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On a ρ-Orthogonally Additive Mappings

Jacek Chmieliński, Justyna Sikorska, and Pawe�l Wójcik

Abstract. We show that a real normed linear space endowed with the
ρ-orthogonality relation, in general need not be an orthogonality space
in the sense of Rätz. However, we prove that ρ-orthogonally additive
mappings defined on some classical Banach spaces have to be additive.
Moreover, additivity (and approximate additivity) under the condition of
an approximate orthogonality is considered.

Mathematics Subject Classification. 39B55, 46C50, 46B20, 46B25.
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1. Introduction

Inner product spaces are by all means the most natural venue for orthogonality,
allowing the definition: x⊥y ⇔ 〈x|y〉 = 0. However, analogous relations may
be considered also in normed linear spaces, as well as in more general settings.

In a real normed linear space (X, ‖ · ‖), for two vectors x, y ∈ X, one can
consider for example the Birkhoff-James orthogonality ⊥B (see [2,15]) defined
by

x⊥By ⇐⇒ ∀λ ∈ R ‖x‖ ≤ ‖x + λy‖,

or the isosceles orthogonality ⊥i (see [15]) defined by

x⊥iy ⇐⇒ ‖x + y‖ = ‖x − y‖,

or many others. Moreover, some axiomatic definitions of the orthogonality in
linear spaces (or even more general structures) are known, among them the one
formulated by Rätz [18] (compare with [12]). A real linear space X of dimension
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at least 2 with a binary relation ⊥ ⊆ X × X is called an orthogonality space
(in the sense of Rätz) whenever the following conditions are satisfied:
(ort1) x⊥0 and 0⊥x for all x ∈ X;
(ort2) if x, y ∈ X \ {0} and x⊥y, then x and y are linearly independent;
(ort3) if x, y ∈ X and x⊥y, then αx⊥βy for all α, β ∈ R;
(ort4) for any two-dimensional subspace P of X, for every x ∈ P and for

every λ ∈ [0,+∞) there exists y ∈ P such that x⊥y and x+y⊥λx−y.
It is easily seen that any inner product space is an orthogonality space in the

above sense. Not so easily, but still the same can be shown for an arbitrary
real normed linear space with the Birkhoff-James orthogonality ⊥B (see [18]).

Yet another axiomatic definition of orthogonality, considered merely on
groups, was introduced by Fechner and Sikorska [10]; we refer to it in Sect. 4.

Let X be a suitable algebraic structure with an orthogonality relation ⊥
(in whatsoever sense) and let G be a group (usually abelian). The following
conditional functional equation, with f : X → G, will be the key notion of the
paper:

x⊥y =⇒ f(x + y) = f(x) + f(y), x, y ∈ X. (1.1)
The function f is then called an orthogonally additive mapping and the

history of that concept goes back nearly a century. We refer to surveys by Rätz
[19] and more recent by Sikorska [20] for motivations, history, various aspects
and problems connected with the subject.

In the basic case of X being a real inner product space it is known (cf.
[5,18,26]) that any orthogonally additive mapping f must be of the form

f(x) = a
(‖x‖2) + b(x), x ∈ X, (1.2)

with unique additive mappings a : R → G and b : X → G. This yields, in
particular, that an orthogonally additive mapping defined on an inner product
space need not be additive. Notice that commutativity of the group G need
not be assumed here (see the recent proof by Toborg [26, Theorem 3.3]). In
more general cases, orthogonally additive mappings have been also widely
investigated (see e.g., [6,12,18]). We recall here the theorem of Rätz, Baron
and Volkmann concerning the orthogonal additivity for mappings defined on
an orthogonality space.

Theorem 1.1. ([6,18]) Let (X,⊥) be an orthogonality space in the sense of Rätz
and let G be an abelian group. A mapping f : X → G satisfies the conditional
equation

x⊥y =⇒ f(x + y) = f(x) + f(y), x, y ∈ X

if and only if there exist an additive mapping ϕ : X → G and a biadditive and
symmetric mapping Φ: X × X → G such that

f(x) = ϕ(x) + Φ(x, x) x ∈ X (1.3)

and Φ(x, y) = 0 for all x, y ∈ X such that x⊥y.
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It follows that all Birkhoff-James orthogonally additive mappings (⊥B-
additive mapings), i.e., such that x⊥By implies f(x + y) = f(x) + f(y), have
the form (1.3).

Quite surprisingly, it turns out that in the setting of the orthogonality
space (X,⊥), all orthogonally additive mappings are unconditionally additive,
unless X is an inner product space, i.e., unless there exists an inner product
〈·|·〉 in X such that x⊥y if and only if 〈x|y〉 = 0. Equivalently, only inner prod-
uct spaces admit nonzero and even orthogonally additive mappings. This was
proved by Szabó [23] when dim X ≥ 3 and by Yang [27] for the remaining case
dim X = 2. Therefore, all ⊥B-additive mappings are additive, unless the norm
‖·‖ comes from an inner product. Actually, for this particular orthogonality,
the phenomenon was observed earlier —see [16,21,22]. The above property,
however, is not restricted to orthogonality spaces. In particular, in a normed
linear space of the dimension greater than 2 and with the isosceles orthogonal-
ity ⊥i, the existence of orthogonally additive mappings which are not additive
also characterizes inner product spaces —see [24,25].

