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REMARKS ON THE STABILITY
OF SOME QUADRATIC FUNCTIONAL EQUATIONS

Abstract. Stability problems concerning the functional equations of the form

f(2x + y) = 4f(x) + f(y) + f(x + y)− f(x− y),

and
f(2x + y) + f(2x− y) = 8f(x) + 2f(y)

are investigated. We prove that if the norm of the difference between the LHS and the RHS
of one of equations (1) or (2), calculated for a function g is say, dominated by a function
ϕ in two variables having some standard properties then there exists a unique solution f of
this equation and the norm of the difference between g and f is controlled by a function
depending on ϕ.
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1. INTRODUCTION

In paper [8], C. Park and J. Su An considered the following functional equations

f(2x+ y) = 4f(x) + f(y) + f(x+ y)− f(x− y) (1)

and
f(2x+ y) + f(2x− y) = 8f(x) + 2f(y) (2)

in the class of functions transforming a real linear space X into another real linear
space Y . They have proved that any of equations (1) and (2) and the quadratic
functional equation

Q(x+ y) +Q(x− y) = 2Q(x) + 2Q(y), x, y ∈ X (3)

are equivalent. Stability of equation (3) was widely considered (cf., e.g., [2, 3, 5, 6]).
In the case of Y a Banach space, the authors of [8] also considered the problem of
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Hyers-Ulam-Rassias stability (see [4]) of equations (1) and (2). In particular, they
have proved that if α ∈ (0, 2) is a constant and

‖g(2x+ y)− 4g(x)− g(y)− g(x+ y) + g(x− y)‖ ≤ θ(‖x‖α + ‖y‖α), (4)

for all x, y ∈ X, then there exists a unique quadratic function Q : X → Y such that

‖g(x)−Q(x)‖ ≤ θ

|2α − 4|
‖x‖α, x ∈ X.

In this note we will show that equations (1), (2) and (3) are equivalent in a more
general case. We will also show that in the stability results one may replace the
right-hand-side of (4) by a function ϕ in two variables having some natural properties
(cf. [1,6]). In particular, we cover the case of inequality (4) with α 6= 2. However, we
obtain somewhat larger estimation constant.

2. EQUIVALENCE OF EQUATIONS (1), (2) AND (3)

Theorem 1. Let X and Y be commutative groups, the latter without elements of
order two. Then in the class of functions transforming X into Y , equations (1), (2)
and (3) are equivalent.

Proof. Assume that f : X → Y is a solution of equation (1). Putting x = y = 0 in
(1) we obtain 4f(0) = 0, whence f(0) = 0. Setting y = 0 in (1), we get f(2x) = 4f(x)
and for x = 0 it follows from (1) that f(y) = f(−y). For arbitrary x, y ∈ X, there is

4f(x+ y) + 4f(x− y) = f(2x+ 2y) + f(2x− 2y) =
= 4f(x) + f(2y) + f(x+ 2y)− f(x− 2y)+

+ 4f(x) + f(2y) + f(x− 2y)− f(x+ 2y) =
= 8f(x) + 8f(y),

which means that f satisfies equation (3).
Assume that Q is a solution of equation (3). Then Q is even and

Q(2x+ y) +Q(−y) = Q(x+ (x+ y)) +Q(x− (x+ y)) =
= 2Q(x) + 2Q(x+ y) =
= 2Q(x) +Q(x+ y) + [2Q(x) + 2Q(y)−Q(x− y)] =
= 4Q(x) +Q(x+ y) + 2Q(y)−Q(x− y).

Therefore, Q fulfils equation (1).
Assume that f satisfies (2). Setting x = y = 0, we get 8f(0) = 0 and hence

f(0) = 0. If y = 0, then f(2x) = 4f(x) and if x = 0, then f(−y) = f(y). Therefore,

4f(x+ y) + 4f(x− y) = f(2x+ 2y) + f(2x− 2y) = 8f(x) + 2f(2y) =
= 8f(x) + 8f(y),

which means that f satisfies (3).
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Now assume that Q satisfies (3). Then Q(0) = 0, Q(y) = Q(−y) and Q(2x) =
4Q(x). Thus

Q(2x+ y) +Q(2x− y) = 2Q(2x) + 2Q(y) = 8Q(x) + 2Q(y),

which ends the proof.

