Title: Rigid graphs of maps

Author: Władysław Kulpa

WŁADYSŁAW KULPA

RIGID GRAPHS OF MAPS

Abstract. In this note we construct maps between metric separable connected spaces X and Y such that the graphs are connected, dense and rigid subspaces of the Cartesian product $X \times Y$. From this result it follows that there is no maximal topology among metric separable connected topologies on a given set X.

In this note we shall construct maps between metric separable connected spaces X and Y such that the graphs are connected, dense and rigid subspaces of the Cartesian product $X \times Y$. The first construction of a map $f: \mathbb{R} \to \mathbb{R}$ with the connected and dense graph in the plane and satisfying the Cauchy equation $f(x) + f(y) = f(x+y)$ was given by F.B. Jones [3] in 1942. More general construction one can find in [4].

In order to obtain the existence of rigid graphs of maps, we shall utilize, in the proof, an idea of W. Sierpiński from [5]. A similar method is also used in de Groot's paper [2].

Spaces considered here are assumed to be separable and metric, i.e. we assume that they are subspaces of the Hilbert's cube I^ω.

A continuous map $f: X \to Y$, $X, Y \subset I^\omega$, is called a continuous displacement [2], iff there exists a subset $V \subset X$ such that

$$|f(V)| = 2^\omega$$

and $V \cap f(V) = \emptyset$.

Let us notice that each homeomorphism $f: X \to X$ different from the identity map, and where X is a connected subspace of I^ω, ia a continuous displacement. Indeed, since $f \neq \text{id}_X$, there exists a point $x \in X$ such that $f(x) \neq x$. Choose disjoint open sets $V, W \subset X$ such that $x \in V$ and $f(x) \in f(V) \subset W$. Since X is a connected metric space hence $|V| = 2^\omega$. Thus, $|f(V)| = 2^\omega$ and $V \cap f(V) = \emptyset$.

For more exhaustive information on continuous displacements, the reader can refer to de Groot's paper [2].

Received April 04, 1983.

AMS (MOS) subject classification (1980). Primary 54C08.

* Instytut Matematyki Uniwersytetu Śląskiego, Katowice, ul. Bankowa 14, Poland
A space X is said to be *rigid* if it admits between itself no homeomorphism different from the identity map. An abundant information on rigid spaces can be found in Charatonik's paper [1].

For each map $f : X \to Y$, let $G(f)$ denotes the graph of the map f: $$G(f) = \{(x, y) \in X \times Y : y = f(x)\}.$$ Let $\pi : X \times Y \to X$ means the projection and let the symbols Int, Bd mean respectively interior and boundary operations.

Let us start from a

Lemma. If $f : X \to Y$ is a map between connected metric separable spaces such that for each non-empty open set $G \subset X \times Y$ with non-empty boundary $$G(f) \cap \text{Bd}_{X \times Y} G \neq \emptyset,$$

then the graph is connected and dense in $X \times Y$.

Proof. It is obvious that the graph must be dense in $X \times Y$, because the sets of the form $U \times V$, U open in X and V open in Y, create a base for the topology of the space $X \times Y$.

In order to see that the graph must be connected we shall utilize two results from [4]. It was proved in ([4, Lemma 1]) that if X and Y are connected spaces and G is a non-empty subset of $X \times Y$ then one of the following conditions is satisfied:

(a) $\text{Int}_X \pi (\text{Bd}_{X \times Y} G) \neq \emptyset$,
(b) there exists an $x \in X$ such that $\pi^{-1}(x) \subset \text{Bd}_{X \times Y} G$,
(c) G is dense in $X \times Y$.

Secondly ([4, Lemma 2]), if D is a dense subset of a connected space Z such that for each non-empty open set $G \subset Z$ with $Z \neq G$,

$$D \cap \text{Bd}_Z G \neq \emptyset$$

then D is a connected set.

Put $D = G(f)$ and $Z = X \times Y$. Let us verify that the condition $D \cap \text{Bd}_Z G \neq \emptyset$ is satisfied for each non-empty open set $G \subset Z$ for that $D \subset G$.