Let us go back to the case of an inner product space X. For a nonnegative
constant ε, a notion of ε-orthogonality (approximate orthogonality) of vectors
x, y ∈ X can be introduced in a natural way by

x⊥εy ⇐⇒ | 〈x|y〉 | ≤ ε‖x‖ ‖y‖.

Surely, ⊥0 = ⊥ and since for ε ≥ 1 the Cauchy-Schwarz inequality leads to
⊥ε = X2, we restrict the range of ε to the interval [0, 1).

Having defined an approximate orthogonality on X, we may consider, for
a group G and a mapping f : X → G, a stronger than (1.1) condition

x⊥εy =⇒ f(x + y) = f(x) + f(y), x, y ∈ X. (1.4)

Obviously, for ε = 0, (1.4) coincides with (1.1).
Although an orthogonally additive mapping defined on an inner product

space need not be additive, any solution of (1.4) with a strictly positive ε is
unconditionally additive.

Theorem 1.2. Let X be a real inner product space with dim X ≥ 2, let G be a
group and let ε ∈ (0, 1). A function f : X → G satisfies (1.4) if and only if f
is additive.

Let us stress that we do not assume commutativity of G here, although,
as in the rest of the paper, we use an additive notation.

Proof. It is clear that additivity of f implies (1.4). For the reverse, assume
(1.4) whence f must be of the form (1.2). In order to prove additivity of f it
is enough to show that the mapping a vanishes. Of course a(0) = 0, so we fix
an arbitrary t ∈ R \ {0} and by proving that a(t) = 0 we will finish the proof.
Let us choose two unit vectors u, v such that 〈u|v〉 = ε. Then for x := t

2εu
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and y := v we have

‖x‖ =
|t|
2ε

, ‖y‖ = 1, t = 2 〈x|y〉 .

Therefore |〈x|y〉|
‖x‖ ‖y‖ = ε, i.e., x⊥εy as well as x⊥ε(−y), whence f(x+ y) = f(x)+

f(y) and f(x − y) = f(x) + f(−y). Then (1.2) yields

a(‖x + y‖2) + b(x) = a(‖x‖2) + b(x) + a(‖y‖2),
a(‖x − y‖2) + b(x) = a(‖x‖2) + b(x) + a(‖y‖2);

consequently a(‖x+ y‖2) = a(‖x− y‖2) and a(t) = a(2 〈x|y〉) = 0 follows. �

There are examples (cf. [3]) of injective or surjective (but not bijective
—cf. [4]) orthogonally additive mappings which are not additive. Theorem 1.2
shows that none of them may satisfy (1.4) with any positive ε ∈ (0, 1).

The above considerations and results have motivated our work, which is
devoted to an orthogonality relation ⊥ρ defined in a real normed linear space
and to the corresponding with it orthogonal additivity.

The paper is organized as follows. In Sect. 2, using the notion of norm
derivatives, we introduce the mapping ρ′ and define the ρ-orthogonality. In
the subsequent part we consider ρ-orthogonally additive mappings defined on
some particular real normed linear spaces. In Sect. 4 we extend Theorem 1.2
to normed linear spaces and we investigate mappings which are approximately
additive under the condition of an approximate orthogonality. We finish our
paper with some concluding remarks and open problems.

2. Norm Derivatives and ρ-Orthogonality

In this section we define and consider yet another orthogonality relation in a
real normed linear space (X, ‖·‖). First, we recall the notion of the so-called
(right and left) norm derivatives ρ′

+, ρ′
− : X × X → R (see e.g., [1,7,9]):

ρ′
±(x, y) := lim

λ→0±

‖x + λy‖2 − ‖x‖2
2λ

= ‖x‖ · lim
λ→0±

‖x + λy‖ − ‖x‖
λ

, x, y ∈ X.

Convexity of the norm yields that the limits exist and the above definitions are
meaningful. It is also natural to consider (cf. [17]) the mapping ρ′ : X ×X → R

being the arithmetic mean of ρ′
+ and ρ′

−, i.e.,

ρ′(x, y) :=
1
2

(
ρ′

−(x, y) + ρ′
+(x, y)

)
, x, y ∈ X.

The following properties of ρ′ will be usefull (for the proofs consult, e.g., [1,9,
17]):
(m1) ρ′(x, αx + y) = α‖x‖2 + ρ′(x, y) for all x, y ∈ X and α ∈ R;
(m2) ρ′(αx, βy) = αβρ′(x, y) for all x, y ∈ X and α, β ∈ R;
(m3) ρ′(x, x) = ‖x‖2 and |ρ′(x, y)| ≤ ‖x‖ ‖y‖ for all x, y ∈ X;
(m4) ρ′(x, ·) is continuous for every x ∈ X.
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Note, that ρ′ need not be continuous with respect to the first variable.
The mapping ρ′ can thus be regarded as a substitute of an inner product

in X (and so can be ρ′
+ and ρ′

−). The following definition is therefore natural
and it plays a crucial role in the present paper. We define a ρ-orthogonality
relation, denoted by ⊥ρ, as

x⊥ρy ⇐⇒ ρ′(x, y) = 0, x, y ∈ X.