Remark 1. The assumption that Y has no elements of order two is essential. To
see this, consider the group {0, 1, 2, 3, 4, 5, 6, 7} with the usual addition mod|8. Then
f ≡ 6 is a solution of (1) but it does not satisfy equation (3). Moreover, f ≡ 1 is a
solution of (2) but it satisfies neither equation (1) nor (3).

3. GENERAL LEMMA ON STABILITY

In the rest of the paper we assume that:

— X is a commutative group,
— Y is a real Banach space.

Moreover, we use the convention:

— X? = X \ {0};
— If not stated otherwise, any formula containing variables x and/or y is valid for

all x, y ∈ X?.

We start with some lemmas.

Lemma 1. Let g : X → Y be a function satisfying the inequality

‖
r∑

i=1

αig(γix+ δiy)‖ ≤ ϕ(x, y), (5)

where we are given: a positive integer r, real constants αi, integer constants γi, δi, i ∈
{1, . . . , r} such that γiδi 6= 0 for some i ∈ {1, . . . , r} and δiγj 6= δjγi for every j 6=
i, j ∈ {1, . . . , r}, real constants λn, n ∈ N, λ0 = 1, integer constants βn, n ∈ N, β0 = 1,
while ϕ : X? ×X? → [0,∞) is a function satisfying the conditions{

limn→∞ λnϕ(βnx, βny) = 0;∑∞
n=0 λnϕ(βnx, βnx) <∞.

(6)

If there exists a constant K > 0 such that

‖λn+1g(βn+1x)− λng(βnx)‖ ≤ Kλnϕ(βnx, βnx), n ∈ N ∪ {0}, (7)

then for every x ∈ X the sequence (λng(βnx))n∈N converges to a function f : X → Y
fulfilling the equation

r∑
i=1

αif(γix+ δiy) = 0 (8)
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and the estimate

‖g(x)− f(x)‖ ≤ K
∞∑

n=0

λnϕ(βnx, βnx). (9)

Proof. It follows from (7) that for given positive integers n, k there is

‖λn+kg(βn+kx)− λng(βnx)‖ ≤
k−1∑
j=0

‖λn+j+1g(βn+j+1x)− λn+jg(βn+jx)‖ ≤

≤ K
n+k−1∑

j=n

λjϕ(βjx, βjx).

Therefore (λng(βnx))n∈N is a Cauchy sequence, whence it is convergent. Define a
function f? : X? → Y by the equality

f?(x) = lim
n→∞

λng(βnx).

In (5) let us put βnx instead of x, βny instead of y and multiply both sides of (5) by
λn. On account of (6), taking the limit as n tends to infinity, we obtain

r∑
i=1

αif(γix+ δiy) = 0,

where

f(x) =

{
f?(x), x ∈ X?,

limn→∞ λng(0), x = 0.

Moreover,

‖g(x)− λng(βnx)‖ ≤
n−1∑
k=0

‖λk+1g(βk+1x)− λkg(βkx)‖ ≤

≤ K

∞∑
k=0

λkϕ(βkx, βkx).

As n tends to infinity, we get

‖g(x)− f(x)‖ ≤ K
∞∑

n=0

λnϕ(βnx, βnx).

4. LEMMAS ON EQUATIONS (1) AND (2)

Lemma 2. If f : X → Y satisfies (1) for all x, y ∈ X?, then it satisfies (1) for all
x, y ∈ X.
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Proof. Setting, successively, y = x, y = 2x, y = −x, x 6= 0 in (1), we get

f(3x) = 5f(x) + f(2x)− f(0), (10)
f(4x) = 4f(x) + f(2x) + f(3x)− f(−x), (11)
f(2x) = 3f(x) + f(−x) + f(0). (12)

Adding (10) and (11), we obtain

f(4x) = 9f(x) + 2f(2x)− f(−x)− f(0),

and, thanks to (12),

3f(2x) + f(−2x) + f(0) = 9f(x) + 2f(2x)− f(−x)− f(0).

