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ALFRED  C ZO G AŁA*

THE FU N C TO R  K 2 FO R M U LT IQ U A D R A T IC  NU M BER FIELDS

Abstract. Let F  and 0 F be a number field and its ring of integers respectively. Let K 2 denote 
Milnor K-functor. In the paper we describe the structure o f the group K 2Of/R2F, where F is the 
Hilbert kernel and F  is multiquadratic extension of the rational number field. Moreover, we give some 
characterization o f fields with trivial group K 2Of/R2F. A t the end we make some remarks on p-rank 
o f K 2Of and divisibility o f the ideal class group by 2.

1. Introduction. Let F  be an algebraic number field, 0 F the ring of integers in 
F  and K 2 the Milnor K-functor. In this paper we investigate the group 
K 20 F/Si2F , where F  is the Hilbert kernel, for multiquadratic extension F  of 
the rational field Q. In Section 2, we describe completely the structure of the 
group K 2Of/R2F  for any multiquadratic extension F, thus extending the result of 
J. Browkin [1], In section 3 we characterize the number fields F  with 
K 2 Or/R2F =  0. The concluding remarks are concerned with the p-rank of K 2 0 F 
in the case when K 2Of/SK2F  is trivial. We also estimate the 2-rank of the group 
K 2Of/R2F  is some special cases of multiquadratic number fields. This allows us 
to produce a series of examples of multiquadratic number fields with even order 
of the ideal class group.

We use the following notation, terminology and auxiliary facts. F v denotes 
the completion of F  with respect to the valuation v and jiv is the group of roots 
of unity in F v, mv being the order of fiv. Similarly /i and m are the group of 
roots of unity in F  and the order of the group. As proved by D. Quillen in [4], 
K 2Of is the kernel of the homomorphism x: K 2F  -> U F v, v running through 
discrete valuations of F, where x satisfies x({a , ft}) =  ((a, /?)„)„. Here ( , )v is the 
tame symbol, as defined in Milnor [3]. The Hilbert kernel Si2 F  is defined to be the 
kernel o f the homomorphism rj: K 2 F  -> U nv (i; runs through non real valuations 
of F), satisfying /?}) =  ([a, /?]„)„. Here [  , ]„  is the Hilbert symbol according 
to [3], The Hilbert symbol and the tame symbol are bound to satisfy 
[a, =  (a, b)vfor any discrete valuation v. It follows that F  a  K 2Of .

J. Browkin [1 ] has given the following presentation for K 2 0 F/i>\2 F  which will 
be also the basis for all the computations in this paper.

THEOREM . The group K 20 F/Sk2F  is isomorphic to the Abelian group with 
generators gv, where v runs through all the real valuations o f F  and these discrete 
valuations for which 3p e F v for v\p, 3p being the primitive p-th root o f  unity. The 
generators are subject to the following relations:

(1) gl =  1 for real valuations v,
(2) _  j j or discrete v (here Nv — \FV\),
(3) n  gv- n  g y m = .  1.

v — rea l v — discr.
3PeF f ° r vIp
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2. The group K 2 0 F/$ł2 F  for multiquadratic extensions of the rationals. In this

section we assume that F — Q (v/a1...... V a«)’ where a1, aB are square-free
integers and [ F:Q ]  =  2".

PR O PO S IT IO N  2.1. Suppose p is a prime, p ^  2 and v is a valuation o f F  with 
v\p. Then

(i) F v is one o f  the following extensions o f the p-adic field: Q p, Q p(-Jp), Q p(-J$p), 

< W 3), Qp(s/p, y/i), where 3 is a primitive root o f  unity o f degree p -1 .
(ii) e(FV/Qp) Ś 2 .  _
P ro o f, (i) First observe that F v =  ^/aj so that F v is

a multiquadratic extension of Q p. There are only three quadratic extensions of Q p 

and these are Q p(Jp), Q p(>JiP), Q p(>Ji)- Adjoining to anyone of these a square 
root of any element of Q p we get either one of the three fields or the unique 

biquadratic extension of Q p equal to Q p(sjp, J i ) .  Since Q P{-Jp, cannot be 
further extended by adjoining a square root of an element of Q p, we get (i).

(ii) Each of the fields in (i) has ramification index ^  2.
LE M M A 2.2. I f  v\p and $pe F v, then p =  2 or p =  3.
P ro o f. Corollary 2 in [1 ] implies that p — l|e(F„/Qp) and e <  2 by 2.1. (ii).
The above lemma shows that the generators for K 2Of/R2F  can come only 

from real valuations and those discrete ones that divide 2 or 3.

