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Abstract

Motivation

When we were asked for help with high-level microarray data analysis (on Affymetrix HGU-

133Amicroarray), we faced the problem of selecting an appropriate method. We wanted to

select a method that would yield "the best result" (detected as many "really" differentially ex-

pressed genes (DEGs) as possible, without false positives and false negatives). However,

life scientists could not help us – they use their "favorite" method without special argumenta-

tion. We also did not find any norm or recommendation. Therefore, we decided to examine it

for our own purpose. We considered whether the results obtained using different methods of

high-level microarray data analyses – Significant Analysis of Microarrays, Rank Products,

Bland-Altman, Mann-Whitney test, T test and the Linear Models for Microarray Data – would

be in agreement. Initially, we conducted a comparative analysis of the results on eight real

data sets frommicroarray experiments (from the Array Express database). The results were

surprising. On the same array set, the set of DEGs by different methods were significantly dif-

ferent. We also applied the methods to artificial data sets and determined somemeasures

that allow the preparation of the overall scoring of tested methods for future recommendation.

Results

We found a very low level concordance of results from tested methods on real array sets.

The number of common DEGs (detected by all six methods on fixed array sets, checked on

eight array sets) ranged from 6 to 433 (22,283 total array readings). Results on artificial data

sets were better than those on the real data. However, they were not fully satisfying. We

scored tested methods on accuracy, recall, precision, f-measure and Matthews correlation

coefficient. Based on the overall scoring, the best methods were SAM and LIMMA. We also

found TT to be acceptable. The worst scoring was MW. Based on our study, we recom-

mend: 1. Carefully taking into account the need for study when choosing a method, 2. Mak-

ing high-level analysis with more than one method and then only taking the genes that are

common to all methods (which seems to be reasonable) and 3. Being very careful (while
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summarizing facts) about sets of differentially expressed genes: different methods discover

different sets of DEGs.

Introduction
Microarrays are used to detect gene expression levels. Using this technology, we can simulta-
neously detect the expression levels of several thousand genes with one experiment [1]. Micro-
arrays can also be used to determine how a disease or other external factors influence the level
of gene expression in cells. To reach an appropriate conclusion, it is very important to analyze
data (microarray readings) properly. Currently, many methods are used to detect differentially
expressed genes (DEGs) from microarray data. However, there is no standardization and every
scientist can select his or her preferred method.

When we were asked for help with processing microarray data, we faced the problem of se-
lecting an appropriate method. We were interested in finding a method that would yield "the
best result". We found publications that provided comparisons of methods [2, 3, 4, 5]. Howev-
er, such works did not answer all of our questions. All of the studies proved that methods are
not consistent when taking the obtained results into account. At the same time, they did not
provide recommendations, standard or procedure proposals or objective method (algorithm)
assessments. We also noted that life scientists do not pay special attention to what method they
use to analyze the results of microarray experiments (this is partly due to the use of commercial
or ready-to-use software, where the information about which method adopted is described in
the technical documentation) [6,7]. Based on this, we decided to determine how consistent the
results are when examined by different methods of analysis of gene expressions [8, 9]. We de-
cided to describe these results of our study with method evaluation.

We decided to examine six commonly accepted and widely used methods for detecting
DEGs [10,11]. The methods we tested were: Significance Analysis of Microarrays (SAM), Rank
Products (RP), Bland-Altman (BA), Mann-Whitney test (MW), T Test (TT), and Linear Mod-
els for Microarray Data (LIMMA).

Experiments were conducted using real data from eight microarray experiments (hereafter,
Arraysets). We found that the first results were surprisingly divergent. Thus, we decided to test
the methods on artificially prepared data sets (hereafter, Datasets) with known outstanding val-
ues (hereafter, aDEGs—artificial DEG) to be detected.

Microarray Experiment and Microarray Data Analysis
To obtain information about the types of microarrays and the principles of their operation, we
referred to various sources [12, 13]. Fig 1 presents the steps of microarray experiments (refer-
ence to block number is given in brackets).