It is easy to check that the relation ⊥ρ satisfies the Rätz axioms (ort1), (ort2)
and (ort3). However, as shown in the example below, the axiom (ort4) need
not be fulfilled in general. We are aware that this contradicts the statement of
[1, Proposition 2.8.1], the proof of which is unfortunately incorrect.

Example 2.1. Consider the space l2∞ := (R2, ‖ · ‖∞) with ‖(x1, x2)‖∞ :=
max{|x1|, |x2|} for (x1, x2) ∈ R

2. In this particular space, explicit formu-
las for ρ′

+ and ρ′
− can be obtained (see [1, Example 2.1.2]). Namely, for

(x1, x2), (y1, y2) ∈ R
2 we have

ρ′
+((x1, x2), (y1, y2)) = max{xkyk : k = 1, 2, |xk| = ‖(x1, x2)‖∞},

ρ′
−((x1, x2), (y1, y2)) = min{xkyk : k = 1, 2, |xk| = ‖(x1, x2)‖∞}

and consequently

ρ′((x1, x2), (y1, y2)) =

⎧
⎨

⎩

x1y1 whenever |x1| > |x2|,
x2y2 whenever |x1| < |x2|,

x1y1+x2y2
2 whenever |x1| = |x2|.

(2.1)

Consider the vector (1, 1
4 ) ∈ R

2; it follows from (2.1) that for any (α, β) ∈ R
2

there is

(1, 1
4 )⊥ρ (α, β) ⇐⇒ α = 0.

If (ort4) were true we would have, for some β ∈ R,
(
1, 1

4

)
+ (0, β)⊥ρ

(
1, 1

4

) − (0, β),

and hence

ρ′ ((1, 1
4 + β), (1, 1

4 − β)
)

= 0.

It follows from (2.1) that the last equality is impossible; indeed, if
∣
∣ 1
4 + β

∣
∣ < 1,

then

ρ′ ((1, 1
4 + β), (1, 1

4 − β)
)

= 1 �= 0;

if
∣
∣ 1
4 + β

∣
∣ > 1, then

ρ′ ((1, 1
4 + β), (1, 1

4 − β)
)

= 1
16 − β2 �= 0

(if 1
16 −β2 = 0 were true, then

∣
∣ 1
4 + β

∣
∣ > 1 would not be satisfied); and finally

if
∣
∣ 1
4 + β

∣
∣ = 1, then β = 3

4 or β = − 5
4 and ρ′ ((1, 1

4 + β), (1, 1
4 − β)

)
= ± 1

4 �= 0.
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The space l2∞ is not exceptional in lacking the (ort4) condition; on the
contrary, the family of such spaces is quite large. Let (X1, ‖ ·‖1), (X2, ‖ ·‖2) be
nontrivial real normed linear spaces. By X1⊕∞X2 we denote the product space
X1 × X2 with the norm ‖(x1, x2)‖∞ := max{‖x1‖1, ‖x2‖2}. Now, the space
X1⊕∞ X2 contains a subspace isometric to l2∞ and therefore, as a consequence
of what we observed in Example 2.1, it cannot satisfy (ort4).

Theorem 2.2. The relation ⊥ρ in X1 ⊕∞ X2 does not satisfy (ort4).

Notice that some classical spaces like l∞, c, co have the form X1 ⊕∞ X2

(for example co is isometric to R⊕∞ co). The fact that the space (X,⊥ρ) need
not be an orthogonality space in the sense of Rätz, motivates our investigations
in the next section.

3. ρ-Orthogonal Additivity

We aim at a characterization of ρ-orthogonally additive mappings, i.e., those
satisfying

x⊥ρy =⇒ f(x + y) = f(x) + f(y) (3.1)
in spaces for which (in view of Theorem 2.2) we cannot apply Theorem 1.1.

In the first part of this section, we consider the case where the domain
is a product of two real normed linear spaces and the relation ⊥ρ corresponds
to the relevant norm ‖ · ‖∞ in that space. We start with the following lemma.

Lemma 3.1. Let (X1, ‖ · ‖1) and (X2, ‖ · ‖2) be real normed linear spaces that
yield the product space X1 ⊕∞ X2 and the orthogonality relation ⊥ρ in it. For
arbitrary x1 ∈ X1 and x2 ∈ X2 the following statements are true.
(i) If ‖x1‖1 > ‖x2‖2, then (x1, x2)⊥ρ(0, x′

2) for all x′
2 ∈ X2.

(ii) If ‖x1‖1 < ‖x2‖2, then (x1, x2)⊥ρ(x′
1, 0) for all x′

1 ∈ X1.

Proof. We will prove (i) only, and the proof of (ii) runs similarly. We fix x′
2 ∈

X2 and observe that

ρ′
+ ((x1, x2), (0, x′

2)) = ‖(x1, x2)‖∞ · lim
t→0+

‖(x1, x2) + t(0, x′
2)‖∞ − ‖(x1, x2)‖∞
t

= ‖(x1, x2)‖∞

· lim
t→0+

max{‖x1‖1, ‖x2 + tx′
2‖2} − max{‖x1‖1, ‖x2‖2}

t
.