LE M M A 2.3. I f  v|3 and 33e F v, then F v =  Q 3( 7 - 3 )  or F v =  Q ^ - l ,  v^)-
P ro o f. The result follows by inspecting which ones of the fields in 2.1. (i) 

contain the third root of unity.
PR O PO SIT IO N  2.4. I f  v|2, then

(i)_F„ is one o f  the following fields: Q 2, Q 2jV 3 ), Q j ^ ” 3)- Q a t V " 1).

Q 2( V ? L Q 2i V - 2) ’ _Q2(V 6)- Q 2( V t 6)l  q 2( V - i ,  V3), q 2(V z l i,  y/2), 

Q2(Jz±’ V6), Q_2(V2- V3)- Q j(V -2. V3)- Q2(V2- v - 3)- Q2(V-2. V - 3)’ 
Q2( V - W 2>V3)-

(ii) e (FJQ 2) <  4 , f (F J Q 2) <_2.

P ro o f. We have F v =  Q 2(V ai> •••> V a«)- It is easy to see that the list of fields 
contains all quadratic and biquadratic extension of Q 2. And Q 2(x/ — 1, 

y/2, yj3) is the unique multiquadratic extension of Q 2 o f degree 8 . It contains all 
the square roots of elements of Q 2 so that it cannot be extended properly by 
adjoining square roots of elements of Q 2. This proves (i).

(ii) follows inmediately from (i) by direct computing the degree and 
ramification index of all the fields listed in (i).

C O R O LLAR Y  2.5. For any valuation v such that v \ 2 we have
(i) i f  3„ g F v and 2 Jfn, then n =  3,
(ii) i f  32k g  Fv, then k ^  3,
(iii) mv 124.
P ro o f, (i) We have g.c.d. (n, Nv ) =  1, hence n\Nv— 1. Since Nv =  2f  and 

/  <  2 we must have n =  3.
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(ii) Consider the tower Q 2 £  Q 2(32k) — F„. It follows that efOjfa-oO/O-,)! 
\e(Fv/Q 2). Since e(Q 2(32*)/Q2) =  2^ 1 and e{Fv/Q2) ^  4 we get k ^  3.

(iii) This follows directly from (i) and (ii).
The number of generators of the group K 2Of/R2F  equals the total number of 

pairwise inequivalent real valuations, the valuations dividing 2 and those 
valuations v dividing 3 for which 33e F v. The relations depend on the values of 
Nv, mv and m for these valuations. The theorems below show how all these 
numbers depend on ..., an. In order to state the results in a concise form we 
introduce the following notation:

r —  the number of real valuations of the field F,
g(2) —  the number of pairwise inequivalent valuations dividing 2 ,
g(3) —  the number of pairwise inequivalent valuations dividing 3 and 

satisfying 33 e F v.
THEOREM  2.6.
2.6.1. I f  at <  0 for a certain i, 1 <  i <  n, then r =  0.
2.6.2. I f  at >  0 for every i, 1 ^  i <  n, then r =  2".
P ro o f. This is obvious.
THEOREM  2.7.
2.7.1. I f  at =  1 (mod 8) for every i, 1 <  i 3% n, then g(2) =  2" and for every 

valuation v dividing 2 we have mv — 2 and Nv =  2.
2.7.2. Suppose ak ^  1 (mod 8) for a certain k, 1 ^  k <  n and either a, =  1 

(mod 8)for all i =£kor a, =  ak (mod 8)for all i ^  k and 2 Jfak or af =  ak (mod 16)/or 
all i ^  k and 2 1 ak. Then g( 2) =  2" ~ 1 and for every valuation v dividing 2 we have:

a) mv =  2, Nv =  2, i f  ak =  3 (mod 8),
b) mv =  6, Nv =  4, if  ak =  5 (mod 8),
c) mv =  4, Nv =  2, if ak s  7 (mod 8),
d) mv =  2, Nv =  2, i f  ak s  2 (mod 4).
2.7.3. Suppose there are k, I, 1 <  /c,/ <  n with ak #  1 ^  a, (mod 8), #  a, 