Aside from the usual steps that are common in most experiments—conception work, labo-
ratory work (wet-lab) and closing work (blocks (1), (2), and (3) (Fig 1, S1 Fig) respectively)—in
microarray experiments, three special steps (phases of data analysis) can be specified:

• Low-level data analysis (3a), where the intensity of fluorescence (raw data) is translated into
numbers that reflect the fluorescence level for each probesetID for each microarray reading.

• High-level data analysis (3b, 3c), where we exclude probesets without expression changes
and select the highest level of data analysis with probesets that undergo expression changes.

Comparison of High-Level Microarray Analysis Methods
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Fig 1. Microarray experiment steps (phases).

doi:10.1371/journal.pone.0128845.g001
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• Highest-level data analysis (4), where annotation, pathway analysis, interpretation, reporting,
and visualization take place.

In this study, we were only interested in high-level analysis methods, with a special interest
in DEGs detection. Because tested method starts with a data table of microarray reading (the
table of numbers and probeset identifiers as input data, without additional information), all
factors concerning any biological or molecular mechanisms and tissue-specific questions were
out of scope in this work. We started our examinations when we saw a normalized table with
fluorescence levels for probesets and our goal was to determine which probesets represent
genes with transcriptional activity chance (up—and down regulated—for which probeset iden-
tifier values changed). In addition, co-expression and pathway analysis was out of scope in our
study; this can be done later, based on the results from the high-level analysis. As can be seen
(Fig 1), all levels of analyses depended on the results of previous levels. Properly conducted
low-level analysis is important for the results of high-level analysis. For highest-level analysis,
results of both previous analyses (together with PCR validation of transcriptional activity of
certain gene), as well as all biological, molecular mechanisms, and tissue specific issues, are cru-
cial for the final results of experiment.

In short, high-level analysis can be classified as: (3 b) simple methods, which are mainly
based on statistics, and (3 c) complex methods, which are based on artificial intelligence and
discrete mathematics [14, 15, 16].

2.1 Short characteristics of the methods
In the comparisons presented in this paper, we only focused on simple methods. Below, we
provide a short characterization of each of the examined methods.

• Significant Analysis of Microarrays (SAM) [17, 18]
SAM is a statistical method used to determine statistical significance in gene expressions be-
tween groups. In terms of mode of action, SAM reassembles a T test. However, SAM uses
non-parametric statistics, due to the fact that microarray data are not normally distributed.

• Rank Product (RP) [19, 20, 14]
RP is a statistical method for detecting gene expression changes. It belongs to non-parametric
statistical tests and is based on ranks of fold changes.

• Bland-Altman (BA) [1, 21]
BA analysis is a statistical method that allows the comparison of two groups of results. In ad-
dition to using BA on data from microarray experiments, it is also very popular in medical
data analysis of medical data.

• Mann-Whitney (MW) [22]
MW is a non-parametric test used to test the conformity between two populations. The null
hypothesis is that the two populations are identical. It is one of the most popular tests used to
check the conformity between groups. One of its usages is to detect gene expression changes
in microarray data.

• Test T (TT) [23]
TT is a statistical test that determines whether two sets differ from one another in a statisti-
cally significant way. This test is based on the average and variance of the population. It is
one of the simplest and most frequently used statistical tests.
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• Linear Models for Microarray Data (LIMMA) [24]
LIMMA is available as a BioConductor package for analyzing gene expression in microarray
data. It uses linear models to analyze microarray data.

LIMMA is available as a BioConductor package for analyzing gene expression in microarray
data. It uses linear models to analyze microarray data.

We also examined the frequency of using certain methods in scientific papers by searching
Google Scholar and PubMed (Table 1).

We searched the name of the method, along with (AND operator) two phrases. In the first
search, we used “differentially expressed genes” and in the second, we used "gene expression".