Since ‖x1‖1 > ‖x2‖2, there exists t1 > 0 such that ‖x1‖1 > ‖x2 + tx′
2‖2 for all

t ∈ (0, t1). Thus we have

lim
t→0+

max{‖x1‖1, ‖x2 + tx′
2‖2} − max{‖x1‖1, ‖x2‖2}

t

= lim
t→0+

‖x1‖1 − ‖x1‖1
t

= 0
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and it follows that ρ′
+ ((x1, x2), (0, x′

2)) = 0. Similarly we prove that
ρ′

− ((x1, x2), (0, x′
2)) = 0, whence ρ′ ((x1, x2), (0, x′

2)) = 0 and finally,
(x1, x2)⊥ρ(0, x′

2). �

In the following theorem, given two normed linear spaces, we characterize
ρ-orthogonally additive mappings defined on the product of these spaces and
taking values in an arbitrary group. We stress here that the commutativity of
the target group is not assumed.

Theorem 3.2. Let G be a group, let (X1, ‖ · ‖1) and (X2, ‖ · ‖2) be nontrivial
real normed linear spaces and let f : X1 ⊕∞ X2 → G satisfy

x⊥ρy =⇒ f(x + y) = f(x) + f(y), x, y ∈ X1 × X2. (3.2)

Then f is additive.

Proof. First we prove that f is additive on {0} × X2. Fix (0, x′
2), (0, x′′

2) ∈
{0} × X2 and take any x1 ∈ X1 such that ‖x1‖1 > ‖x′

2‖2. By Lemma 3.1(i),
(x1, 0)⊥ρ(0, x′

2), (x1, x
′
2)⊥ρ(0, x′′

2) and (x1, 0)⊥ρ(0, x′
2 +x′′

2). Applying (3.2) we
get

f(x1, 0) + f(0, x′
2) + f(0, x′′

2) = f ((x1, 0) + (0, x′
2)) + f(0, x′′

2)
= f(x1, x

′
2) + f(0, x′′

2) = f ((x1, x
′
2) + (0, x′′

2))
= f ((x1, 0) + (0, x′

2 + x′′
2))

= f(x1, 0) + f(0, x′
2 + x′′

2)

whence f(0, x′
2) + f(0, x′′

2) = f ((0, x′
2) + (0, x′′

2)) and additivity of f |{0}×X2 is
proved. In a similar way (using Lemma 3.1(ii)), one checks that f |X1×{0} is
additive.

To prove additivity of f on the whole space, fix x = (x1, x2) and y =
(y1, y2) with x1, y1 ∈ X1 and x2, y2 ∈ X2. Lemma 3.1 and the fact that ⊥ρ

satisfies (ort1) yield X1 × {0}⊥ρ{0} × X2 and {0} × X2⊥ρX1 × {0}. Thus we
get from (3.2) and from additivity of f |{0}×X2 and f |X1×{0}

f (x + y) = f ((x1 + y1, 0) + (0, x2 + y2)) = f(x1 + y1, 0) + f(0, x2 + y2)
= f(x1, 0) + f(y1, 0) + f(0, x2) + f(0, y2)
= f(x1, 0) + f ((y1, 0) + (0, x2)) + f(0, y2)
= f(x1, 0) + f ((0, x2) + (y1, 0)) + f(0, y2)
= f(x1, 0) + f(0, x2) + f(y1, 0) + f(0, y2)
= f ((x1, 0) + (0, x2)) + f ((y1, 0) + (0, y2)) = f(x) + f(y).

Thus f is additive. �

Since ⊥ρ ⊆ ⊥B (see e.g., [7,8]), from Theorem 3.2 we get immediately a
novel, in a sense, property of Birkhoff-James orthogonally additive mappings.
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Theorem 3.3. Let G be a group, let X1 and X2 be nontrivial real normed linear
spaces and let f : X1 ⊕∞ X2 → G satisfy

x⊥By =⇒ f(x + y) = f(x) + f(y), x, y ∈ X1 × X2.

Then f is additive.

We emphasize that commutativity of G is not assumed, so the above
result cannot be derived from the already known ones. In particular, it does
not follow from Theorem 1.1 or from the results of Szabó [23] and Yang [27],
even though (X1 ⊕∞ X2,⊥B) is an orthogonality space.

Let us consider now a classical Banach space C[0, 1] of continuous real-
valued functions on [0, 1], with the supremum norm. For mappings ϕ,ψ ∈
C[0, 1] defined by

ϕ(t) = t, ψ(t) = 1 − t, t ∈ [0, 1]

the subspace span{ϕ,ψ} ⊆ C[0, 1] is isometric to l2∞. Thus the orthogonality
⊥ρ in C[0, 1] does not satisfy (ort4). Nevertheless, we are able to characterize
ρ-orthogonally additive mappings defined on that space. In the first result we
make no commutativity assumption for the target group.

Theorem 3.4. Let G be a group and let f : C[0, 1] → G satisfy

ϕ⊥ρψ =⇒ f(ϕ + ψ) = f(ϕ) + f(ψ), ϕ, ψ ∈ C[0, 1]. (3.3)

Then there exist additive mappings a, b : C[0, 1] → G such that f = a + b.