1. If $\text{Int}_X \pi (\text{Bd}_Z G) \neq \emptyset$ then according to the assumption $D \cap \text{Bd}_Z G \neq \emptyset$.
2. If there exists an $x \in X$ such that $\pi^{-1}(x) \subset \text{Bd}_Z G$ then it is clear that $D \cap \text{Bd}_Z G \neq \emptyset$.
3. If $G \subset D$ is dense in Z then $$D \cap \text{Bd}_Z G = D \cap (Z \setminus G) = D \setminus G \neq \emptyset.$$

Thus, the lemma is proved.

Theorem. Let X and Y be metric separable and connected spaces. Then there exists a family $\mathcal{C} \subset \text{Map}(X, Y)$, $|\mathcal{C}| = 2^c$, $c = 2^c$, such that:

1. Each graph $G(f), f \in \mathcal{C}$, is a connected, dense and rigid subspace of the product $X \times Y$,
2. No two distinct graphs $G(f)$ and $G(g)$, $f, g \in \mathcal{C}$, are homeomorphic.
Proof. Assume that the product $X \times Y$ is a subspace of the Hilbert cube I^ω, $X \times Y \subset I^\omega$. Consider the family

$$\{(f_\alpha : S_\alpha \to I^\omega) : \alpha < 2^\omega\}$$

of all the continuous displacement $f_\alpha : S_\alpha \to I^\omega$, where S_α is a \emptyset_β subset of I^ω, such that

$$\pi[S_\alpha \cap (X \times Y)] = 2^\omega,$$

where $\pi : X \times Y \to X$ is the projection. Let us well order the set X;

$$X = \{x_\alpha : \alpha < 2^\omega\}$$

and let us put, for each $\alpha < 2^\omega$, $Q_\alpha = \{x_\alpha\} \times Y$. Let $\{P_\alpha : \alpha < 2^\omega\}$ be a well-ordering of the family

$$\{\text{Bd}_{X \times Y} G : G \text{ is open in } X \times Y \text{ and } \text{Int}_X \pi(\text{Bd}_{X \times Y} G) \neq \emptyset\}.$$

We shall define by induction sets

$$A_\alpha = \{p_\alpha, q_\alpha, r_\alpha, s_\alpha, t_\alpha\} \subset X \times Y, \alpha < 2^\omega,$$

satisfying the following conditions:

1. $p_\alpha \in P_\alpha, q_\alpha \in Q_\alpha, r_\alpha, s_\alpha \in S_\alpha \cap (X \times Y), s_\alpha \neq t_\alpha$ and $\pi(s_\alpha) = \pi(t_\alpha)$,
2. if $x, y \in \bigcup \{A_\alpha \setminus \{x_\alpha\} : \alpha < 2^\omega\}$ and $x \neq y$ then $\pi(x) \neq \pi(y)$,
3. for each $\alpha < 2^\omega$, $f_\beta(r_\beta) \notin \bigcup \{A_\beta : \beta < 2^\omega\}$.

Suppose that the sets A_β have been chosen for each $\beta < \alpha$. Put

$$Z_\alpha = \bigcup \{A_\beta : \beta < \alpha\}.$$

We have $|Z_\alpha| < 2^\omega$.

(a) Let us choose a $p_\alpha \in P_\alpha$ such that

$$p_\alpha \in P_\alpha \setminus \{f_\beta(r_\beta) : \beta < \alpha\} \text{ and } \pi(p_\alpha) \notin \pi(Z_\alpha).$$

(b) Choose a $q_\alpha \in Q_\alpha$ such that

$$q_\alpha = q_0 \text{ whenever } Q_\alpha \cap (Z_\alpha \cup \{p_\alpha\}) \neq \emptyset$$

or

$$q_\alpha \in Q_\alpha \setminus \{f_\beta(r_\beta) : \beta < \alpha\} \text{ whenever } Q_\alpha \cap (Z_\alpha \cup \{p_\alpha\}) = \emptyset.$$

(c) Let $V_\alpha \subset S_\alpha$ be a set such that

$$|f_\alpha(V_\alpha)| = 2^\omega \text{ and } V_\alpha \cap f_\alpha(V_\alpha) = \emptyset.$$