Arraysets—Experiments
We compared the results of a high-level analysis for eight microarray (Affymetrix HG-U133A)
experiments from ArrayExpress [25, 26]. All readings from this type of microarray contained
22,283 microarray probes (probesets) [12, 27]. The array sets contained microarray readings
from a different number of samples. Table 2 presents brief information about the chosen array
sets, along with information about the accession number, the number of samples in the array
set, and the short characteristics of samples. With the exception of the first array set, all the oth-
ers included readings from two types of samples: control (from healthy tissue) and tissue from
affected tissue. We chose these experiments in order to verify the effectiveness of methods,
both in the dependence of the number of samples in the microarray data and the different
microarray experiments.

The first necessary step was to conduct a low-level data analysis.

Table 1. Frequency of hits: method name along with “differentially expressed genes” and “gene expression” phrases (Google Scholar, PubMed).

Method name "Differentially expressed genes" "Gene expression"

SAM Significant Analysis of Microarrays 1 290; 303 516; 2 287
SAM 14 400; 252 190 000, 1 746

RP Rank Products 691; 15 948; 122
MW Mann-Whitney 7 210; 32 131 000; 511

BA Bland-Altman 106; 2 1 930; 14
TT test t 423; 1 6 420; 1 375

t-test 32 000; 285 1 390 000; 1 375
LIMMA Linear Models for Microarray Data 25; 74 38; 367

LIMMA 7 010; 77 11 600; 106

doi:10.1371/journal.pone.0128845.t001

Table 2. Arraysets Characteristics.

Arraysets Accession number Number of samples Characteristics

ArraySet1 E-GEOD-32072 50 all samples from cancerous tissue (lung)

ArraySet2 E-GEOD-14882 16 8—control, 8—patients with MELAS syndrome

ArraySet3 E-GEOD-15852 86 43—control, 43—lung cancer tissue

ArraySet4 E-MEXP-1690 12 6—control, 6—ganglioglioma

ArraySet5 E-GEOD-56899 45 5—control, 40 brain tissue affected by Alzheimer's

ArraySet6 E-GEOD-22529 104 82—chemoimmunotherapy patients, 22 from cancer tissue

ArraySet7 E-TABM-794 102 50—control, 52—prostate tumours

ArraySet8 E-GEOD-11038 72 25—control, 47 tissue with leukemia

doi:10.1371/journal.pone.0128845.t002
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In order to perform a low-level analysis, we used standardized Robust MultiChip Average
(RMA) [11, 23] method with a Bioconductor [28], which was done for all of the Arraysets. In
this study, this type of low-level analysis is not a variable. We present (Fig 2) the process of
preparation of Arraysets from the single array experiment data.

For the purpose of conformity verification, we carried out a high-level analysis of array sets.
The parameters for each method are presented in Table 3. To perform an analysis of tested
methods, we used R packages, or R language built-in functions.

These parameters remained intact throughout all of the testing procedures (both for Array-
sets and Datasets).

The number of DEGs detected by different methods is presented in Table 4.
From Table 4, it can be seen that we detected a small quantity of common DEGs—from 6 to

433—and the number of DEGs detected by various methods in each Arrayset was different. First,
we suspected that the different quantity of detected DEGs was a result of using methods with dis-
tinct sensitivity levels. It is for this reason we also examined artificial datasets (see part 4).

For each Arrayset, we decided to present the results as Venn diagrams. Because the visuali-
zation of common parts of more than five sets in the form of Venn diagrams is not trivial, we
used the approach presented by [29]. We present the Venn diagram for Arrayset 1 (Fig 3)
(Venn diagrams of the remaining Arraysets are presented in Supporting Information files (S1–
S7 Figs)). The numbers represent the quantity of detected DEGs. Thus, the diagram also shows
the result concordance of methods. The grayscale represents the number of methods, for which
the common part has been computed.

On the basis of the presented Venn diagrams, a very low concordance of results between
tested methods can be noticed. A large part of DEGs identified by one of the methods was not
considered as DEG by other methods. For each Arrayset, the number of DEGs detected by
each method can be read in Table 4, and the number of common DEGs detected by methods
can be read from the Venn diagrams (Fig 3, S1–S7 Figs).