Proof. For a fixed number t1 ∈ (0, 1) let Mt1 , Nt1 ⊆ C[0, 1] be the subspaces
defined by

Mt1 := {ϕ ∈ C[0, 1] : ϕ|[t1,1] = 0} and Nt1 := {ϕ ∈ C[0, 1] : ϕ|[0,t1] = 0}.

Next, define a continuous linear functional ηt1 : C[0, 1] → R by ηt1(ϕ) := ϕ(t1).
It is easy to check that ker ηt1 = Mt1 ⊕Nt1 . Moreover, it is not difficult to show
that the subspace Mt1 ⊕Nt1 ⊆ C[0, 1] is isometrically isomorphic to the Banach
space Mt1 ⊕∞ Nt1 . Thus, we may identify Mt1 ⊕∞ Nt1 with ker ηt1 and we may
consider Mt1 ⊕∞Nt1 as a closed subspace of C[0, 1] with codim Mt1 ⊕∞Nt1 = 1.
From Theorem 3.2 we know that f |ker ηt1

is additive.
Now, fix a number t2 ∈ (0, 1) \ {t1} and define ηt2 : C[0, 1] → R by

ηt2(ϕ) := ϕ(t2). Similarly as before one proves that f |ker ηt2
is additive.

We choose an arbitrary function ϕ1 ∈ C[0, 1] such that ‖ϕ1‖ = 1 and

0 = ϕ1(t2) < ϕ1(t) < ϕ1(t1) = 1, t ∈ [0, 1] \ {t1, t2}.

In particular, we have ϕ1 /∈ ker ηt1 and since codim ker ηt1 = 1, we have

C[0, 1] = span{ϕ1} + ker ηt1 .

Using explicit formulas for ρ′
+ and ρ′

− in C[0, 1] given in [1, Example 2.1.5]

ρ′
+(ϕ,ψ) = sup{ϕ(t)ψ(t) : t ∈ [0, 1], |ϕ(t)| = ‖ϕ‖},

ρ′
−(ϕ,ψ) = inf{ϕ(t)ψ(t) : t ∈ [0, 1], |ϕ(t)| = ‖ϕ‖},
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we arrive at

ρ′
+(ϕ1, γ) = ρ′

−(ϕ1, γ) = ϕ1(t1)γ(t1) = γ(t1) γ ∈ C[0, 1].

Consequently, ρ′(ϕ1, γ) = γ(t1) and thus, in particular,

ϕ1⊥ρ ker ηt1 . (3.4)

For a vector in C[0, 1] with a unique decomposition αϕ1 + h ∈ span{ϕ1} +
ker ηt1 = C[0, 1] we define a linear projection P : C[0, 1] → span{ϕ1} by the
formula P (αϕ1 + h) := αϕ1. It follows that ker P = ker ηt1 and P ◦ P = P .
Therefore, we obtain ψ − P (ψ) ∈ ker ηt1 for all ψ ∈ C[0, 1], and thus, by (3.4),
P (ψ)⊥ρψ − P (ψ).

Let a, b : C[0, 1] → G be defined by a(ψ) := f (P (ψ)) and b(ψ) :=
f (ψ − P (ψ)) for ψ ∈ C[0, 1]. We know that f |ker ηt1

and f |ker ηt2
are addi-

tive. Since span{ϕ1} ⊆ ker ηt2 , f is additive on span{ϕ1}. Therefore, both
mappings a and b are additive. Finally, we have from (3.3),

f(ψ) = f (P (ψ) + ψ − P (ψ)) = f (P (ψ)) + f (ψ − P (ψ)) = a(ψ) + b(ψ),

and the proof is complete. �

Assuming that G is abelian, the sum of mappings a and b is additive,
whence our result takes the following form.

Theorem 3.5. Let G be an abelian group and let f : C[0, 1] → G be a ρ-
orthogonally additive mapping (i.e., satisfy (3.3)). Then f is additive.

A natural problem arises.

Problem 3.6. Is the commutativity of G a necessary assumption in Theorem
3.5?

In order to answer this question positively, it suffices to prove that if two
mappings a, b : C[0, 1] → G are additive and their sum f := a+b satisfies (3.3),
then f is additive. We can relate this problem with the result of Toborg [26,
Corollary 3.4] who proved that in the case of an inner product space X in the
domain, the subgroup of G generated by the image f(X) of an orthogonally
additive mapping f is abelian.

Another question is whether the results obtained for X1⊕∞X2 and C[0, 1]
can be extended to other, or perhaps all, spaces. The exact statement of this
problem concludes the section.

Problem 3.7. Is it true that in any normed linear space X which is not an
inner product space, any ρ-orthogonally additive mapping is additive?
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4. Approximate ρ-Orthogonal Additivity and Stability

In the final part of the paper we deal with approximate solutions of equation
(3.1) as well as with its stability.

We start with a simple general observation. Let (F,+) be a semigroup,
let (G,+) be an abelian group, and let Δ ⊆ F × F and U ⊆ G be nonempty
subsets. Suppose that mappings f, g : F → G satisfy

f(x) − g(x) ∈ U, x ∈ F

and g is additive on Δ, i.e.,

g(x + y) = g(x) + g(y), (x, y) ∈ Δ. (4.1)

Then for a pair (x, y) ∈ Δ we have −g(x + y) + g(x) + g(y) = 0 and also

f(x + y) − g(x + y) ∈ U, −f(x) + g(x) ∈ −U, −f(y) + g(y) ∈ −U.