(mod 8). t o  v be any valuation dividing 2.
a) I f  flf #  1, 3, 5, 7 (mod 8) /or euery i, 1 <  i <  n, f/ien =  12, Afo =  4.
b) I f  at =  1, 7 (mod 8) or af =  2, 14 (mod 16)/or euery /, 1 <  i <  n, f/ien
=  8, Nv =  2.
c) I fa t s  1,7 (mod 8) or a, =  6,10 (mod \6)for every i, 1 ^  i ^  n,thenmv =  4, 

Afo =  2.
d) I f  at = 1 ,3  (mod 8) or a( =  2,6  (mod 16)/or euery i, 1 <  i <  «, then =  2,

Nr =  2.
e) I f  a{ =  1,3 (mod 8) or ai =  10, 14 (mod 16) for every i, 1 <  i <  n, then 

mv =  2, Nv =  2.
f) I f  a { =  1,5 (mod 8) or a, =  2,10 (mod 16)/or every i, 1 <  i ^  n, then mv =  6, 

Nv =  4.
g) I f  at s  1, 5 (mod 8) or at =  6, 14 (mod 16) for every i, 1 <  i <  n, t/ien 

mv =  6, Nv =  4.
In all the cases a) through g) one has g(2) =  2"~2.
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2.7.4. For all the remaining possible values of residues of a[s mod 8 we have 
g{2) =  2" - 3  and for any valuation v\2, mv =  24 and Nv =  4.

P ro o f. 2.7.1. If at =  1 (mod 8) for every i, then F v =  Q 2(7 a i, ■■■, 7 a«) =  
=  Q 2. Hence e (F J Q 2) = f ( F J Q 2) =  1. Thus g(2) =  2".

2.7.2. If a; =  ak (mod 8) and 2)(ak or a; =  ak (mod 16) and 2 1 ak, then atak is 
a square in Q 2. It follows that under the assumptions of 2.7.2 Fv is a quadratic 

extension of Q 2 and in the cases a), b), c) we find out that F v is Q 2(^3), Q 2(7  — 3), 

Q 2( 7 ~  1), respectively and in the case d) it is one of the fields Q 2(7  — 2),

Q 2( V ~ 6)’ Q 2(V 6X Q 2(V2)- Since D *vQ 2]  =  2» ff(2) =  2B_1. It is routine to 
determine the values of mv and Nv for the given fields.

2.7.3. As in the case of 2.1 X  we conclude that now F v contains a biquadratic 
extension of Q 2. Consider the case a). Since a; =  1,3,5,7 (mod 8) we have a; e Q 22, 
3aA e Q 2, — 3at e Q 2, —ai e Q i ,  respectively. Hence for every i, at is a square in 

the field Q 2(>/ — 1, 7^)- ^  follows that F v =  Q 2(v/ — 1, 73). Thus [F 1;:Q 2] =  4 
and g(2) =  2"~2. Moreover, we observe that 33 e F v, 34 e F v and 38 $ F v(otherwise 

7 2 6 Q 2(sJ — 1, which is impossible). It follows that mv =  12. Since both the 
residue degree and ramification index are equal 2 we conclude Nv =  4. This 
finishes the proof of a). In the remaining cases we prove analogously that F v is

Q 2(V I I >  V A  x/6), Q 2(V 2 , 73), Q 2( V ^ 2 ’ n/3), Q 2(V 2 ,
Q 2(\J — 2, yj — 3) respectively. In all the cases [F „:Q 2]  =  4, hence g(2) =  2"~2. As 
in a) we determine mv and Nv.

2.7.4. All the cases when F v is a quadratic extension of Q 2 have been 
discussed in 2.7.2 and when F v is biquadratic extension of Q 2 —  in 2.7.3. Now 
F v is a unique multiquadratic extension of Q 2 of degree 8, that is F v =  

=  Q 2(V - 1 ’ \/2> 73). Hence g(2) =  2" “ 3. Since 3 3 6 ^  and i s e F v, we get 
mv =  24. Further e (F v/Q2) =  4, f ( F J Q 2) =  2 so that Nv =  4. This finishes the 
proof o f the Theorem 2.7.

THEO REM  2.8.
2.8.1. I f  there is a k, 1 ^  k ^  n, with ak =  6 (mod 9) and for every i ^  k either 

at =  1 (mod 3) or at =  6 (mod 9), then g( 3) =  2”~ 1 and for any valuation v dividing 
3 we have mv =  6 and Nv =  3.

2.8.2. I f  there are k, I, 1 ^  k, I ^  n, with ak =  2 (mod Vfand a, =  3, 6 (mod 9) 
or ak =  3 (mod 9) and a, =  6 (mod 9), then ^(3) =  2" -2  and mv =  24, Nv =  9 for 
any valuation v | 3.