From the analysis, it is clear the diversified concordance between DEGs detected by certain
methods on Arraysets.

Fig 2. Arraysets preparation process.

doi:10.1371/journal.pone.0128845.g002

Table 3. Parameters that were fixed for eachmethod of high-level analysis (for the purpose of
experiments).

Methods Type of parameter Value of parameter

SAM fold change 2.00

RP p-value 0.01

MW p-value 0.05

BA p-value 0.02

TT p-value 0.01

LIMMA p-value 0.05

doi:10.1371/journal.pone.0128845.t003
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Such a low agreement level surprised us. As such, we decided to test the methods on artifi-
cially generated data to determine whether the methods themselves (or implementation of al-
gorithms) work properly. We prepared special artificial datasets, with a priori known
outstanding in value elements—aDEG (to mimic DEGs). We prepared two datasets with 2,000
elements, generated as normal distribution with mean = 10 and σ = 1.3. Next, in the case of
Dataset1, 73 elements were changed with values from mean = 15, σ = 1.3 (as up regulated
aDEGs) to mean = 5, σ = 1.3 (as down regulated aDEGs). The range of certain values of exem-
plary artificial array readings are shown on the boxplot chart in Fig 4 with usual ranges: min
value, 1st quartile, median value, 3rd quartile, and max value. The values which "expression"
does not change are marked as “other”, up regulated aDEGs are marked as “up regulated”, and
down regulated aDEGs are marked as “down regulated”. It can be seen that all ranges are in
this case completely separate.

Dataset2 had slightly outstanding values—ranging from mean = 13.5, σ = 1.3 to mean = 6.5,
σ = 1.3 respectively (we also wanted to check the sensitivity of each method). Range of certain
values for Dataset2 (“other” together with up and down regulated aDEGs) is shown on Fig 5 in
a similar way as on Fig 4. In this case, one can see that down regulated are completely separate

Table 4. DEGs detected in Arraysets by different methods (22,283 in all).

SAM RP MW BA TT LIMMA common DEGs

ArraySet1 3323 11461 3752 1782 2200 1340 11
ArraySet2 1043 1446 952 1132 153 952 6

ArraySet3 4605 4551 2260 1743 1092 2260 433
ArraySet4 1872 1846 1848 914 320 1848 91

ArraySet5 11590 2014 840 1476 448 840 16
ArraySet6 659 3380 992 977 493 992 95

Arrayset7 2798 3100 4797 2468 2581 2684 254
ArraySet8 1716 1885 1789 505 1041 633 122

doi:10.1371/journal.pone.0128845.t004

Fig 3. Venn diagram for Arrayset1.

doi:10.1371/journal.pone.0128845.g003
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from “other”, only small amount of up regulated has common range with some maximum val-
ues of “other”.

Datasets are uploaded as Supplemental Materials; for more detailed information, refer to
adeg_info.txt and ReadMe.txt file in Supplemental Materials. The results of aDEGs detection
in both Datasets are presented in the next section.

Fig 4. Distribution of values in Dataset1.

doi:10.1371/journal.pone.0128845.g004

Fig 5. Distribution of values in Dataset2.

doi:10.1371/journal.pone.0128845.g005
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Experiments on Datasets
In the case of the Arraysets, it was difficult to assess which method gave the best results, be-
cause we did not know which (and how many) values should be detected as DEGs. Thus, we
needed a procedure that would allow scoring the methods used for DEGs detection. The prob-
lem of detecting DEGs can be regarded as a problem of classifying (grouping) data into three
groups: DEGs without change, DEGs up regulated and DEGs down regulated.