Adding it all (with the help of commutativity), we obtain

f(x + y) − f(x) − f(y) ∈ U + (−U) + (−U), (x, y) ∈ Δ. (4.2)

Example 4.1. Keeping the above notation, suppose that a mapping g : F → G
satisfies the property (4.1). For each element x ∈ F , using the axiom of choice,
we take an arbitrary ax ∈ g(x) + U and define a function f : F → G by
f(x) := ax. Then f(x)−g(x) ∈ U for each x ∈ F and it follows that f satisfies
(4.2). This shows that the family of mappings satisfying (4.2) can be large and
these mappings may by very irregular.

Assume now that for a binary relation ⊥ in F we have x⊥y ⇔ (x, y) ∈ Δ
and assume that the target group G is replaced by a normed linear space
(Y, ‖ · ‖) with U being a closed ball centred at zero, with the radius δ ≥ 0.
Suppose that a mapping g : F → Y satisfies (4.1), which now takes the form

x⊥y =⇒ g(x + y) = g(x) + g(y), x, y ∈ F.

If a mapping f : F → Y satisfies ‖f(x) − g(x)‖ ≤ δ for all x ∈ F , then f
satisfies (4.2), the meaning of which is

x⊥y =⇒ ‖f(x + y) − f(x) − f(y)‖ ≤ 3δ, x, y ∈ F.

The last property will be of our interest in the present section with the role of
⊥ played by the ρ-orthogonality or an approximate ρ-orthogonality. We would
like to ask a reverse, in a sense, question whether an approximately orthogo-
nally additive mapping can be approximated by an orthogonally additive (or
additive) one. The first result in this direction was obtained by Ger and Siko-
rska in [11] and then improved by Fechner and Sikorska in [10]. In the latter
paper the authors considered an abelian group A with a binary relation ⊥ on
it, with the properties:
(ort-a) if x, y ∈ A and x⊥y, then x⊥ − y, −x⊥y and 2x⊥2y;
(ort-b) for every x ∈ A there exists y ∈ A such that x⊥y and x + y⊥x − y.
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With such settings, (A,⊥) is a generalization of an orthogonality space in the
sense of Rätz.

It can be derived from the main theorem of [10] that for A being a
uniquely 2-divisible abelian group, Y being a Banach space and f : A → Y
satisfying, with δ ≥ 0, the condition

x⊥y =⇒ ‖f(x + y) − f(x) − f(y)‖ ≤ δ, x, y ∈ A,

there exists a mapping g : A → Y such that

x⊥y =⇒ g(x + y) = g(x) + g(y), x, y ∈ A

and ‖f(z) − g(z)‖ ≤ 5δ for all z ∈ A.
For a pair of vectors x, y in a real normed linear space X we define their

approximate ρ-orthogonality, or to be more precise, ε-ρ-orthogonality, with
ε ∈ [0, 1), by

x⊥ε
ρy ⇐⇒ |ρ′(x, y)| ≤ ε‖x‖ ‖y‖

(see [7,8]). If the norm comes from an inner product, then ⊥ε
ρ coincides with

⊥ε defined in the introduction.
As we have actually observed in Example 2.1, the relation ⊥ρ does not

satisfy (ort-b) in l2∞. It can be shown that the relation ⊥ε
ρ, for ε < 1

4 , does not
satify (ort-b) in that space as well (we omit, however, a tedious verification of
this fact).

Now, we are ready to prove the main results of this section.

Theorem 4.2. Let X be a real normed linear space with dim X ≥ 2, let G be
an abelian group and let D be a nonempty subset of G. Suppose that a function
f : X → G satisfies, with ε ∈ (0, 1), the condition

x⊥ε
ρy =⇒ f(x + y) − f(x) − f(y) ∈ D, x, y ∈ X. (4.3)

Then
f(x + y) − f(x) − f(y) ∈ D̃, x, y ∈ X, (4.4)

where D̃ := D + (−D) + D + D + (−D).

We will call a mapping f satisfying (4.4), D̃-additive.

Proof. Fix a unit vector u ∈ X. Since ρ′(u, ·) is continuous, there exists another
unit vector v ∈ X such that ρ′(u, v) = ε, whence u⊥ε

ρv. Fix α, β ∈ R and let
y := −β

ε v. Thus y ∈ span {v} and ρ′(u, y) = −β. From the properties (m1)
and (m2) we get

αu⊥ρβu + y, αu + βu⊥ε
ρy, βu⊥ε

ρy,

and it follows from (4.3) that

f(αu + βu + y) − f(αu + βu) − f(y) ∈ D,

f(αu + βu + y) − f(αu) − f(βu + y) ∈ D,

f(βu + y) − f(βu) − f(y) ∈ D.
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Combining the last three statements, we get

f (αu + βu) − f(αu) − f (βu) ∈ (−D) + D + D, α, β ∈ R,

which means that the function f |span{u} : span{u} → G is ((−D) + D + D)-
additive.

