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Functions Preserving the Biadditivity

Rados�law �Lukasik and Pawe�l Wójcik

Abstract. In this paper we consider the generalization of the orthogonality
equation. Let S be a semigroup, and let H,X be abelian groups. For two
given biadditive functions A : S2 → X, B : H2 → X and for two unknown
mappings f, g : S → H the functional equation

B(f(x), g(y)) = A(x, y)

will be solved under quite natural assumptions. This extends the well-
known characterization of the linear isometry.

Mathematics Subject Classification. Primary 39B52, 20M15; Secondary
20K25, 20K30.
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1. Introduction

Let H,K be unitary spaces. It is easy to check that, if f : H → K sat-
isfies 〈f(x)|f(y)〉 = 〈x|y〉, then f is an linear isometry. The above equa-
tion was generalized in normed spaces X,Y by considering a norm derivative
ρ′
+(x, y):=‖x‖ · lim

t→0+

‖x+ty‖−‖x‖
t instead of inner product, i.e.

ρ′
+(f(x), f(y)) = ρ′

+(x, y), x, y ∈ X, (1)

with an unknown function f : X → Y . Note that if the norm comes from an
inner product 〈·, ·〉, we obtain ρ′

+(x, y) = 〈x|y〉. Another generalization of the
orthogonality equation in Hilbert spaces H,K is to look for the solutions of

〈f(x)|g(y)〉 = 〈x|y〉, x, y ∈ H, (2)
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where f, g : H → K are unknown functions. Solutions of (1) and (2) can be
found in the authors’ previous papers [3], [4], [6]. Another generalization of
(2) we can find in the paper [5] where the author studies the equation

〈f(x)|g(y∗)〉 = 〈x|y∗〉, x ∈ E, y∗ ∈ F ∗,

where f : E → F , g : E∗ → F ∗, E,F are Banach spaces, E∗, F ∗ are spaces
dual to E and F respectively, and 〈a|ϕ〉:=ϕ(a).

In this paper we will give a natural generalization of such functional
equations in the case of abelian groups. In this case we will consider biadditive
mappings instead of inner products.

2. Preliminaries

We start by recalling here some notions and results from the theory of groups
and semigroups (see [2, Appendix A]).

Definition 1. A group is torsion if every element has the finite order.
A group is torsion-free if every element except the identity has the infinite

order.

Definition 2. A semigroup (H,+) is said to be divisible if

∀x∈H ∀n∈N ∃y∈H x = ny.

Let p be a prime number. The Prüfer p-group is the unique p-group in
which every element has p different p-th roots. Alternatively we can write
Z(p∞) = Z[1/p]/Z, where Z[1/p] = { m

pn : m ∈ Z, n ∈ N0}, N0:=N ∪ {0}. It is
known fact that Prüfer p-groups are divisible and torsion.

Definition 3. Let Ai, i ∈ I, be groups. The direct sum
⊕

i∈I

Ai is the set of tuples

(ai)i∈I ∈ ∏

i∈I

Ai such that ai 
= 0 for finitely many i ∈ I.

Remark 1. There exist an abelian divisible group G and divisible subgroups
D,K of G such that D ∩ K is not divisible.

Lemma 1. Let G be an abelian group, D,K be divisible subgroups of G. Then
D + K is divisible.

Proof. Let x ∈ D, y ∈ K, n ∈ N. Then there exist u ∈ D and v ∈ K such that
x = nu and y = nv. Hence x + y = n(u + v). �

Theorem 1. Let G be an abelian divisible group, D1,D2 be divisible subgroups
of G and D1 ∩D2 be divisible. Then there exist divisible groups K0,K1,K2,K3

such that G =
3⊕

i=0

Ki, D2 = K0 ⊕ K1, D1 = K0 ⊕ K2.
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Proof. Let K0 = D1 ∩ D2. Then there exist divisible groups K1,K2 such that
D2 = K0 ⊕K1, D1 = K0 ⊕K2. We show that K1 ∩K2 = {0}. Let x ∈ K1 ∩K2,
then x ∈ D1 ∩ D2 = K0. Hence x = 0. Finally, there exists a divisible group

K3 such that G =
(

2⊕

i=0

Ki

)

⊕ K3. �

After these preparations we may now pass to multi-additive functions.
By Perm(n) we denote the set of all bijections of the set {1, . . . , n}.

Definition 4. Let S be a semigroup, H be a group, n ∈ N. The function
A : Sn → H is called n-additive if

A(x1, . . . , xi−1, xi + y, xi+1, . . . , xn)

= A(x1, . . . , xn) + A(x1, . . . , xi−1, y, xi+1, . . . , xn),

for all y, x1, . . . , xn ∈ S and i ∈ {1, . . . , n}.
Moreover, A is called symmetric if

A(x1, . . . , xn) = An(xσ(1), . . . , xσ(n))

for all x1, . . . , xn ∈ S and σ ∈ Perm(n).

Lemma 2. Let H,X be groups, H be divisible. Let further B : H2 → X be a
biadditive function. Then for every element x ∈ H of the finite order we have

B(x, y) = B(y, x) = 0, y ∈ H.

Remark 2. The previous lemma can be easily extended to the n-additive func-
tions for n ≥ 2.

