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A CLOSED EPIGRAPH THEOREM

1. Various generalizations of the notion of convexity are known 

in the literature. One of them is the notion of d-convexity or convexi­

ty in Meng er s sense (M-convexity) in a metric space (X,d) (cf. 
H. Busemann L1J, B«TI« Cojush [2], Menger [8], E91). We shall 

confine ourselves to the notion of convexity in the so called G-space. 
In papers of B»n» Cojitsh C2]-[SJ and J. Ger C6] the notion of con­

vex function defined on a metric space was introduced. Below we re­

call those properties of G-spaces which will be useful in the sequel 
referring to Ql] for further details.

Let (X,p) be a metric space and let x,y,zeX be three pairwise 

distinct points. We shall say that y lies between x and z and 

write (x y z) if p(x,z) = ę>(x,y) + p(y,z).
Definition 1 (cf. Busemann Cl], Menger [9]). A metric 

space (X,ę>) is called M-convex (convex in Menger s sense) iff for 

every two distinct points x,zeX there exists a point yeX\{x,z} 

such that (x y z) .

Definition 2 (cf. Busemann L.1J , Menger C9]). A metric 

space (X,ę>) is called finitely compact iff every bounded and infinite 

subset of X has at least one cluster point.

Alternatively, we say that (X,p) is finitely compact iff every 

bounded and closed subset of X is compact.
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2 J. Ger

H. Busemann [1] introduced and investigated the notion of a

G-space defined as follows:

Definition 3 (cf. Busemann Ql]). A finitely compact M-con- 

vex metric space (X,p) is called a G-space provided that:
1° for every point p e X there exists a positive number r^ such 

that for any two points x,y from the ball K(p,r^) centered at p and 

with radius r^, there exists a point z e X such that (x y z);
2° for any two distinct points x,yeX and any-points z^,Z2&X 

such that (x y z^) , (x y Z£) and p (y,z^) = p (y,Z£) one has z^ - z^. 
Condition 1° is called the axiom of local prolongability, (ALP); condi­

tion 2° expresses the uniqueness of prolongation.

In this paper the symbol X always denotes a G-space; the symbols 

R, Q , N will stand for sets of reals, rationals and positive integers, 

respectively.

Fix any two distinct points x,yeX. Let l:LO,?(x,y)]—X be 

an isometry such that 1(0) = x, I(p(x,y)) = y or l(p(x,y)) = x, 
1(0) - y. Then the set T(x,y) := 1( [0,p (x ,y)J ) is called a segment 

joining the points x and y. Any two distinct points in a G-space 
X may be joined by a segment contained in X (cf. El J , T9]). Such 

a segment need not be unique. If this segment is unique then there 

exists exactly one isometry l:LP,p(x,y)J T (x ,y) and such that
1(0) = x and l(p(x,y)) = y (see [6] Remark 3).

Definition 4 (cf. Busemann E.1]). A set DcX is called convex 

iff for every two distinct points x,ye clD the segment T(x,y) is unique 

and T(x,y)c D if x,ye D.

Let us note that if D is convex then the sets clD and intD are 
convex, too. (cf. E13).

Definition 5 (cf. J. Ger E6]). Letx,yeclD, x y. Assume 

I: LO,p(x,y)]—T(x,y) to be an isometry such that 1(0) - x and 

l(p(x,y)) ■ y. For every AfeE0,l] we define
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A closed epigraph theorem 3

Ax @ (1-A) y := l((l-A)p(x ,y)).

Remark (cf. Ló] Lemma 1). If x.yeclD, x / y, Ae [0,1] and 

z = Ax @ (1-A) y then p(z,x) = (1-A)ę(x,y) andę(z,y) =

= Aę>(x,y).

In the whole paper the symbol D denotes a non-empty, open and 

convex subset of X.

2. The following theorem holds true in any linear topological 

Baire space E: (cf. R. Ger L7]); if f is a J-convex function de­

fined on an open and convex set DqC E and if the set

epi f := { (x ,y) 6 Dq x R ; f (x) sj y|

is closed in D x R then f is continuous. The goal of the presento
paper is to show that this result carries over the case of G-spaces. 

We start with the following
Definition 6 (cf. EóJ). A function f:D —R is called 

M-convex iff

(I) f(Ax © (l-A)y) Af(x) + (1-A) f(y)

for x.yeD and every Ae[O,l] . A function f:D—*-R is JM-convex 

(Jensen M-convex) if (I) holds for all x,ygD and A - .