Since our goal is to prove (4.4), we fix x, y ∈ X\{0} (if x = 0 or y = 0, the
assertion follows easily since D ⊆ D̃). Let U be a two-dimensional subspace
of X with span{x, y} ⊆ U . It follows from (m1) that there exists z ∈ U \ {0}
such that x⊥ρz and it is easy to check that x and z are linearly independent.
Therefore, span{x, z} = U , whence there are unique numbers α, β in R such
that y = αx + βz. By (m2), we have x + αx⊥ρβz and therefore, from (4.3),

f(x + αx + βz) − f(x + αx) − f(βz) ∈ D.

Moreover, from the ((−D) + D + D)-additivity of f on one-dimensional sub-
spaces, we get

f(x + αx) − f(x) − f(αx) ∈ (−D) + D + D

and since αx⊥ρβz, it follows from (4.3) that

f(αx + βz) − f(αx) − f(βz) ∈ D.

Combining the last three statements we obtain (4.4) and the proof is complete.
�

Notice that taking in the above theorem D = {0}, we immediately get
the following generalization of Theorem 1.2 (however, we assume here commu-
tativity of the target group).

Theorem 4.3. Let X be a real normed linear space with dim X ≥ 2 and let
G be an abelian group. A function f : X → G satisfies, with ε ∈ (0, 1), the
condition

x⊥ε
ρy =⇒ f(x + y) = f(x) + f(y), x, y ∈ X,

if and only if the function f is additive.

Consider now a real normed linear space Y as a target space and get
another consequence of Theorem 4.2.

Theorem 4.4. Let X and Y be real normed linear spaces and dim X ≥ 2.
Suppose that, with the constants ε ∈ (0, 1) and δ ≥ 0, a function f : X → Y
satisfies the condition

x⊥ε
ρy =⇒ ‖f(x + y) − f(x) − f(y)‖ ≤ δ, x, y ∈ X.

Then

‖f(x + y) − f(x) − f(y)‖ ≤ 5δ, x, y ∈ X,

i.e., f is a 5δ-additive mapping.
Moreover, if Y is a Banach space, then there exists exactly one additive

mapping g : X → Y such that ‖f(x) − g(x)‖ ≤ 5δ for all x ∈ X.
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Proof. Let D := {z ∈ Y : ‖z‖ ≤ δ} be a closed ball in Y . Then D̃ = 5D = {z ∈
Y : ‖z‖ ≤ 5δ} and the first assertion follows from Theorem 4.2. Furthermore, if
the space Y is complete, on account of the celebrated Hyers-Ulam Theorem (cf.,
[13,14]) there exists a unique additive mapping g which suitably approximates
f . �

A comparison of the above Theorem 4.4 with Theorems 3.2 and 3.4 and
their proofs, enable us to present two final results of the paper.

Theorem 4.5. Let (X1, ‖·‖1), (X2, ‖·‖2) and (Y, ‖·‖) be nontrivial real normed
linear spaces. If a function f : X1 ⊕∞ X2 → Y satisfies, with some δ ≥ 0,

x⊥ρy =⇒ ‖f(x + y) − f(x) − f(y)‖ ≤ δ, x, y ∈ X1 × X2, (4.5)

then
‖f(x + y) − f(x) − f(y)‖ ≤ 9δ, x, y ∈ X1 × X2, (4.6)

i.e., f is a 9δ-additive mapping. Moreover, if Y is a Banach space, then there
exists an additive mapping g : X1 ⊕∞ X2 → Y such that ‖f(x) − g(x)‖ ≤ 9δ
for all x ∈ X1 × X2.

Proof. Analogously as in the proof of Theorem 3.2, we first approximate the
Cauchy difference on the spaces {0} × X2 and X1 × {0}. Namely, for fixed
(0, x′

2), (0, x′′
2) ∈ {0} × X2 and x1 ∈ X1 such that ‖x1‖1 > ‖x′

2‖2 we have by
Lemma 3.1, (x1, 0)⊥ρ(0, x′

2), (x1, x
′
2)⊥ρ(0, x′′

2), (x1, 0)⊥ρ(0, x′
2 + x′′

2), whence,

‖f(x1, x
′
2) − f(x1, 0) − f(0, x′

2)‖ ≤ δ,

‖f(x1, x
′
2 + x′′

2) − f(x1, x
′
2) − f(0, x′′

2)‖ ≤ δ,

‖f(x1, x
′
2 + x′′

2) − f(x1, 0) − f(0, x′
2 + x′′

2)‖ ≤ δ,

and therefore,

‖f(0, x′
2 + x′′

2) − f(0, x′
2) − f(0, x′′

2)‖ ≤ 3δ. (4.7)

In a similar way we get, for x′
1, x

′′
1 ∈ X1,

‖f(x′
1 + x′′

1 , 0) − f(x′
1, 0) − f(x′′

1 , 0)‖ ≤ 3δ. (4.8)

Now, in order to show (4.6), fix x = (x1, x2), y = (y1, y2) with x1, y1 ∈ X1 and
x2, y2 ∈ X2. Since X1 × {0}⊥ρ{0} × X2 and {0} × X2⊥ρX1 × {0}, we have by
(4.5),