We use following two lemmas to show the existence of some biadditive
map from Q

2 to Z(2∞).

Lemma 3. Let k ∈ N, l ∈ 2N − 1. Then there exists exactly one number
ϕ(2k, l) ∈ {1, 3, . . . 2k − 1} such that lϕ(2k, l) ≡ 1(mod2k).

Proof. Let l(2i − 1) ≡ ri(mod2k), 1 ≤ ri < 2k for i ∈ {1, 2, . . . 2k−1} . We
observe that ri ∈ 2N − 1 and ri 
= rj for i 
= j. Indeed, if ri = rj , then
l(2i− 2j) ≡ 0(mod2k) which means that i = j. Hence there exists exactly one
j such that l(2j − 1) ≡ 1(mod2k). �

Lemma 4. Let k,m ∈ N, l, n ∈ 2N − 1. Then

nϕ(2k, ln) ≡ ϕ(2k, l)(mod2k),

ϕ(2k+m, l) ≡ ϕ(2k, l)(mod2k).

Proof. We have

l
(
nϕ(2k, ln) − ϕ(2k, l)

)
= lnϕ(2k, ln) − lϕ(2k, l) ≡ 0(mod2k),
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lϕ(2k+m, l) = 1 + c2k+m = 1 + (c2m)2k ≡ 1(mod2k) ≡ lϕ(2k, l)(mod2k),

for some c ∈ N0 so

l
(
ϕ(2k+m, l) − ϕ(2k, l)

)
≡ 0(mod2k),

which means that

ϕ(2k+m, l) − ϕ(2k, l) ≡ 0(mod2k).

Theorem 2. There exists a biadditive and symmetric function C : Q
2 → Z(2∞)

such that C(1, 1) = 1
2 + Z.

Proof. A greatest common divisor in this proof will be denoted by GCD. Let
m, k ∈ Z, n, l ∈ N, GCD(m,n) = GCD(k, l) = 1. Let further sn, sl ∈ N0 be
such that 2sn |n, 2sn+1 
 |l, 2sl |l, 2sl+1 
 |l. We define C by the formula

C

(
m

n
,
k

l

)

:=mk
ϕ

(
2sn+sl+1, nl

2sn+sl

)

2sn+sl+1
+ Z.

It is easy to see that C is symmetric, so we only show that C is additive in
the first variable. Let p ∈ Z, q ∈ N, GCD(p, q) = 1, d = GCD(mq + np, nq).
Let further sq, sd ∈ N0 be such that 2sq |q, 2sq+1 
 |q and 2sd |d, 2sd+1 
 |d. Using
Lemma 4 we get

C

(
m

n
+

p

q
,
k

l

)

= C

(
mq + np

nq
,
k

l

)

= C

(
mq+np

d
nq
d

,
k

l

)

=
(

mq + np

d
· k

) ϕ
(
2sn+sq−sd+sl+1, nql

d2sn+sq−sd+sl

)

2sn+sq−sd+sl+1
+ Z

=
(

mq + np

d
· k

d

2sd

) ϕ
(
2sn+sq−sd+sl+1, nql

d2sn+sq−sd+sl
· d

2sd

)

2sn+sq−sd+sl+1
+ Z

=
(

mq + np

d
· k

d

2sd

) ϕ
(
2sn+sq−sd+sl+1, nql

2sn+sq+sl

)

2sn+sq−sd+sl+1
+ Z

=
(

mq + np

d
· k

d

2sd

) ϕ
(
2sn+sq+sl+1, nql

2sn+sq+sl

)

2sn+sq−sd+sl+1
+ Z

= (mq + np)k
ϕ

(
2sn+sq+sl+1, nql

2sn+sq+sl

)

2sn+sq+sl+1
+ Z

= (mqk)
ϕ

(
2sn+sq+sl+1, nql

2sn+sq+sl

)

2sn+sq+sl+1
+ (npk)

ϕ
(
2sn+sq+sl+1, nql

2sq+sn+sl

)

2sn+sq+sl+1
+ Z

= (mk2sq
q

2sq
)
ϕ

(
2sn+sq+sl+1, nl

2sn+sl
· q

2sq

)

2sn+sq+sl+1
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+
(
pk2sn

n

2sn

) ϕ
(
2sn+sq+sl+1, ql

2sq+sl
· n

2sn

)

2sn+sq+sl+1
+ Z

= (mk)
ϕ

(
2sn+sq+sl+1, nl

2sn+sl

)

2sn+sl+1
+ (pk)

ϕ
(
2sn+sq+sl+1, ql

2sq+sl

)

2sq+sl+1
+ Z

= (mk)
ϕ

(
2sn+sl+1, nl

2sn+sl

)

2sn+sl+1
+ Z + (pk)

ϕ
(
2sq+sl+1, ql

2sq+sl

)

2sq+sl+1
+ Z

= C

(
m

n
,
k

l

)

+ C

(
p

q
,
k

l

)

.

The proof is complete. �

Now we introduce some theory of the adjoint operator on groups.

Definition 5. Let S,H,X be groups, A : S2 → X, B : H2 → X be biadditive
functions. Let further T : S → H and

D(T ∗) = {v ∈ H : ∃y∈S∀x∈S B(T (x), v) = A(x, y)}.