Applying (12) once more, we observe that

3f(x) + f(−x) + f(0) + 3f(−x) + f(x) + f(0) + f(0) = 9f(x)− f(−x)− f(0),

which implies that
4f(0) = 5[f(x)− f(−x)].

Consequently, f(0) = 0, f(−x) = f(x) and f(2x) = 2f(x). Now it is easy to verify
that (1) is fulfilled for all x, y ∈ X.

Lemma 3. If f : X → Y satisfies (2) for all x, y ∈ X?, then it satisfies (2) for all
x, y ∈ X.

Proof. Setting y = x, x 6= 0 in (2), we get

f(3x) = 9f(x), (13)

and the substitution y = −x,x 6= 0 in (2) yields f(3x) = 7f(x) + 2f(−x), whence

f(x) = f(−x).

If we put, successively, y = 2x, y = 4x, x 6= 0 in (2), then

f(4x) + f(0) = 8f(x) + 2f(2x), f(6x) + f(2x) = 8f(x) + 2f(4x). (14)

On account of (14) and (13) we obtain

9f(2x) + f(2x) = 8f(x) + 16f(x) + 4f(2x)− 2f(0)

whence
f(2x) = 4f(x)− 1

3
f(0). (15)

According to (15) and (13),

f(6x) = 4f(3x)− 1
3
f(0) = 36f(x)− 1

3
f(0).
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On the other hand, by virtue of (14) and (15), we get

36f(x)− 1
3
f(0) + f(2x) = 8f(x) + 2[8f(x) + 2f(2x)− f(0)]

whence
f(0) = 0 and f(2x) = 4f(x),

by (15). Using these equalities together with f(x) = f(−x), one can easily verify that
(2) is fulfilled for all x, y ∈ X.

5. STABILITY OF EQUATION (1)

We use these Lemmas in the proofs of Theorems 2 and 3, in which we put

D := {(x, x), (−x, x), (x,−x), (−x,−x);x ∈ X?}.

Theorem 2. Let g : X → Y be a function satisfying the inequality

‖g(2x+ y)− 4g(x)− g(y)− g(x+ y) + g(x− y)‖ ≤ ω(x, y), (16)

where ω : X? ×X? → [0,∞) is a function fulfilling the following conditions:{
limn→∞

1
9nω(3nx, 3ny) = 0;∑∞

n=0
1
9nω(3nu, 3nv) <∞ for all (u, v) ∈ D.

Then there exists a unique quadratic function Q : X → Y satisfying the estimate

‖Q(x)− g(x)‖ ≤
∞∑

n=0

1
9n+1

ϕ(3nx, 3nx) + ψ(x), (17)

where
ϕ(x, y) =

1
2
[ω(x, y) + ω(−x, y) + ω(x,−y) + ω(−x,−y)] (18)

and

ψ(x) =
1
6
[
1
2
[ω(x, x) +ω(−x,−x)] +ω(x,−x) +ω(−x, x) +

1
2
[ω(x,−2x) +ω(−x, 2x)]].

(19)

Proof. First observe that, because of (18) and the limit properties of the function ω
stated in (16), the function ϕ satisfies (6). Let p and h be the even and the odd part,
respectively, of the function g, i.e.,

p(x) =
g(x) + g(−x)

2
, h(x) =

g(x)− g(−x)
2

, x ∈ X.