2.8.3. For all the remaining possible values of a[s mod 3 we have g (3) =  0.
P ro o f. As in the proof of Theorem 2.7 it easy to establish that F v =

=  Q 3(7  -  3) in the case 2.8.1 and F v =  Q 3 (7  — 1,7^) the case 2.8.2 Lemma 2.3 
implies that these are unique possible fields with 3 3e F v. Thus in all other cases 

3 (3 ) =  0. Now  if F„ =  Q 3(7 ^ 3 ),  then [ i v Q 3]  =  2 and so g(3) =  2-“ 1. 
Moreover, 39 $ F V, since e (Q 3 (39)/Q3) =  6 and e (F J Q 3) =  2. Also 3Ai F v.
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Hence mv =  6. If  F v =  Q 3{ J - l ,  V 3)> then e (F J Q 3) = f ( F J Q 3) =  2> hence 
Nv =  9. Further [F ^ Q j]  =  4, hence g (3) =  2"~2 and as above we prove 39 ^ F v. 
Hence mv =  24.

In order to determine the relations between generators we need to know the 
order of the group of roots of unity in F  denoted by m. Since m \ mv for any 
valuation t; of F, we note that m | 24. Moreover,

33 e F  if and only if F  contains Q(-J — 3),

34 g F  if and only if F  contains Q(yJ — 1),

38 e F  if and only if F  contains Q(yJ — 1) and Q(^/2),

312 e F  if and only if F  contains Q(-J — 1) and Q(^/3),

324 £ F  if and only if F  contains — 1), QCV2), Q(-v/3)-
It follows that m can take only the following values: 2,4,6  (when n 1), 8,12 

(when n ^  2), and 24 (when n > 3 ).
The theorem below gives necessary and sufficient conditions for various roots 

of unity to belong to F.
THEO REM  2.9.
2.9.1. 33e f  if  and only if there are distinct indices i1, . . . , i k such that 

ait ■... ■ aik =  — 3c2 for an integer c.
2.9.2. 34 e F  if  and only if there are distinct indices i j , ..., ik such that 

ait ■... ■ aik =  — c2 for an integer c.
2.9.3. 38 e F  i f  and only if  there are two sets of distinct indices i1, ..., ik and 

j t , such that at •...■ai =  —c\ and ajl ■... a  ̂ =  2c\ for some integers c l 
and c2.

2.9.4. 312 e F  i f  and only if  there are two sets o f  distinct indices it , ..., ik and 
j l , . . . , j l such that ai i - . . . a ik =  — c\ and aj l - . . . a jl =  3c2 for some integers c, 
and c2.

2.9.5. 324 e F  if  and only if  there are three sets o f distinct indices i l , ..., ik,
and ky, . . . , k q such that ai i . . . a ik =  - c \ ,  aj i -...-aJi =  2c\, 

akl-...-ak =  3c lfo r  some integers c t , c2 and c3.
P roo f. Everything follows from the remark preceding the statement of the 

theorem and from the lemma below.

LE M M A 2.10. Suppose K  is a subfield of  F  =  ..., ^Jan), [F :Q ] =  2"
and [K :Q ] =  2. Then there are distinct indices i l , . . . , i k such that K  =  

=  Q Q a it -...-a ik).
P r o o f. We use elementary Galois theory. For distinct sets of indices i lt ..., ik, 

the quadratic fields Q (sJaii •... • aik) are distinct and their total number is 2" — 1. 
On the other hand if [K :Q ] =  2 and K  c  F, then K  is the fixed field of 
a subgroup of index two in Gal(F/Q) =  (Z/2Z)". But subgroups of index 2 in 
(Z/2Z)" can be viewed as hyperplanes in n-dimensional vector space (Z/2Z)n over 
the field Z/2Z. These hyperplanes are in one-to-one corespondence with 
homogenous linear equations in n indeterminats over Z/2Z. Since there are 2" — 1 
such equations, this is the number of hyperplanes and the number of quadratic
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extensions of Q contained in F. But we have specified 2" — 1 distinct quadratic 
extensions contained in F  at the beginning of the proof. It follows these are all 
quadratic extensions in F  and the lemma is proved.