4.1 Methods Quality Assessment [30, 31]
In the case of the artificially prepared Datasets, we knew what number of aDEGs to detect.
Thus, we could make an algorithm assessment. We determined all true positives (TP), true neg-
atives (TN), false positives (FP), and false negatives (FN). Therefore, we assessed the quality of
methods using measures that were used in computer science during the classification algo-
rithms evaluation. These measures were: accuracy (acc), recall (rec), precision (prec), f-measure
(fm), and Matthews correlation coefficient (MCC). MCC interpretation is similar to ROC/
AUC, but it is presented in the form of one number. Furthermore, it is regarded to be more sta-
ble when class (groups) sizes may be different. The first used measure was accuracy. Accuracy
is defined as:

acc ¼ ðTP þ TNÞ
ðTP þ TN þ FP þ FNÞ

Accuracy describes the degree of conformity between values that should be detected and val-
ues that algorithms detect. An accuracy value close to 1 means the greater accuracy of the algo-
rithm (it is better). An accuracy value equal to 1 means that the tested algorithm only found
the values that should be detected. An accuracy of 0 means that the algorithm has not found
any of the values that it should.

The second measure used was recall, also known as true positive rate or sensitivity. Recall is
defined as:

rec ¼ TP
TP þ FN

Recall describes how many values are correctly detected by the tested algorithms, in propor-
tion to all of the values that should be detected. Algorithms give the best results when the recall
is equal to 1 and the worst results when the recall is 0.

The next measure used was precision. Precision is described as:

prec ¼ TP
TP þ FP

Precision describes how many values are correctly detected by the tested algorithms. As in
recall, the best results are given when the precision is equal to 1 and the worst results are given
when the precision is 0.

The next metrics was the f-measure, which is described as:

fm ¼ TP þ TP
TP þ TP þ FP þ FN

F-measure is a kind of compromise between recall and precision. When we only use recall
or precision, we are not able to decide which algorithm gives better results, detects less "un-
wanted" values or misses a small amount of that which should be detected. F-measure is usually
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used for choosing an algorithm with optimal ratio of precision and recall (fm = 1 the best, 0 the
worst).

The last measure used in the algorithm evaluation was Matthews Correlation Coefficient,
which. Matthews correlation coefficient is described as:

MCC ¼ TP � TN � FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FP Þ � ðTP þ FN Þ � ðTP þ FP Þ � ðTN þ FN Þp

Matthews Correlation Coefficient considers values in the range -1 to 1 (-1 the worst, 1 the
best). This measure gives information similar to correlation, which inform us to what extent
the values that are detected by the tested algorithm are similar to those we expected.

Dataset1 and Dataset2 were examined with the same methods, i.e., SAM, RP, BA, MW, TT,
and LIMMA (and the same parameters (see Table 3)).

4.2 Dataset1—results
For Dataset1, almost all of the methods detected at least 73 modified values. Furthermore,
some recognized additional values. Only the BA method and LIMMA detected less than we ex-
pected (72 of 73). The distribution of values in Dataset1 is presented on the boxplot (Fig 4).

A summary of values detected by all tested methods, as well as the measures for method
evaluation, is presented in Table 5.

SAM and LIMMA had the best values in the case of four (for all five) measures. SAM had
the highest values for acc, rec, fm, and MCC. LIMMA had the highest values for acc, prec, fm,
and MCC. Moreover, SAM and LIMMA reached the same values for acc, fm, and MCC. How-
ever, they differed in rec and prec. SAM had the maximum value of rec parameter (equal to 1),
which means that the algorithm had no false negatives. LIMMA had prec that equaled 1, mean-
ing that it had no false positives. The worst results were obtained in the case of the MWmeth-
od. Here, in four (of all five) measures, it had the worst values. Its measures had low values, so
even maximum values for rec (equal to 1) would not have justified its usage. BA and TT
reached relatively high overall scoring for all measures and the RP results were at an
acceptable level.