It is not hard to check that

‖p(2x+ y)− 4p(x)− p(x+ y)− p(y) + p(x− y)‖ ≤ 1
2
[ω(x, y) + ω(−x,−y)] (20)
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and

‖h(2x+ y)− 4h(x)− h(x+ y)− h(y) + h(x− y)‖ ≤ 1
2
[ω(x, y) + ω(−x,−y)]. (21)

Setting y = x and then y = −x in inequality (20), we get

‖p(3x)− 5p(x)− p(2x) + p(0)‖ ≤ 1
2
[ω(x, x) + ω(−x,−x)]

and
‖ − 4p(x)− p(0) + p(2x)‖ ≤ 1

2
[ω(x,−x) + ω(−x, x)].

Consequently,

‖p(3x)− 9p(x)‖ ≤ 1
2
[ω(x, x) + ω(−x,−x) + ω(x,−x) + ω(−x, x)].

Thus, because of (18),

‖1
9
p(3x)− p(x)‖ ≤ 1

9
ϕ(x, x). (22)

It follows from inequality (22) that

‖ 1
9n+1

p(3n+1x)− 1
9n
p(3nx)‖ ≤ 1

9
1
9n
ϕ(3nx, 3nx).

Taking λn = 9−n, βn = 3n, n ∈ N, from Lemmas 1 and 2 and Theorem 1, we infer
that there exists a quadratic function Q : X → Y fulfilling the estimate

‖Q(x)− p(x)‖ ≤
∞∑

n=0

1
9n+1

ϕ(3nx, 3nx). (23)

(Note that (20) is of form (5) with r = 5.)
Now we are going to check the inequality

‖h(x)‖ ≤ ψ(x). (24)

Since h is odd, then h(0) = 0. Setting y = x, y = −x and finally y = −2x in (21), we
obtain

‖h(3x)− 5h(x)− h(2x)‖ ≤ 1
2 [ω(x, x) + ω(−x,−x)],

‖2h(2x)− 4h(x)‖ ≤ ω(x,−x) + ω(−x, x),
‖h(3x)− 3h(x) + h(2x)‖ ≤ 1

2 [ω(x,−2x) + ω(−x, 2x)].

Consequently, by the triangle inequality

‖h(x)‖ ≤ 1
6
[
ω(x, x) + ω(−x,−x)

2
+ ω(x,−x) + ω(−x, x)+

+
ω(x,−2x) + ω(−x, 2x)

2
].

(25)
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By virtue of (19) and (25), we obtain estimate (24). Because of (23), this is (17).
To prove the uniqueness of Q assume that Q1 : X → Y is a quadratic function

satisfying estimate (17). On account of a theorem proved in [7],

Q(3x) = 9Q(x) as well as Q1(3x) = 9Q1(x), x ∈ X.

Thus

‖Q(x)−Q1(x)‖ =
1
9k
‖Q(3kx)−Q1(3kx)‖ ≤

≤ 1
9k
{‖Q(3kx)− f(3kx)‖+ ‖Q1(3kx)− f(3kx)‖} ≤

≤ 1
9k
{2

∞∑
n=0

1
9n+1

ϕ(3n+kx, 3n+kx)) + ψ(3kx)} =

= 2
∞∑

j=k

1
9j+1

ϕ(3jx, 3jx) +
1
9k
ψ(3kx).

By our assumption, the last expression tends to zero, as k →∞. This completes the
proof of Theorem 2.

Theorem 3. Assume that X is a commutative group uniquely divisible by 3. Let
g : X → Y be a function satisfying the inequality

‖g(2x+ y)− 4g(x)− g(y)− g(x+ y) + g(x− y)‖ ≤ ω(x, y),

where ω : X? ×X? → [0,∞) is a function fulfilling the following conditions{
limn→∞ 9nω(3−nx, 3−ny) = 0;∑∞

n=0 9nω(3−nu, 3−nv) <∞ for all (u, v) ∈ D.

Then there exists a unique quadratic function Q : X → Y satisfying the estimate

‖Q(x)− g(x)‖ ≤
∞∑

n=0

9nϕ(3−n−1x, 3−n−1x) + ψ(x),

where ϕ and ψ are defined as in Theorem 2.