Choose points $r_\alpha, s_\alpha \in S_\alpha \cap (X \times Y)$ such that

$$r_\alpha, s_\alpha \in f_\alpha^{-1}[f_\alpha(V_\alpha) \setminus (Z_\alpha \cup \{p_\alpha, q_\alpha\})] \setminus \{f_\beta(r_\beta) : \beta < \alpha\},$$

$$\pi(r_\alpha) \neq \pi(s_\alpha) \text{ and } \pi(r_\alpha), \pi(s_\alpha) \notin \pi(Z_\alpha \cup \{p_\alpha, q_\alpha\}).$$

(d) Finally, choose $t_\alpha \in X \times Y$ such that

$$t_\alpha \in \pi(s_\alpha) \times Y \setminus \{f_\beta(r_\beta) : \beta \leq \alpha\}.$$

One can verify that the conditions (a)–(d) imply the conditions (1)–(3).

Let us put $S = \{s_\alpha : \alpha < 2^\omega\}$. The set S can be represented as the union

$$S = \bigcup \{B_\gamma : \gamma < 2^\omega\}, \epsilon = 2^\omega,$$

such that

$$\gamma \neq \gamma' \text{ implies } B_\gamma \neq B_{\gamma'}.$$
Define for each \(\gamma < 2^c \) the set
\[
K_\gamma = \bigcup \{ \{ p_\alpha, q_\alpha, r_\alpha, d_\alpha^\gamma \} : \alpha < 2^\omega \},
\]
where
\[
d_\alpha^\gamma = \begin{cases} s_\alpha, & \text{if } s_\alpha \in B_\gamma, \\ t_\alpha, & \text{if } s_\alpha \notin B_\gamma. \end{cases}
\]
Let \(g_\gamma : X \to Y \) be such that \(G(g) = K_\gamma \).
Since each set \(K \) contains the set \(\bigcup \{ p_\alpha, q_\alpha : \alpha < 2^\omega \} \) hence according to Lemma each of the sets, \(K_\gamma < 2^c \), is dense and connected in the product \(X \times Y \).

Now, suppose that there exists a continuous displacement \(f : K_\gamma \to K_\gamma ', \gamma, \gamma' < 2^c \).
Since \(K_\gamma \subset X \times Y \subset I^\omega \), we can consider the map \(f \) as a continuous displacement \(f : K_\gamma \to I^\omega \).

By Lavrientieff’s Theorem there exists a continuous extension of \(f, f^* : K_\gamma^* \to I^\omega \), where \(K_\gamma^* \supseteq K_\gamma \) is a \(G_\delta \) subspace of \(I^\omega \). According to the construction there exists an \(\alpha < 2^\omega \) such that
\[
f^* = f_\alpha \text{ and } S_\alpha = K_\gamma^*.
\]
Consider the point \(r_\alpha \in S_\alpha \). By the construction we get
\[
r_\alpha \in S_\alpha \cap K_\gamma \text{ and } f_\alpha (r_\alpha) \notin K_\gamma', \text{ for each } \gamma' < 2^c.
\]
Hence
\[
f(r_\alpha) = f^* (r_\alpha) = f_\alpha (r_\alpha) \notin K_\gamma',
\]
that contradicts with \(f(r_\alpha) \in K_\gamma' \).

COROLLARY. There exist \(2^c \) non-homeomorphic, connected rigid subspaces of the Hilbert cube \(I^\omega \).

If we put in Theorem \(X = Y = R \) then we get

COROLLARY. On the set of reals, there exist \(2^c \) non-homeomorphic metric connected separable and rigid topologies which are finer than the natural topology of the space \(R \) of reals.

COROLLARY. There is no maximal topology among metric separable connected topologies on the set \(X \).

Proof. Suppose that \(X \) is a maximal connected metric separable space. Let \(f : X \to Y \) be a map such that the graph \(G(f) \subset X \times Y \) is a rigid connected and dense subspace of the product \(X \times Y \). The projection \(\pi : G(f) \onto X \) induces a topology on the set \(X \) which is finer than the previous topology.

REFERENCES