A function T ∗ : D(T ∗) → S is called a (B,A)-adjoint operator (to T ) if and
only if

B(T (x), v) = A(x, T ∗(v)), x ∈ S, v ∈ D(T ∗).

Lemma 5. Let S,H,X be groups, A : S2 → X, B : H2 → X be biadditive
functions. Let further T : S → H and T ∗ : D(T ∗) → S be a (B,A)-adjoint
operator to T ,

SAR := {y ∈ S : ∀x∈S A(x, y) = 0}, (3)

SALT ∗ := {x ∈ S : ∀y∈im T ∗ A(x, y) = 0}, (4)

HBTR := 3{v ∈ H : ∀u∈im T B(u, v) = 0}, (5)

HBLD∗ := {u ∈ H : ∀v∈D(T ∗) B(u, v) = 0}. (6)

Then
1. D(T ∗) is a group, SAR, SALT ∗ are normal subgroups of S, HBTR, HBLD∗

are normal subgroups of H. Moreover in the case when X is torsion-free,
if H is divisible, then HBTR, HBLD∗ are divisible, if S is divisible, then
SAR, SALT ∗ are divisible, if S,H are divisible, then D(T ∗) is divisible;

2. ∀x,y∈S T (x + y) − T (y) − T (x) ∈ HBLD∗ ;
3. ∀x,y∈S x − y ∈ SALT ∗ ⇔ T (x) − T (y) ∈ HBLD∗ ;
4. ∀u,v∈D(T ∗) T ∗(u + v) − T ∗(v) − T ∗(u) ∈ SAR;
5. ∀u,v∈D(T ∗) u − v ∈ HBTR ⇔ T ∗(u) − T ∗(v) ∈ SAR;
6. HBTR ⊂ D(T ∗);
7. Assume that H is abelian and divisible. Let K be a subgroup of H such

that H = K ⊕ HBTR, κ : S → S/SAR be a canonical homomorphism.
Then D(T ∗) ∩ K is a group and T̃ ∗:=κ ◦ T ∗ : D(T ∗) ∩ K → im T ∗/SAR

is an isomorphism.
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Proof. 1. Since kernel of any homomorphism is a normal subgroup, then
SAR, SALT ∗ are normal subgroups of S, HBTR, HBLD∗ are normal sub-
groups of H.
Moreover, if S is divisible and X is torsion-free, then for x ∈ SALT ∗ and
n ∈ N there exists z ∈ S such that nz = x. We have

nA(z, T ∗(u)) = A(nz, T ∗(u)) = A(x, T ∗(u)) = 0, u ∈ D(T ∗).

Since X is torsion-free, then z ∈ SALT ∗ .
2. Let x, y ∈ S, v ∈ D(T ∗). Then

B(T (x + y) − T (y) − T (x), v)

= B(T (x + y), v) − B(T (y), v) − B(T (x), v)

= A(x + y, T ∗(v)) − A(y, T ∗(v)) − A(x, T ∗(v))

= A(x + y − y − x, T ∗(v)) = A(0, T ∗(v)) = 0,

which shows that T (x + y) − T (y) − T (x) ∈ HBLD∗ .
3. Let x, y ∈ S, v ∈ D(T ∗). Then

B(T (x) − T (y), v) = B(T (x), v) − B(T (y), v)

= A(x, T ∗(v)) − A(y, T ∗(v)) = A(x − y, T ∗(v)),

which shows that x − y ∈ SALT ∗ ⇔ T (x) − T (y) ∈ HBLD∗ .
4. Let u, v ∈ D(T ∗), x ∈ S.

A(x, T ∗(u + v) − T ∗(v) − T ∗(u))

= A(x, T ∗(u + v)) − A(x, T ∗(v)) − A(x, T ∗(u))

= B(T (x), u + v) − B(T (x), v) − B(T (x), u)

= B(T (x), u + v − v − u) = B(T (x), 0) = 0,

which shows that T ∗(u + v) − T ∗(v) − T ∗(u) ∈ SAR.
5. Let u, v ∈ D(T ∗), x ∈ S. Then

B(T (x), u − v) = B(T (x), u) − B(T (x), v) = A(x, T ∗(u)) − A(x, T ∗(v))

= A(x, T ∗(u) − T ∗(v)),

which shows that u − v ∈ HBTR ⇔ T ∗(u) − T ∗(v) ∈ SAR.
6. Let u ∈ HBTR and y ∈ SAR. Then

B(T (x), u) = 0 = A(x, y), x ∈ S,

which shows that u ∈ D(T ∗).
7. Let u, v ∈ D(T ∗). Then using property 4 we obtain

(T ∗(u) + SAR) + (T ∗(v) + SAR) = T ∗(u + v) + SAR,

(T ∗(u) + SAR) + (T ∗(−u) + SAR) = T ∗(0) + SAR = SAR,

so im T ∗/SAR is a group. Using property 4 we obtain that T̃ ∗ is a ho-
momorphism, from 5 we get that T̃ ∗ is injective. Let y = T ∗(u) for some
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u ∈ D(T ∗). Since H = K ⊕ HBTR, then u = u1 + u2, where u1 ∈ K,
u2 ∈ HBTR. From 6 we have u1 = u − u2 ∈ D(T ∗). Using property 5 we
get T ∗(u) − T ∗(u1) ∈ SAR, so