Proof. The proof runs similarly to the proof of Theorem 2. Let ϕ and ψ be defined
as in Theorem 2. We consider inequalities (20) and (21). In the proof of Theorem 2,
we obtained the following inequalities

‖h(x)‖ ≤ ψ(x)

and
‖p(3x)− 9p(x)‖ ≤ ϕ(x, x). (26)
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Replacing x by x
3 in (26), we get

‖9p(x
3
)− p(x)‖ ≤ ϕ(

x

3
,
x

3
)

whence
‖9n+1p(

x

3n+1
)− 9np(

x

3n
)‖ ≤ 9nϕ(

x

3n+1
,

x

3n+1
).

It follows from the assumptions of Theorem 3 that{
limn→∞ 9nϕ(3−n−1x, 3−n−1y) = 0,∑∞

n=0 9nϕ(3−n−1x, 3−n−1x) <∞.

On account of Lemmas 1 and 3, as well as Theorem 1, there exists a quadratic function
Q : X → Y satisfying the following estimate

‖Q(x)− p(x)‖ ≤
∞∑

n=0

9nϕ(
x

3n+1
,

x

3n+1
).

Therefore,

‖Q(x)− g(x)‖ ≤
∞∑

n=0

9nϕ(
x

3n+1
,

x

3n+1
) + ψ(x).

The proof of the uniqueness of Q is quite similar to that of Theorem 2.

6. STABILITY OF EQUATION (2)

Theorem 4. Let g : X → Y be a function satisfying the inequality

‖g(2x+ y)− g(2x− y)− 8g(x)− 2g(y)‖ ≤ ϕ(x, y), (27)

where ϕ : X? ×X? → [0,∞) is a function fulfilling the conditions:{
limn→∞

1
9nϕ(3nx, 3ny) = 0;∑∞

n=0
1
9nϕ(3xx, 3nx) is convergent.

Then there exists a unique quadratic function Q : X → Y satisfying the following
estimate

‖Q(x)− g(x)‖ ≤
∞∑

n=0

1
9n+1

ϕ(3nx, 3nx)). (28)

Proof. Putting y = x in (27), we get

‖g(3x)− 9g(x)‖ ≤ ϕ(x, x). (29)

Now we argue quite similarly as in the proof of Theorem 2 (the even case), obtaining
the existence of a unique quadratic function Q : X → Y fulfilling estimate (28).
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Theorem 5. Assume that X is a commutative group uniquely divisible by 3. Let
g : X → Y be a function satisfying the inequality

‖g(2x+ y) + g(2x− y)− 8g(x)− 2g(y)‖ ≤ ϕ(x, y),

where ϕ : X? ×X? → [0,∞) is a function fulfilling the following conditions:{
limn→∞ 9nϕ(3−nx, 3−ny) = 0;∑∞

n=0 9nϕ(3−nx, 3−nx) <∞.

Then there exists a unique quadratic function Q : X → Y satisfying the estimate

‖Q(x)− g(x)‖ ≤
∞∑

n=0

9nϕ(3−n−1x, 3−n−1x).

Proof. Setting x
3 instead of x in (29), we obtain

‖g(x)− 9g(
x

3
)‖ ≤ ϕ(

x

3
,
x

3
).

Now we argue as in the proof of Theorem 3, obtaining a unique quadratic function Q
fulfilling the following estimate

‖Q(x)− g(x)‖ ≤
∞∑

n=0

9nϕ(
x

3n+1
,

x

3n+1
).

Concluding remark. Let θ ≥ 0 and ω(x, y) = θ(‖x‖α + ‖y‖α), or ω(x, y) =
θ‖x‖β‖y‖β. Theorems 2 and 4 can be applied to these functions ω with α < 2 and
β < 1, whereas Theorems 3 and 5 – with α > 2 and β > 1. Thus our theorems cover
the cases considered by several other authors, and in particular, by C. Park and J. Su
An.
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