We proceed to determine the group K 2Of/R2F. Recall that F  =  Q (s/a1, ..., 
where a{ , ..., an are square-free integers and [F :Q ] =  2". The r gener

ators of the group coming real valuations of F  will be denoted z t , ..., zr, the g{ 2) 
generators coming from discrete valuation dividing 2 will be written g l9 ..., gg(2) 
and the g(3) generators coming from discrete valuations dividing 3 will be written
ht , . . . , hg(3y

The classification of possible groups K 2Of/R2F  given below is divided into 
6 parts depending on the value of m, the order of the group of roots of unity in F. 
Each part is seperated into several cases depending on the residues of a\ s 
considered in Theorem 2,6 through 2.9. We use the notation of cases introduced 
in the theorems.

Part I. m =  2. The table below gives the number of generators, the relations 
and the structure of the group K 2Of/R2F  in the case when g(3) =  0, that is, in the 
case 2.8.3. The other two possibilities 2.8.1 and 2.8.2 are discussed below the table.

TABLE l

Case 9(2) Relations Structure of K2Of/SK2F

2.6.1 (r = 0)

2.7.1 2" at = 1 n Si= l (Z/2Z)2" - 1
2.7.2a, 2.7.2d 2«-1 at = 1 n  9,- = i (Z/2Z)2"- 1
2.7.2b 2»-i at = i n  = i (Z/2Z)2" " 1- 1
2.7.2c 2«-i 0t = 1 n t f  = i (Z/4Z)2"_,- l©(Z/2Z)
2.7.3a 2»i-2 = i n 9f = i (Z/4Z)2" ~2 “ 1 ® (Z/2Z)
2.7.3b 2"~2 9,8 = 1 = i (ZIVLf"~2- l®(ZIAZ)
2.7.3c 2" 2 n 32 = i (Z/4Z)2" 2-1 ©(Z/2Z)
2.7.3d, 2.7.3e 2"~2 0? = 1 n  a,- = i (Z/2Z)2" ' 2- 1
2.7.3f, 2.7.3g 2" -2 9? = 1 n  9? = i (Z^Z)2""-2' 1
2.7.4 2” -3 at = 1 n 3l12 = (Z/8Z)2"_;’ -1©(Z/4Z)

2.6.2 (r = 2")

2.7.1 2" 92 = z2 = l, n g n  Zj = i (Z/2Z)2"+1~1
2.7.2a, 2.7.2d 2« - 1 II <-̂K

> II □ n  Zj- = i (Z/2Z)3'2" 1-1
2.7.2b 2»-i 0? = z = i, n » FI Z; = i (Z^Z)3'2”^1- 1
2.7.2c 2"“ 1 at = z = i, n<? ! n  Zj = i (Z/4Z)2" ~ ‘ ©(Z/2Z)2"_ 1
2.7.3a 2 »-2 at = z = i, n g6 n  z,. = i (Z/4Z)2" 2©(Z/2Z)2"- 1
2.7.3b 2"~2 at = 22 = i, n  9* n  Zj = i (Z/8Z)2" ~ 2©(Z/2Z)2"_ 1
2.7.3c 2"“ 2 at = z = i, n» n  Zj = i (Z/4Z)2" ~ 2©(Z/2Z)2""1
2.7.3d, 2.7.3e 2"“ 2 at = z! = i , n 9 n  Zj = i (Z/2Z)5'2"~2-1
2.7.3f, 2.7.3g 2 n — 2 at = z = i, r i j n  Zj = i (Z/2Z)5'2"-2- 1
2.7.4 2” ~ 3 0? = z = 1, Hg □ JM II (Z/8Z)2" ~3 ffi(Z/2Z)2" “1
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When m =  2 and 2.8.1 holds, in every case considered above we have 
g(3) =  2" _1 and the additional generators satisfy hf =  1. These generators do 
not appear in relation (3) stated in Introduction. Hence the group K 2Of/R2F  
acquires additional direct summand (Z/3Z)2" -1  in every case. When m =  2 and 
2.8.2 holds, in every case considered in the table g(3) =  2"~ 2 and the group in the 
table should be enlarged by a direct summand (Z/3Z)2"~2.

Part II. m =  4. O f the two cases of Theorem 2.6 only 2.6.1 can hold. 
Moreover, since m\mv, we conclude that only 2.7.2c, 2.7.3b, 2.7.3a, 2.7.3c, 2.7.4 
and 2.8.2, or 2.8.3 can happen. The table below describes the situation under
2.8.3. The other case 2.8.2 is discussed below the table 1.