T̃ ∗(u1) = κ(T ∗(u1)) = κ(T ∗(u)) = κ(y),

which shows that T̃ ∗ is surjective.
�

Using property 7 from Lemma 5 we can accept the following

Definition 6. Let S,H,X be groups, H be abelian and divisible, A : S2 → X,
B : H2 → X be biadditive functions. Let further T : S → H and T ∗ : D(T ∗) →
S be a (B,A)-adjoint operator to T , im T ∗/SAR = S/SAR, K be a subgroup of
H such that H = K ⊕HBTR. We define the function (T ∗)−1 : S → D(T ∗)∩K
by the formula

(T ∗)−1(x) = (T̃ ∗)−1(κ(x)), x ∈ S. (7)

Remark 3. The function (T ∗)−1 from the above definition is additive and
im (T ∗)−1 = D(T ∗) ∩ K.

3. Main results

Assume that (S,+) is a semigroup, (H,+) is a divisible abelian group, (X,+)
is a torsion-free group, A : S2 → X, B : H2 → X are biadditive functions.

Theorem 3. Let f, g : S → H. Then (f, g) satisfies

B(f(x), g(y)) = A(x, y), x, y ∈ S, (8)

if and only if there exist divisible groups H0,H1,H2,H3, additive functions
fa : S → H2 ⊕H3, ga : S → H1 ⊕H3 and functions fr : S → H0 ⊕H1, gr : S →
H0 ⊕ H2 such that

H =
3⊕

i=0

Hi and H1,H2,H3 are torsion-free, (9)

f = fa + fr, g = ga + gr, (10)

(H0 ⊕ H1) × (H0 ⊕ H2) ⊂ B−1({0}), (11)

im fa × (H0 ⊕ H2) ⊂ B−1({0}), (12)

(H0 ⊕ H1) × im ga ⊂ B−1({0}), (13)

B(fa(x), ga(y)) = A(x, y), x, y ∈ S. (14)

Moreover, we can assume that H0 ⊕ H2 = {v ∈ H : ∀u∈im f B(u, v) = 0}.
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Proof. (⇒) Let

D1 := {v ∈ H : ∀u∈im f B(u, v) = 0},

D2 := {u ∈ H : ∀v∈im g+D1 B(u, v) = 0}.

It is easy to see that above sets are groups. We show that D1,D2,D1 ∩D2 are
divisible.

Let v ∈ D1 and n ∈ N. Then there exists w ∈ H such that v = nw. For
every u ∈ im f we have

nB(u,w) = B(u, nw) = B(u, v) = 0,

and since X is torsion-free, then w ∈ D1.
Let u ∈ D2 and n ∈ N. Then there exists w ∈ H such that u = nw. For

every v ∈ im g + D1 we have

nB(w, v) = B(nw, v) = B(u, v) = 0,

and since X is torsion-free, then w ∈ D2.
Let x ∈ D1 ∩ D2 and n ∈ N. Then there exists z ∈ H such that x = nz.

Let u ∈ im f and v ∈ im g + D1. We have

nB(u, z) = B(u, nz) = B(u, x) = 0,

nB(z, v) = B(nz, v) = B(x, v) = 0,

and since X is torsion-free, then z ∈ D1 ∩ D2.
In view of Theorem 1 there exist divisible groups H0,H1,H2,H3 such

that D2 = H0 ⊕ H1, D1 = H0 ⊕ H2 and H =
3⊕

i=0

Hi. In view of Lemma 2

every element of H of the finite order belongs to D1 ∩D2 = H0, so H1,H2,H3

are torsion-free. Let f = f0 + f1 + f2 + f3, g = g0 + g1 + g2 + g3, where
fi, gi : S → Hi for i ∈ {0, 1, 2, 3}. Let further fa:=f2 + f3, ga:=g1 + g3. Hence
fr:=(f − fa) : S → H0 ⊕ H1 and gr:=(g − ga) : S → H0 ⊕ H2.

We observe also that

(H0 ⊕ H1) × (H0 ⊕ H2) = D2 × D1 ⊂ B−1({0}),

im fa × (H0 ⊕ H2) ⊂ (im f + D2) × D1 ⊂ B−1({0}),

(H0 ⊕ H1) × im ga ⊂ D2 × (im g + D1) ⊂ B−1({0}).

