

$$\left| f(x_n) - rf(x) \right| \le \left| f(x_{n,m_n}) - lf(y_n) \right| + \left| lf(y_n) - rf(x) \right| \le \frac{1}{n} + \left| lf(y_n) - rf(x) \right| \xrightarrow[n \to \infty]{} 0$$

which ends the proof.

LEMMA 7. Let $f: \mathbb{R} \to \mathbb{R}$ be a limit-additive function. For any $x, y \in \mathbb{R}$, $l, k \in \mathbb{N}$, $l < 2^k$, $r := \frac{l}{2^k}$ there exists a sequence $(z_n)_{n \in \mathbb{N}}$ such that

$$z_n \xrightarrow[n \to \infty]{} rx + (1-r)y \text{ and } f(z_n) \xrightarrow[n \to \infty]{} rf(x) + (1-r)f(y).$$

Proof. According to Lemma 6 there exist sequences $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ such that

$$X_n \xrightarrow[n \to \infty]{} rX, \qquad f(X_n) \xrightarrow[n \to \infty]{} rf(X),$$

 $y_n \xrightarrow[n \to \infty]{} (1-r)y, \qquad f(y_n) \xrightarrow[n \to \infty]{} (1-r)f(y).$

From (1) it follows that for each $n \in N$ there exists a sequence $(z_{n,m})_{m \in N}$ such that

$$z_{n,m} \xrightarrow[m \to \infty]{} x_n + y_n$$
, $f(z_{n,m}) \xrightarrow[m \to \infty]{} f(x_n) + f(y_n)$.

Hence

$$\bigwedge_{n \in N} \bigvee_{m'_n \in N} \bigwedge_{m \geqslant m'_n} \left| z_{n,m} - x_n - y_n \right| < \frac{1}{n},$$

$$\bigwedge_{n \in N} \bigvee_{m''_n \in N} \bigwedge_{m \geqslant m''_n} \left| f(z_{n,m}) - f(x_n) - f(y_n) \right| < \frac{1}{n}.$$

Putting $m_n := \max(m'_n, m''_n), z_n := z_{n,m_n}$, for $n \in \mathbb{N}$ we get

$$\begin{aligned} \left| z_{n} - rx - (1 - r) y \right| &\leq \left| z_{n, m_{n}} - x_{n} - y_{n} \right| + \left| x_{n} - rx \right| + \left| y_{n} - (1 - r) y \right| \leq \\ &\leq \frac{1}{n} + \left| x_{n} - rx \right| + \left| y_{n} - (1 - r) y \right|_{n \to \infty} + 0, \\ \left| f(z_{n}) - rf(x) - (1 - r) f(y) \right| &\leq \left| f(z_{n, m_{n}}) - f(x_{n}) - f(y_{n}) \right| + \left| f(x_{n}) - rf(x) \right| + \\ &+ \left| f(y_{n}) - (1 - r) f(y) \right| \leq \frac{1}{n} + \left| f(x_{n}) - rf(x) \right| + \left| f(y_{n}) - (1 - r) f(y) \right|_{n \to \infty} + 0. \end{aligned}$$

which completes the proof.

Recall that by the *graph* of a function $f: \mathbf{R} \to \mathbf{R}$ we mean the set $\{(x, y) \in \mathbf{R}^2 : y = f(x)\}$. We consider the plane \mathbf{R}^2 with its natural topology.

THEOREM 4. If $f: \mathbf{R} \to \mathbf{R}$ is a limit-additive function, then the following four cases are the only possible:

- (i) f is an additive and continuous function;
- (ii) f is a function with the dense graph in \mathbb{R}^2 ;
- (iii) there exists an additive and continuous function $\varphi_f: \mathbf{R} \to \mathbf{R}$ such that the graph of f is contained and dense in the half-plane $\{(x, y) \in \mathbf{R}^2 : y \geqslant \varphi_f(x)\}$;
- (iv) there exists an additive and continuous function $\psi_f: \mathbf{R} \to \mathbf{R}$ such that graph of f is contained and dense in the half-plane $\{(x, y) \in \mathbf{R}^2: y \leq \psi_f(x)\}$. Conversely, every function fulfilling one of the conditions (i)—(iv) is limit-additive.

Proof. Suppose $f: \mathbb{R} \to \mathbb{R}$ to be limit-additive. In virtue of the previous theorems and lemmas the following cases are the only possible:

- (i) f is an additive and continuous function;
- (ii') the restriction of f to any interval is unbounded from above and from below;
- (iii') f is a function bounded from below and unbounded from above on every interval;
- (iv') f is a function bounded from above and unbounded from below on every interval.

Suppose that (ii') holds and choose an arbitrary rectangle $(a, b) \times (c, d)$. Since the set $A := \left\{ r = \frac{l}{2^k} : l, k \in \mathbb{N}, l < 2^k \right\}$ is dense in the interval (0, 1), we deduce that

$$\bigvee_{r \in A} rf(x) + (1-r) f(y) \in (c, d)$$

provided f(x) < c, f(y) > d; the existence of such a pair $(x, y) \in (a, b)^2$ results from our assumption. Let $(z_n)_{n \in \mathbb{N}}$ be such a sequence that

$$z_n \xrightarrow[n\to\infty]{} rx + (1-r)y$$
 and $f(z_n) \xrightarrow[n\to\infty]{} rf(x) + (1-r)f(y)$.

Hence, for sufficiently large $n \in \mathbb{N}$, we have $(z_n, f(z_n)) \in (a, b) \times (c, d)$. Now, supppose that (iii') holds and let $\varphi_f : \mathbb{R} \to \mathbb{R}$ denote the function defined by (12); φ_f is additive and continuous. Moreover, the definition of φ_f yields $f(x) \geqslant \varphi_f(x)$, for $x \in \mathbb{R}$. Suppose that $(a, b) \times (c, d) \subset \{(x, y) \in \mathbb{R}^2 : y > \varphi_f(x)\}$. Then

$$c > \varphi_f\left(\frac{a+b}{2}\right) \geqslant \inf\{f(x) : x \in (a,b)\}$$

whence

$$\bigvee_{x \in (a,b)} f(x) < c.$$

Since f is not upper-bounded on (a, b), one can find a $y \in (a, b)$ such that f(y) > d. Proceeding further in the same way as in case (ii') we prove that there exists a $z \in (a, b)$ such that $f(z) \in (c, d)$. Consequently, condition (iii) holds true. Using the properties of the function ψ_f defined by (13) one can show that (iv') implies (iv). It is easy to check the converse: every function $f: \mathbf{R} \to \mathbf{R}$ fulfilling one of the conditions (i)—(iv) is limit-additive.

Our last theorem gives full description of the class of limit-additive functions.

REFERENCES

- [1] J. ACZÉL, Lectures on functional equations and their applications, Academic Press, New York and London, 1966.
- [2] S. ŁOJASIEWICZ, Wstęp do teorii funkcji rzeczywistych, PWN, Warszawa, 1976.
- [3] B. SZ-NAGY, Introduction to real functions and orthogonal expansions, Akadémiai Kiado, Budapest, 1964.