TAB LE  2

Case r 9(2) 0(3) Relations Structure of K 20 F/$ł2F

2.7.2c 0 2» - i 0 gf =  1, n  g, =  1 (Z/4Z)2” -1-1

2.7.3a 0 2«-2 0 gf =  1, n  gf =  1 (Z/4Z)2" - 2 ~ 1

2.7.3b 0 2 " - 2 0 gf =  1, n  gf =  1 (z/ s z )2" ’ 2- 1© ^ ^ )

2.7.3c 0 2” ~ 2 0 gf =  1, n  =  1 (Z/4Z)2" " 2" 1

2.7.4 0 2 « - 3 0 g f  -  1, n  <7,12 =  1 (:Z/8Z^"“ ’ - '© ( z ^ z )

When m =  4 and 2.8.2 holds, in every case considered in the table #(3) =  2"~ 2 
and hf =  1. Since 33 $ F, the additional generators do not appear in the relation 
(3) stated in the Introduction. In every case the group in the table should be 
enlarged by adding the direct summand (Z/3Z)2" -2.

Part III. m =  6. Now  2.6.1 holds and only 2.7.2a, 2.7.3a, 2.7.3f, 2.7.3g, 2.7.4, 
and 2.8.1 or 2.8.2 can happen. Since 2.6.1 holds, in every case considered in the 
table 3 below we have r =  0.

TAB LE  3

Case 9(2) 0(3) Relations Structure o f K 2Of/&2F

2.8.1

2.7.2a

2.7.3a

2.7.3f, 2.7.3g 

2.7.4

2*-1 
2«_ 2

2 " '2
2»-3

2«-1 
2» - i

2"~1

2"_1

e,2 = = i, n 3inftj = i 
gf — hj = i, n s 2n/j,. = i

gf = h] = i, n 9 iru j = i
g* = h] = \, n t f  r\h j = i

(Z/4Z)2" _ 2 “ 1 © (Z/2Z )©  
© (Z/3Z)2" -1-1 

(Z/2Z)2" “ 2 ~1 © (Z/3Z)2" "  - 1 

(Z/SZ)2" - 3- l ®(Z/4Z)@ 
© (Z 3 Z )2” " 1- 1

2.8.2

2.7.2a

2.7.3a

2.7.3f, 2.7.3g 

2.7.4

2--1
2"~2

2"~2
2--3

2 " ~ 2 

2*-2

2” ~ 2 
2«-i

gf = h] = i, n Sin/>; = n 
gf  = h] = i, n Sl2n /i; = i

s2 = /lj3 = i, n  3i n  = i 
gf = ^  = i, ns f nf t ;  = i

(Z/2Z)2" _ ,~ 1©(Z/3Z)2" -2- 1 

(Z/4Z)2" ~2 ~1 ® (Z/2Z)©  
© (Z/3Z)2" ' 2- 1 

(Z/2Z)2" 2 “1 © (Z/3Z)2" ~2 ~1

(z/sz)2" '3- 1© ^ ^ )©
© (Z/3Z )2" _2“ 1
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Part IV. m — 8. Now 2.6.1 holds and only 2.7.3b, 2.7.4 and 2.8.2 or 2.8.3 can 
happen. The table shows the situation under 2.8.3.

TABLE  4

Case r 9(2) 9(3) Relations Structure of K 2Of/S<2F

2.7.3b 0 2"^2 0 — 
00 II □ 2? II (Z/8Z)2" -2 -1

2.7.4 0 2 « - 3 0 gf =  1, n  gf =  1 (Z/8Z)2" " 3- 1

Whenw =  8 and 2.8.2 holds, g(3) =  2" ~ 2 with hf =  1 and (3) in the Introduc
tion becomes n  hf ■ n  g j v,m =  1. In every case the group in the table should get 
the additional direct summand (Z/3Z)2" -2.

Part V. m =  12. Here 2.6.1 and 2.8.2 hold and only 2.7.3a or 2.7.4 can 
happen (table 5).