Now we show that fa and ga are additive. Let x, y ∈ S, v ∈ D1. Then

B(fa(x + y) − fa(y) − fa(x), g(z) + v) = B(f(x + y) − f(y) − f(x), g(z))

= B(f(x + y), g(z)) − B(f(y), g(z)) − B(f(x), g(z))

= A(x + y, z) − A(y, z) − A(x, z) = 0, z ∈ S,
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which means that fa(x+y)−fa(y)−fa(x) ∈ D2, so fa(x+y) = fa(x)+fa(y).
Similarly for ga we have

B(f(z), ga(x + y) − ga(y) − ga(x)) = B(f(z), g(x + y) − g(y) − g(x))

= B(f(z), g(x + y)) − B(f(z), g(y)) − B(f(z), g(x))

= A(z, x + y) − A(z, y) − A(z, x) = 0, z ∈ S,

which means that ga(x+y)−ga(x)−ga(y) ∈ D1, so ga(x+y) = ga(x)+ga(y).
Moreover, using (11)–(13) we have

B(fa(x), ga(y)) = B(fa(x), ga(y)) + B(fr(x), ga(y))

+ B(fa(x), gr(y)) + B(fr(x), gr(y))

= B(fa(x) + fr(x), ga(y) + gr(y))

= B(f(x), g(y)) = A(x, y), x, y ∈ S.

(⇐) Assume that there exist divisible groups H0,H1,H2,H3, additive func-
tions fa : S → H2 ⊕ H3, ga : S → H1 ⊕ H3 and functions fr : S → H0 ⊕ H1,
gr : S → H0 ⊕ H2 such that conditions (9)–(14) holds. Then

B(f(x), g(y)) = B(fa(x) + fr(x), ga(y) + gr(y))

= B(fa(x), ga(y)) + B(fa(x), gr(y))

+ B(fr(x), ga(y)) + B(fr(x), gr(y))

= B(fa(x), ga(y)) = A(x, y), x, y ∈ S.

�

The following example shows that we cannot drop the assumption that
X is torsion-free in the previous theorem.

Example 1. Let S = Z
2, H = Q

2, X = Q × Z(2∞), f, g : S → H be functions
given by formulas

f(n,m) =

{
(n, 1) n ∈ Z, m ∈ 2Z + 1
(n, 2|m|+1) n ∈ Z, m ∈ 2Z

,

g(n,m) = (n,m), n,m ∈ Z.

Let further B : H2 → X, A : S2 → X be functions given by formulas

B
(
(n,m), (p, q)

)
= (np,C(m, q)), n,m, p, q ∈ Q,

A(x, y) = B(f(x), g(y)), x, y ∈ S,

where C : Q
2 → Z(2∞) is a biadditive and symmetric function such that

C(1, 1) = 1
2 + Z (see Theorem 2).

It is easy to see that g is additive, B is biadditive and symmetric.
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Since for all x, y ∈ S we have f(x+ y)− f(x)− f(y) ∈ {0}× 2Z, then for
every z = (z1, z2) ∈ S there is an n ∈ Z such that

A(x + y, z) − A(x, z) − A(y, z)

= B(f(x + y), z) − B(f(x), z) − B(f(y), z)

= B(f(x + y) − f(x) − f(y), z) = (0 · z1, C(2n, z2))

= (0, 2nz2C(1, 1)) =
(

0, 2nz2
1
2

+ Z

)

= (0, Z).

Hence A is biadditive and (f, g) solves (8).
Suppose that there exist divisible groups H0,H1,H2,H3, additive func-

tions fa : S → H2 ⊕ H3, ga : S → H1 ⊕ H3 and functions fr : S → H0 ⊕ H1,
gr : S → H0 ⊕ H2 such that conditions (9)–(13) holds. Since

Z
2 = im g ⊂ im ga + (H0 ⊕ H2),

then from (11), (13) we obtain

(H0 ⊕ H1) × Z
2 ⊂ B−1({(0, Z)}).

Let (p, q) ∈ H0 ⊕ H1. Then there exists k ∈ N such that (kp, kq) ∈ Z
2. Hence,

since (kp, kq) ∈ H0 ⊕ H1, we get

(0, Z) = B
(
(kp, kq), (1, 1)

)
=

(

kp,
kq

2
+ Z

)

,

so p = 0 and kq ∈ 2Z. On the other hand, if q 
= 0 and (0, kq) ∈ H0 ⊕ H1,
then, by Lemma 1, (0, 1) ∈ H0 ⊕ H1. Consequently,

(0, Z) = B
(
(0, 1), (0, 1)

)
=

(

0,
1
2

+ Z

)

, (15)

a contradiction. Thus H0 = H1 = {0} and fa = f , but f is not additive, which
give us a contradiction.

In the theorem below we investigate the preservation of the biadditiv-
ity by only one function, namely we solve the following generalization of the
orthogonality equation.

Theorem 4. Let f : S → H. Then f satisfies

B(f(x), f(y)) = A(x, y), x, y ∈ S, (16)

if and only if there exist divisible groups H0,H1, an additive function Fa : S →
H1, and a function Fr : S → H0 such that

H = H0 ⊕ H1 and H1 is torsion-free, (17)

f = Fa + Fr, (18)

H0 × (H0 ⊕ im Fa) ⊂ B−1({0}), (19)

(H0 ⊕ im Fa) × H0 ⊂ B−1({0}), (20)
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B(Fa(x), Fa(y)) = A(x, y), x, y ∈ S. (21)

Moreover, we can assume that H0 ⊂ {v ∈ H : ∀u∈im f B(u, v) = 0}.