‖f(x1 + y1, x2 + y2) − f(x1 + y1, 0) − f(0, x2 + y2)‖ ≤ δ,

‖f(x1, x2) − f(x1, 0) − f(0, x2)‖ ≤ δ,

‖f(y1, y2) − f(y1, 0) − f(0, y2)‖ ≤ δ,

which together with (4.7) and (4.8) gives

‖f(x1 + y1, x2 + y2) − f(x1, x2) − f(y1, y2)‖ ≤ 9δ

and finishes the first part of the proof. The second part is obtained by applying
the Hyers-Ulam theorem (as in the proof of Theorem 4.4). �
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Theorem 4.6. Let Y be a real normed linear space and let f : C[0, 1] → Y
satisfy with some δ ≥ 0 the conditional inequality

ϕ⊥ρψ =⇒ ‖f(ϕ + ψ) − f(ϕ) − f(ψ)‖ ≤ δ, ϕ, ψ ∈ C[0, 1]. (4.9)

Then
‖f(ϕ + ψ) − f(ϕ) − f(ψ)‖ ≤ 21δ, ϕ, ψ ∈ C[0, 1]. (4.10)

Moreover, if Y is a Banach space, then there exists an additive mapping
g : C[0, 1] → Y such that ‖f(ϕ) − g(ϕ)‖ ≤ 21δ for all ϕ ∈ C[0, 1].

Proof. We only sketch the proof, keeping the notations from the proof of The-
orem 3.4. We have ϕ1 /∈ ker ηt1 , span {ϕ1} ⊆ ker ηt2 , ϕ1⊥ρ ker ηt1 and

C[0, 1] = span {ϕ1} + ker ηt1 .

Fix ϕ,ψ ∈ C[0, 1]. There exist α, β ∈ R and h, p ∈ ker ηt1 such that
ϕ = αϕ1 + h and ψ = βϕ1 + p. On account of (4.9), we have

‖f(ϕ + ψ) − f(αϕ1 + βϕ1) − f(h + p)‖ ≤ δ,

‖f(ϕ) − f(αϕ1) − f(h)‖ ≤ δ,

‖f(ψ) − f(βϕ1) − f(p)‖ ≤ δ.

Since ker ηt1 is isometrically isomorphic to Mt1 ⊕∞ Nt1 , in view of Theorem
4.5, mappings f |ker ηt1

and f |ker ηt2
satisfy (4.6), whence

‖f(h + p) − f(h) − f(p)‖ ≤ 9δ,

‖f(αϕ1 + βϕ1) − f(αϕ1) − f(βϕ1)‖ ≤ 9δ

and all the above five inequalities yield (4.10). The second part of the theorem
is obtained in a usual manner. �

5. Concluding Remarks

An analysis of the results obtained in the paper leads to a distinction of
two cases: the exact ρ-orthogonality ⊥ρ and the essentially approximate ρ-
orthogonality ⊥ε

ρ (with strictly positive ε). Comparing Theorems 1.1 and 1.2,
we see that for a conditional functional equation, just a mild enlarging of the
set of admissible elements may result in a substantial change of the solution.
This fact allows us to look at the results obtained in the paper from a better
perspective. In Sect. 3, working with ε = 0, we are able to get solutions of (3.1)
merely in some specific (though vast) classes of normed linear spaces while the
question about the general solution of (3.1) remains open (Problem 3.7). We
emphasize that in Sect. 3 we do not assume commutativity of G and we apply
our results, in particular, to Birkhoff-James orthogonally additive mappings
(Theorem 3.3). It remains an unanswered question whether Theorem 3.5 is
valid also for non-abelian groups.

Contrary to Sect. 3, most of the results in Sect. 4 are obtained for ε > 0,
although with no need of additional assumptions on the domain, which could
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be an arbitrary normed linear space. We should admit, however, that also
the target space is a normed linear one, whence the commutativity of values
is guaranteed. The natural question in this context is whether Theorem 4.3
works also for a non-abelian group G.

At the end of Sect. 4, considering the stability of (3.1), we came back to
the case ε = 0. In Theorems 4.5 and 4.6, setting δ = 0, we obtain orthogonally
additive mappings in the relevant spaces. However, the results of Sect. 3 are
still stronger, since in corresponding Theorems 3.2 and 3.4 the commutativity
of the group G is not assumed.

Finally, let us notice that all the results of the paper which concern the
ρ-orthogonality can be also considered for ρ+- and ρ−-orthogonality relations

x⊥ρ+y ⇐⇒ ρ′
+(x, y) = 0 and x⊥ρ−y ⇐⇒ ρ′

−(x, y) = 0.

Notice that, unlike ρ′, the functions ρ′
+ and ρ′

− need not be homogeneous
(indeed, non-smooth normed linear spaces furnish the necessary examples) and
therefore the relations ⊥ε

ρ+
and ⊥ε

ρ− need not satisfy (ort-a). Also the notion
of an approximate ρ-orthogonality can be easily adapted to approximate ρ+-
and ρ−-orthogonalities given by x⊥ε

ρ±y ⇔ |ρ′
±(x, y)| ≤ ε‖x‖ ‖y‖ (see [7,8]).

Studying then the classes of exact and approximate ρ+- and ρ−-
orthogonally additive mappings, analogous results to those presented in this
paper can be obtained (despite of the lack of homogeneity of ρ′

+ and ρ′
−). And

also in that case the results are essentially new, i.e., not derivable from earlier
works.
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