TABLE  5

Case r 9(2) 9(3) Relations Structure of K 2Of I$<2F

2.7.3a 0 2 " "2 2"~2 0t =  V =  1, rififi r\ h j =  1 (Z I IX )2" ~' - 1 © (Z/3Z)2" “ 2 “ 1

2.7.4 0 2 « —3 2”—̂ 0? =  hj =  1, n g f  r\h* =  1 {Z IV L )2" ~ ' - l ® (Z I2 Z )@
©(Z/3Z )2" -2- 1

Part VI. m =  24. Here 2.6.1, 2.7.4 and 2.8.2 hold. Thus g(2) =  2” , 
gf =  1, g{3) =  2n" 2, hj =  1 and n g t- n h j = l .  Hence K 2Of / «2F =  
=  (Z/8Z )2” L 3 “ 1 ©(Z/3Z)2" L 2 ~

3. Number fields with trivial group K 2Of/R2F ■ In this section we prove the 
following characterization of fields with trivial group K 2Of/R2F.

THEOREM  3.1. Let F  be normal extension o f  Q o f degree n. The group 
K 2Of/R2F  is trivial if  and only if the following three conditions hold.

(i) F  is pure imaginary field (i.e. r =  0).
(ii) For every prime number p, if  3p e F, then there is exactly one prime ideal in 

F  dividing p.
(iii) For every prime number p and every positive integer k such that (j)(pk)\n, if 

3pk $F, then $pk£ F v,fo r  all valuations v dividing p.
P ro o f. The sufficienty of (i), (ii) and (iii) follows from the following more 

general result (put r =  0 to obtain K 2Of/S\2F =  0).
LE M M A 3.2. Let F  be an extension o fQ  with r real conjugates. I f F  satisfies (ii) 

and (iii), then K 2Of/R2F  =  (Z/2Z)r.
P r o o f  of 3.2. Let px =  2, p2, ..., pt be all prime numbers with 3pkt e F  for 

a certain /c, gN , i =  1, ..., I. We assume kt is the largest possible value of the 
exponent. From (ii) and (iii) we conclude that each prime p, supplies exactly one 
generator gt, i =  1,...,/. Further, (iii) implies that p*‘\m whenever p*‘\mVi for 
a valuation vt dividing p;. The group K 2Or/S\2F  is generated by ..., g, and by 
Zj, ..., zr coming from real valuations of F  with relations

(3.2.1) zf =  1 , i =  1 , r ,
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(3.2.2)

(3.2.3)

where q{ =  pki(p{‘ — l)/m. We take now any pt >  2 and consider n, =  m/p1-1. This 
is an even integer and for j  ^  i we have pkjJ\ni, since pki\m. Thus raising the 
relation (3.2.3) to the power n; gives

But g.c.d. (n,̂ ,-, pki) =  g.c.d. (p{‘ — 1, pkl) =  1 and it follows from (3.2.2) that 
g( =  1. Thus (3.2.3) becomes

Now nt =  m/2*1 is an odd integer and raising the last relation to the power n1 we

As above g.c.d. (nl q l , 2*1) =  g.c.d. (2/l —1, 2kl) =  1, so that there are two 
integers x and y such that x{2fl — 1) =  \ + y -2 k\ From (3.2.4) we obtain

Thus (3.2.3) reduces to z1-... zr =  and it follows that K 2Of/R2F  =  (Z/2Z)r. 
This proves the lemma.

Now we prove the necessity of (i), (ii) and (iii). So assume K 2Of/SK2F  =  0. To 
prove (iii) we assume there is a prime power pk such that 4>(pk)\n, $pk $ F  and 
3pk e F„ for some valuation v dividing p. Then p\{mjm). Let g be a generator 
coming from the prime p. We consider the group H  generated by an element h and

I  YYl yyi \
satisfying hmv/m =  1 and/jm" '^ (iVt,_1) =  1. Since p\g.c.d. I — , ---- v—  Ltheorderof

h must be divisible by p and so H  ^  0. Consider a mapping/:K 20 F/Sł2F  -> H  
such that / (g) =  h and/(#,) =  1 for all the remaining generators gt. Since the 
mapping preserves relations it is a group homomorphism and its image 
H  is non-trivial. This contradicts the triviality of the pre-image. Thus we 
have proved (iii).

To prove (ii) let us assume that 3 pe F  for a prime p and vx\p and v2\p, where vt 
and v2 are distinct valuations. The normality of the extension F/Q implies that 
mv 1 =  mV2 = : mv and N vt =  Nv2 =  Nv. Let gt and g2 be the generators 
corresponding to vx and v2, respectively. We consider a group H  generated by 
two elements and h2 with relations hi’v(Nv~ l) =  1 , i  =  l,2and(/i1/i2)m,’/m =  1. It

follows from (iii) that g.c.d. ( — \ — 1 which implies h, h2 =  1. Hence His
\N v—1 mJ

n gnj tąi = 1.