Proof. (⇒) In view of Theorem 3 there exist divisible groups K0,K1,K2,K3,
additive functions fa : S → K2 ⊕K3, f̃a : S → K1 ⊕K3 and functions fr : S →
K0 ⊕ K1, f̃r : S → K0 ⊕ K2 such that

H =
3⊕

i=0

Ki and K1,K2,K3 are torsion-free,

f = fa + fr = f̃a + f̃r,

(K0 ⊕ K1) × (K0 ⊕ K2) ⊂ B−1({0}),

im fa × (K0 ⊕ K2) ⊂ B−1({0}),

(K0 ⊕ K1) × im f̃a ⊂ B−1({0}),

B(fa(x), f̃a(y)) = A(x, y), x, y ∈ S.

Let f = f0+f1+f2+f3, where fi : S → Ki for i ∈ {0, 1, 2, 3}. Then fa = f2+f3

and f̃a = f1 + f3. Hence f1, f2, f3 are additive. Let H0 = K0, H1 =
3⊕

i=1

Ki,

Fa = f1 + f2 + f3, Fr = f0. Then Fa : S → H1 is additive. We have also

(H0 ⊕ K1) × H0 ⊂ (K0 ⊕ K1) × (K0 ⊕ K2) ⊂ B−1({0}),

im fa × H0 ⊂ im fa × (K0 ⊕ K2) ⊂ B−1({0}),

H0 × (H0 ⊕ K2) ⊂ (K0 ⊕ K1) × (K0 ⊕ K2) ⊂ B−1({0}),

H0 × im f̃a ⊂ (K0 ⊕ K1) × im f̃a ⊂ B−1({0}),

and since B is biadditive we obtain that

(H0 ⊕ im Fa) × H0 ⊂ (im fa ⊕ H0 ⊕ K1) × H0 ⊂ B−1({0}),

H0 × (H0 ⊕ im Fa) ⊂ H0 × (im f̃a ⊕ H0 ⊕ K2) ⊂ B−1({0}).

Consequently

B(Fa(x), Fa(y)) = B(Fa(x), Fa(y)) + B(Fa(x), Fr(y)) + B(Fr(x), Fa(y))

+ B(Fr(x), Fr(y))

= B(Fa(x) + Fr(x), Fa(y) + Fr(y)) = A(x, y), x, y ∈ S.

(⇐) Assume that there exist divisible groups H0,H1, an additive function
Fa : S → H1, and a function Fr : S → H0 such that conditions (17)–(21)
holds. Then
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B(f(x), f(y)) = B(Fa(x) + Fr(x), Fa(y) + Fr(y))

= B(Fa(x), Fa(y)) + B(Fa(x), Fr(y)) + B(Fr(x), Fa(y))

+ B(Fr(x), Fr(y))

= B(Fa(x), Fa(y)) = A(x, y), x, y ∈ S.

�

It is a natural question whether given a function f there exists a function
g such that (f, g) satisfies equation (8). The theorem below give us an answer
for this question.

Theorem 5. Assume that S is a group, f, g : S → H. Then (f, g) satisfies equa-
tion (8) if and only if there exist divisible groups H0,H1,H2,H3, an additive
function T : S → H2 ⊕H3, functions fr : S → H0 ⊕H1, gr : S → H0 ⊕H2 such
that

H =
3⊕

i=0

Hi and H1,H2,H3 are torsion-free, (22)

im T ∗/SAR = S/SAR, (23)

f = T + fr, g = (T ∗)−1 + gr, (24)

(H0 ⊕ H1) × (H0 ⊕ H2) ⊂ B−1({0}), (25)

im T × (H0 ⊕ H2) ⊂ B−1({0}), (26)

(H0 ⊕ H1) × (D(T ∗) ∩ K) ⊂ B−1({0}), (27)

where T ∗ : D(T ∗) → S is a (B,A)-adjoint operator to T , SAR is given by
(3), (T ∗)−1 is defined by the formula (7) and K is a subgroup of H such that
HBTR ⊕ K = H, where HBTR is given by (5).

Proof. (⇒) Assume that (f, g) satisfies equation (8). Then in view of Theorem
3 there exist divisible groups H0,H1,H2,H3, additive functions fa : S → H2 ⊕
H3, ga : S → H1 ⊕ H3 and functions fr : S → H0 ⊕ H1, gr : S → H0 ⊕ H2

which satisfy conditions (9)–(14). Let T = fa. In view of (14) im ga ⊂ D(T ∗).
Let y ∈ S. We have

A(x, y) = B(T (x), ga(y)) = A(x, T ∗(ga(y))), x ∈ S,

so y − T ∗(ga(y)) ∈ SAR and κ(y) = T̃ ∗(ga(y)). Hence S/SAR = im T ∗/SAR

and

(T ∗)−1(y) = (T̃ ∗)−1(κ(y)) = (T̃ ∗)−1(T̃ ∗(ga(y))) = ga(y).

In view of Remark 3 and (13) we get

(H0 ⊕ H1) × (D(T ∗) ∩ K) = (H0 ⊕ H1) × im (T ∗)−1

= (H0 ⊕ H1) × im ga ⊂ B−1({0}).