Table 6 presents a summary of aDEGs detected by various methods. This shows which of
the additionally detected values were also detected (or not) by other methods. The first column
contains the name of the method used and the second column is the number of additionally de-
tected values, which are also detected by other methods. The other columns show whether

Table 5. Number of aDEGs detected and assessment parameters used for eachmethod in Dataset1 (in bold—the best, in italics—the worst).

aDEGs detected (of all 73)

SAM RP BA MW TT LIMMA

Number of detected values 74 84 76 138 81 72

True positives 73 73 72 73 73 72

True negatives 1926 1916 1923 1862 1919 1927

False positives 1 11 4 65 8 0

False negatives 0 0 1 0 0 1

acc 0.995 0.945 0.975 0.675 0.960 0.995

rec 1 1 0.986 1 1 0.986

prec 0.986 0.869 0.947 0.528 0.901 1

f-measure 0.993 0.929 0.966 0.691 0.948 0.993

MCC 0.989 0.890 0.947 0.508 0.918 0.989

doi:10.1371/journal.pone.0128845.t005
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additional aDEGs were detected (“Yes”, if detected by another method and “No” if not detected
by another method). LIMMA detected less aDEGs than expected, with one false negative, and
so it was omitted from this table. For example, in the first row, SAM detected one additional
aDEG and this was also detected by MW; in the second row, RP detected one additional aDEG,
which was also detected by MW and TT, but not SAM and BA.

It appears that the Dataset1 tested methods worked correctly and were able to detect almost
all of the values that should be recognized as aDEGs.

Based on the experiment of Dataset1, we can conclude that the best algorithms for use are
SAMM and LIMMA (ex-equo), followed by BA and TT, and, eventually, as a last option, RP
and BA. MW had the worst scoring and, therefore, we do not recommend it.

4.3 Dataset2—results
A similar evaluation procedure was carried out on Dataset2. Also, like Dataset1, the distribu-
tion of values in Dataset2 is presented on boxplot.

Table 7 contains a summary of values detected by all of the tested methods, as well as the
measures for method evaluation.

The results for Dataset2 differ from those for Dataset1—they were not so sharp. Similarly to
the Dataset1 result, the worst overall result had MW. RP and BA reached better but rather in-
termediate values in overall range. Additionally, BA had the lowest rec measure for all of the
methods. On the other hand, RP had the maximum possible rec measure value. In the case of
Dataset2, LIMMA reached the best scores for all of the methods. SAM only had slightly worse
scoring. Again, they can be regarded as comparable. The third best-scored method was TT. It
had worse results than LIMMA and SAM, but better than BA and RP. Table 8 presents the

Table 6. Summary of excessed aDEGs by eachmethod.

Excessed Recognized as aDEG by other method

aDEG SAM RP BA MW TT

SAM 1 - No No Yes No

RP 1 No - No Yes Yes

4 No - No Yes No

1 No - Yes Yes No

4 No - No No No

BA 1 No Yes - Yes No

1 No No - Yes Yes

1 No No - Yes No

4 No No - No No

MW 1 Yes No No - No

1 No Yes No - Yes

1 No Yes Yes - No

5 No Yes No - No

1 No No Yes - Yes

1 No No Yes - No

7 No No No - Yes

49 No No No - No

TT 1 No Yes No Yes -

1 No No Yes Yes -

6 No No No Yes -

doi:10.1371/journal.pone.0128845.t006
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summary of information about aDEGs (which should be similarly read to Table 6). Due to the
fact that SAM detected fewer values than expected, it was omitted from this table.

It is clear that almost all of the methods detected more aDEGs than was expected—the
methods gave worse results on a less diversified Dataset.

Based on the results obtained for Dataset2, the best results had LIMMA, followed by SAM
and then TT. RP and BA were also acceptable. Similarly to the experiment with Dataset1, MW
gave the worst results.

A final summary of the scoring methods is shown in Table 9.