Here for j  ^  i, so in view of (3.2.2), this reduces to

get

(3.2.4)

m ’ Nv — 1
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a cyclic group of order — — ^  1 (since 3p e F v). As above we define a group

homomorphism /: K 20 F/St2F  H  satisfying f i g j  =  hl9 f ( g 2) =  h2 and 
f (g d  — 1 f ° r the other generators contradicting the triviality of K 2Of/R2F. This 
proves (ii).

Finally, let us assume r ^  1. Let g0 be a generator coming from one of the real 
valuations and let gy be a generator coming from v\2. We consider a group 
H  generated by two elements hQ and hlt with relations h% =  1, h\k =  1, 
h0h[2f- 1)/A — 1, where/ is the residue degree of the valuation v, k is the largest 
integer such that $2k e F  and m! =  m/2k. Using the same arguments as in the final 
part of the proof of Lemma 3.2 we get h0 =  hl . Thus H  is cyclic of order 2. Now 
sending 1—► /x0, grŁ i—»• /ij, and gt h-» 1 for the other generators we obtain a group 
homomorphism K 2 0 F/Sł2 F  -> H, a contradiction. This proves (i) and finishes the 
proof of Theorem 3.1.

C O R O LLAR Y  3.3. LetF =  Q {y/a1, ..., y/a„) be a multiquadratic extension of  
Q o f degree 2". Then for n >  3 the group K 2Of/R2F is nontrivial.

P ro o f. As observed in Proposition 2.2, for any valuation v\2 we have 
[F „:Q 2]  ^  8. The number of distinct prime ideals dividing 2 equals 2n/[Fv:Q 2~\ 
and so for n >  3 this quotient is greater than 1. Theorem 3.1 implies then the 
assertion.

C O R O LLAR Y  3.4. The group K 2Of/R2F is trivial for F  =  Q (32k), k ^  2.
P ro o f. Here (i) and (ii) of Theorem 3.1 are obviously satisfied. We prove (iii).
Suppose for a prime p 2 and valuation v dividing p we have 3pe F v. Clearly 

F v =  Q„(52*) and e(F J Q P) =  1- From the tower Q p c  Qp(3p) c  Q p(32lc) we infer 
e(Qp(3P)/0 P)|e(Fu/Qp) and this contradictions e(Qp(3p)/Q„) =  p - \ .  For any 
valuation v\2 we have F v =  Q 2(32|«)- It is also easy to notice that if 32t e F v for an 
integer t then t ^  k, and so 32,e F . Thus Theorem 3.1 implies the triviality of 
K 2Of/SK2F.

4. Concluding remarks. For a finite Abelian group A let rp(A) be the p-rank of 
the group, that is, the number of primary components in a decomposition of the 
group into direct sum of cyclic groups. J. Browkin [1 ] proves that for an arbitrary 
number field F

r2(K 20 F) =  r - l  +  g(2 )+ j(2 ),

where r is the number of real valuations, g(p) is the number of distinct discrete 
valuations dividing p and j(p ) =  rp(C\F/C\pF), C1F being the ideal class group of 
F  and ClpF its subgroup generated by the ideals dividing p. S. Chaładus [2 ] 
generalizes this result for any prime number p assuming F  contains 3p. He proves

rp{K 20 F) =  r - l + g ( p ) + j ( p ) .

This result and Theorem 3.1 in the case when the group K 2 Of/${2F  is trivial show 
that if 3p e F  and F  -5 Q is Galois extension, then rp(K 20 F) =  j(p). In particular 
r2(K 20 F) = j (  2).



17

Let us also remark that the following inequality can be read of from the tables 
given in Section 2:

r2(K 20 F/X2F ) > r - l + g { 2 )

in the following cases: 2.7.2c, 2.7.3a,b,c, 2.7.4 for nonreal and m =  2, 
2.7.3b, 2.7.4 for m — 4, 2.7.3a, 2.7.4 for m =  6, 2.7.4 for m =  12. Since 
r2(K 20 F) r2(K 20 F/R2F), we conclude r2(K 20 F) >  r —l+ g (2 ). Thus in all the 
cases considered j(2) ^  1, and in particular, the class number of F  is even. 

A specific example is F =  V a2)> where <  Oora2 <  Oandaj =  3 (mod
8), a2 =  5 (mod 8), a2 ^  —3. There are many other examples of this kind 
multiquadratic extensions with even class number.
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