Conditions (25), (26) are exactly the same as (11) and (12).
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(⇐) Assume that there exist divisible groups H0,H1,H2,H3, an additive
function T : S → H2 ⊕ H3, functions fr : S → H0 ⊕ H1, gr : S → H0 ⊕ H2

which satisfy conditions (22)–(27).
For y ∈ S we have

κ(T ∗((T ∗)−1(y))) = T̃ ∗((T̃ ∗)−1(κ(y))) = κ(y),

which means that y − T ∗((T ∗)−1(y)) ∈ SAR. From Remark 3 we get

(H0 ⊕ H1) × im (T ∗)−1 = (H0 ⊕ H1) × (D(T ∗) ∩ K) ⊂ B−1({0}).

We have

A(x, y) = A(x, y − T ∗((T ∗)−1(y))) + A(x, T ∗((T ∗)−1(y)))

= 0 + B(T (x), (T ∗)−1(y)) = B(T (x), (T ∗)−1(y))

+ B(T (x), gr(y)) + B(fr(x), (T ∗)−1(y)) + B(fr(x), gr(y))

= B(T (x) + fr(x), (T ∗)−1(y) + gr(y)) = B(f(x), g(y)), x, y ∈ S.

�

The following result shows us for which f defined on a group (16) holds.

Theorem 6. Assume that S is a group, f : S → H. Then f satisfies (16) if and
only if there exist divisible groups H0,H1, an additive function T : S → H1,
and a function Fr : S → H0 such that

H = H0 ⊕ H1 and H1 is torsion-free, (28)

im T ⊂ D(T ∗), ∀y∈S (T ∗ ◦ T )(y) − y ∈ SAR, (29)

f = T + Fr, (30)

H0 × (H0 ⊕ im T ) ⊂ B−1({0}), (31)

(H0 ⊕ im T ) × H0 ⊂ B−1({0}), (32)

where T ∗ : D(T ∗) → S is a (B,A)-adjoint operator to T , SAR is given by (3).

Proof. (⇒) Assume that f satisfies (16). In view of Theorem 4 there exist
divisible groups H0,H1, an additive function Fa : S → H1, a function Fr : S →
H0 which satisfy conditions (17)–(21). Let T = Fa. We notice that conditions
(28), (30)–(32) hold. From (21) we obtain that im T ⊂ D(T ∗) and for y ∈ S
we have

A(x, T ∗(T (y)) − y) = A(x, T ∗(T (y))) − A(x, y)

= B(T (x), T (y)) − B(T (x), T (y)) = 0, x ∈ S,

which means that T ∗(T (y)) − y ∈ SAR.
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(⇐) Assume that there exist divisible groups H0,H1, an additive function
T : S → H1, and a function Fr : S → H0 which satisfy conditions (28)–(32).
We have

B(f(x), f(y)) = B(T (x) + Fr(x), T (y) + Fr(y))

= B(T (x), T (y)) + B(T (x), Fr(y)) + B(Fr(x), T (y) + Fr(y))

= B(T (x), T (y)) = A(x, T ∗(T (y)))

= A(x, T ∗(T (y)) − y) + A(x, y) = A(x, y), x, y ∈ S.

�

4. Applications

In this part of the article we would like to present some applications of the
main results from Section 3 in particular for normed spaces. It is helpful to
recall (see [1, Theorem 2.1.1 and Remark 2.1.1]) that the following properties
for a real normed space (X, ‖·‖) are true:

If X is real and smooth, then ρ′
+(x, ·) is linear for all x ∈ X. (33)

If X is real and smooth, then ρ′
+(·, y) is homogeneous for all y ∈ X. (34)

|ρ′
+(x, y)| ≤ ‖x‖·‖y‖ and ρ′

+(x, x) = ‖x‖2. (35)

Theorem 7. Let X,Y be real and smooth normed spaces, X be reflexive. Let
f : X → Y be a mapping satisfying:

ρ′
+(f(x), f(y)) = ρ′

+(x, y), x, y ∈ X. (36)

Suppose that V ⊂ im f is a closed subspace of Y such that co dim V = 1 and
cl spanf−1(V ) 
= X. Then f is a linear isometry.

Before we start the proof, some comments are needed. In the paper [6]
this result was proved under the surjectivity assumption (and that X and Y are
Banach and Y is separable). However our assumption (that cl spanf−1(V ) 
=
X) is weaker than the surjectivity. As regards the smoothness, this assumption
seems to be reasonable. Indeed (see [6]), there are both smooth and strictly
convex normed spaces Z1, Z2 and nonlinear mappings T : Z1 → Z2 satisfying
(36).

Proof. Let W :=cl spanf−1(V ). By the reflexivity, there is x ∈ X such that
‖x‖ = 1 and ‖x‖ = dist(x,W ). We define two bilinear mappings Ax : X2 →
R, Bf(x) : Y 2 → R by the formulas Ax(u,w):=ρ′

+(x, u)·ρ′
+(x,w), Bf(x)(z, v):

=ρ′
+(f(x), z)·ρ′

+(f(x), v). It follows from (36) that

Ax(u,w) = Bf(x)(f(u), f(w)), u, w ∈ X. (37)
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Put D1:={z ∈ Y : ∀u∈X Bf(x)(z, f(u)) = 0}. From this we get

D1 = {z ∈ Y : ∀u∈X ρ′
+(f(x), z)·ρ′

+(f(x), f(u)) = 0}
= {z ∈ Y : ∀u∈X ρ′

+(f(x), z)·ρ′
+(x, u) = 0}

= {z ∈ Y : ρ′
+(f(x), z) = 0}.