Table 7. Number of aDEGs detected and assessment parameters by eachmethod in Dataset2 (in bold—the best, in italics—the worst).

aDEGs detected (of 73 all)

SAM RP BA MW TT LIMMA

Number of detected values 69 98 50 149 85 76

True positives 69 73 46 73 71 73

True negatives 1927 1902 1923 1851 1913 1924

False positives 0 25 4 76 14 3

False negatives 4 0 27 0 2 0

acc 0.980 0.875 0.845 0.620 0.920 0.985

rec 0.945 1 0.630 1 0.972 1

prec 1 0.744 0.920 0.489 0.835 0.960

f-measure 0.971 0.853 0.747 0.657 0.898 0.979

MCC 0.957 0.773 0.665 0.443 0.839 0.968

doi:10.1371/journal.pone.0128845.t007

Table 8. Summary of excessed aDEGs by eachmethod.

Excessed aDEG Recognized as aDEGs by other method

SAM RP BA MW TT LIMMA

RP 1 NO - YES YES YES YES

5 NO - NO YES YES NO

6 NO - NO YES NO NO

13 NO - NO NO NO NO

BA 1 NO YES - YES YES YES

1 NO NO - YES YES NO

2 NO NO - NO NO NO

MW 5 NO YES NO - YES NO

1 NO YES YES - YES YES

6 NO YES NO - NO NO

1 NO NO YES - YES NO

7 NO NO NO - YES NO

56 NO NO NO - NO NO

TT 5 NO YES NO YES - NO

1 NO YES YES YES - YES

1 NO NO YES YES - NO

7 NO NO NO YES - NO

LIMMA 1 NO YES YES YES YES -

2 NO NO NO NO NO -

doi:10.1371/journal.pone.0128845.t008
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Based on Table 9, we recommend methods SAM and LIMMA as the best choice and TT
and BA as acceptable for high-level analysis.

Conclusions
The low level of concordant results for the Arraysets was surprising. When conducted in the
Datasets, our analysis showed that, in most cases, the methods themselves (as well as their im-
plementation) work properly (except the MWmethod, which gave unsatisfactory results). All
of the evaluation measures used for scoring methods were better when the outstanding values
were well “separated” (more diversified, as in Dataset1). Therefore, one possible conclusion is
that microarray experiments data were slightly diversified (similar to Dataset2).

In our opinion, such results show the need to recommend how studies based on microarray
experiments should be carried out:

• The list of DEGs should be obligatory, published with precise specification concerning the
high-level analysis (and software used).

• When selecting an algorithm for high-level analysis, it is important to take into account the
measures for each method and choose a variant method based on special needs (best acc,
best rec, best MCC, etc.).

• In general, when the list of DEGs is only obtained with the use of one high-level analysis, it
should not be regarded as reliable and definitive. One could argue that an official recommen-
dation about high-level analysis should also be carried out. A possible approach is to use a
few methods and acknowledge DEGs as only those genes that are within an intersection of
sets of DEGs obtained by different methods. Based on the overall method scoring presented
(Table 9), we recommend at least LIMMA, SAM, and TT.

The presented results should also be taken into account by authors of reviews (or those who
search for DEGs under certain condition in different papers), while compiling results from dif-
ferent publications that describe a set of detected DEGs. It is very important to pay special at-
tention to the methods of high-level analysis. This is because a resultant set of DEGs can vary,
depending on the method used.

Supporting Information
S1 Data. Dataset used in this study.
(ZIP)

S1 Fig. Venn diagram for Arrayset2.
(TIF)

S2 Fig. Venn diagram for Arrayset3.
(TIF)

Table 9. Overall scoring of methods for the Datasets (one plus equals one point; the more, the better).

SAM RP BA MW TT LIMMA

Dataset1 + + + + + + - + + + + +

Dataset2 + + + + + - + + + + +

overall scoring 6 2 3 0 4 6

doi:10.1371/journal.pone.0128845.t009
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S3 Fig. Venn diagram for Arrayset4.
(TIF)

S4 Fig. Venn diagram for Arrayset5.
(TIF)

S5 Fig. Venn diagram for Arrayset6.
(TIFF)

S6 Fig. Venn diagram for Arrayset7.
(TIF)

S7 Fig. Venn diagram for Arrayset8.
(TIF)
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