Thus D1 is a closed linear subspace. In particular, D1 is a divisible abelian
group. We have also

Bf(x)(u, v) = Bf(x)(v, u) = 0, u ∈ D1, v ∈ Y. (38)

Moreover Y = span{f(x)}⊕D1 and so f = fa+fr, where fa : X → span{f(x)},
fr : X → D1. From Theorem 4 there exist divisible groups H0,H1, an additive
function Fa : X → H1, and a function Fr : X → H0 such that

Y = H0 ⊕ H1 and H0 ⊂ {v ∈ Y : ∀u∈im f Bf(x)(u, v) = 0} = D1,

f = Fa + Fr.

We observe that for y, z ∈ X we have

fa(y + z) − fa(y) − fa(z) = f(y + z) − f(y) − f(z)

− fr(y + z) + fr(y) + fr(z) = Fa(y + z) − Fa(y) − Fa(z)

+ Fr(y + z) − Fr(y) − Fr(z) − fr(y + z) + fr(y) + fr(z)

= Fr(y + z) − Fr(y) − Fr(z) − fr(y + z) + fr(y) + fr(z) ∈ H0 + D1 ⊂ D1,

which means that fa is additive.
Since fa(w) ∈ span{f(x)} for w ∈ X, there exists a function ϕ : X → R

such that fa = ϕf(x). Therefore, by the property of the set D1 and by (34)
we have ρ′

+(fa(w), fr(y)) = 0 for w, y ∈ X. So, it and (33) and (35) yield

‖fa(y)‖2 = ρ′
+(fa(y), fa(y)) + 0 = ρ′

+(fa(y), fa(y)) + ρ′
+(fa(y), fr(y))

= ρ′
+(fa(y), fa(y) + fr(y)) ≤ ‖fa(y)‖·‖fa(y) + fr(y)‖

= ‖fa(y)‖·‖f(y)‖.

Since ‖f(y)‖ = ‖y‖, it follows from the above inequalities that ‖fa(y)‖ ≤ ‖y‖
for all y ∈ X, which implies that fa is continuous and linear. Consequently
fa(w) = ϕ(w)·f(x) for every w ∈ X with some ϕ ∈ X∗. Next, for all u,w in
X we have

ρ′
+(u,w) = ρ′

+(f(u), f(w)) = ρ′
+(f(u), fa(w) + fr(w))

= ρ′
+(f(u), ϕ(w)·f(x) + fr(w))

= ϕ(w)·ρ′
+(f(u), f(x)) + ρ′

+(f(u), fr(w))

= ϕ(w)·ρ′
+(u, x) + ρ′

+(f(u), fr(w)).

For given u ∈ X we define a γu ∈ X∗ by the formula

γu(w):=ρ′
+(u,w) − ϕ(w)ρ′

+(u, x), w ∈ X.
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It follows from the above equalities that γu(w) = ρ′
+(f(u), fr(w)). Therefore

for fixed w, z ∈ X we get

ρ′
+(f(u), fr(αw + βz) − αfr(w) − βfr(z))

= ρ′
+(f(u), fr(αw + βz)) − αρ′

+(f(u), fr(w)) − βρ′
+(f(u), fr(z))

= γu(αw + βz) − αγu(w) − βγu(z)

= γu(αw + βz − αw − βz) = 0.

To summarize, we proved

∀u∈X ρ′
+(f(u), fr(αw + βz) − αfr(w) − βfr(z)) = 0. (39)

Since ‖x‖ = dist(x,W ), we have the inequality ‖x‖ ≤ ‖x + w‖ for all w ∈ W .
In particular, for all t > 0 we obtain 0 ≤ ‖x‖· ‖x+tw‖−‖x‖

t . Letting t → 0+, we
get 0 ≤ ρ′

+(x,w). Putting −w in place of w (and applying again (33)) we get
0 ≥ ρ′

+(x,w). So, we proved that ρ′
+(x, c) = 0 for all c ∈ W .

Clearly f−1(V ) ⊂ W . In particular, for all c in f−1(V ) we have 0 =
ρ′
+(x, c) = ρ′

+(f(x), f(c)). Thus V ⊂ D1. Since co dimV = 1 = co dim D1, we
obtain V = D1. Since fr(αw +βz)−αfr(w)−βfr(z) ∈ D1 = V ⊂ im f , there
is a b0 ∈ X such that f(b0) = fr(αw +βz)−αfr(w)−βfr(z). Hence, applying
(39), we get

‖fr(αw + βz) − αfr(w) − βfr(z)‖2 = ‖f(b0)‖2 = ρ′
+(f(b0), f(b0))

= ρ′
+(f(b0), fr(αw + βz) − αfr(w) − βfr(z)) = 0.

It holds for all w, z ∈ X and α, β ∈ R, which means that fr is linear. Since
fa, fr are linear then f also is linear mapping. The equality ‖f(w)‖ = ‖w‖ for
all w in X implies that f is an isometry. �
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