Now, we may prove the following

Lemma 1. If f:D——R is JM-convex and if its epigraph

epi f := { (x,y) e DxR: f(x)«s y }

is closed in DxR , then f is M-convex.
Proof. From Theorem in Ló] we get the inequality

f(Ax © (l-A)y) « Af(x) + (1-A) f(y) 
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4 J. Ger

valid for every A € EO, 1] A Q and all x ,y e D. It means that

(Tkx © (l-2i)y, Af(x) + (1-A) f(y))e epi f. Let us take an arbitrary

7 €(0,1) and let (7 ) be a rational sequence such that A = o’ n neN o
= lim A . Suppose that two distinct points x,y are fixed. From the 

n—eo

fact that epi f is closed we obtain

lim (^nx © (l-\Jy, + (l-^n^ f(y))eepi f;
n—oo

or, equivalently, if I is an isometry from Lo,?(x,y)] onto T(x,y) we 

get (see Definition 5):

lim (l(l-An)ę(x ,y)), Ti^Kx) + f(y)) £ epi f-
n-*co

Therefore '

(l((l-ao)?(x,y)) , 2iQf(x) + f(y)) £ epi f,

or, in other words,

(^ x © (1-aq) y, + 6 epi f’

This means that

f(> x © (1-Ti )y) A f(x) + (1-71 ) f(y)o o o o

and ends the proof.

Lemma 2. Let e (0,1) and xq 6 D be arbitrarily fixed points 

and let r = r(x ) be the number occurring in Definition 3. If the o o
function <p s D —»■ X is given by the formula

(1) ®(x) 7i x © (l-A)x , xeD,' o o o

then, for every r r^, we have

®(K(x ,r)) = K(x r).o o o
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A closed epigraph theorem 5

Proof. The mapping given by the formula (1) is a homeo­
morphism of D ontoęp(D) (see Q6] Lemma 6). We shall show that for 

every r< tq the following inclusion

K(x r)c cp(K(x ,r) o o z o

holds. The opposite inclusion is fulfilled in view of Remark and formu­
la (1). Let z € K(xo,^Qr)\jxo| be an arbitrarily fixed point and let 

T(z,xq) be the segment joining z and x°. From Definition 3 we infer 

that there exists exactly one point y such that (xq z y), z6T(xQ,y).

1 11and ?(xQ,y) - — ę>(z,xQ) since 9(xQ,y) - — 9(z,xq)^ — AQr = r.
o Ao o

It means that yeK(xQ,r) and ę(z,xQ) = T^plx^y). Therefore (see 

Remark) z = ^y © (l-^x and z = ^>(y) 6 (K(xq ,r) ) .

The following main result yields an analogue of the closed epigraph 

theorem proved by R. Ger in £7]. The point is that in our case no 

algebraic structure in the space considered is assumed. On the other 

hand one cannot treat our Theorem as a direct generalization of 
R. Ger s result from [.7] because he had not assumed the metrizabi- 

lity of the underlying linear space and his functions were vector-va­

lued. Both results however yield "convex analogues" of the classical 

Banach closed graph theorem.

Theorem. Let f:D—«-R be a JM-convex function. If the epi­

graph of f is closed in DxRthen f is continuous in D.

Proof . Fix an x eD and puto r
A :=|xeD: f(x) - f(xQ)ss 1|.

For an arbitrary xe D there exists an n e N such that f(x)-f(xQ)< 2n. 

From the fact that f is M-convex (see Lemma 1) we get
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6 J. Ger

Therefore, we have

(2) for every xeD there exists an neN such that — x @ (l--^x eA. 
2n \ 2nJ °

Let ęj^sclD—be a mapping given by the formula

a> (x) := —x © (1---- —) x , x e clD.^n 2n \ 2/ °(3)

By virtue of (2) we obtain the inclusion

De I Icp'^ADD ) where D :» © (clD),
*n n n rn

neN

Note that the function given by (3) has the form (1);

Lemma 2 may be applied. Since D is open and nonempty

complete metric space, by the classical theorem of Baire, D is of the 

second Baire category whence 

ntN .

consequently 

subset of a

(4) int cl / W D ) 0
• ' n n

for some neN . We are goint to show that

int cUAflDp 0.

To this aim we shall first prove the following inclusion 

(5)

This inequality may also be derived directly from the JM-conve- 
xity of f without using Lemma 1 (see Theorem 1 from [61) because 
the coefficients occurring here are rational.
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A closed epigraph theorem 7

Indeed, take an x e clcp ^AOD ). Then there exists a sequence 
rTL n

(a^)^e|^, a^e AflD^, keN , such that x - lim ę?n^(a^). Let

1)^ s=^n^(a^). Then x = lim b^, and g^Cb^) *• From (3) we 

have *k ’ - ^xo . We have also a^g T(b^,XQ) and

f' - ' 1
' “ ~ 2“
• ■ 7* ® (* 

a = <PnW or,

From Lemma 2

p(afc,xQ) = —— ę>(b^,xQ). Since lim b^ = x we have lim a^ - a and
° ".A ’ '

2°) °

equivalently, x- <p f lim a^ "^>^(a) e <p ^(clCATID^)). 
' k—oo ' '

we obtain that ę>n is an open mapping, and so

k-»«» k-~oo
(see Ló] Corollary 1) and from (3) we get

int ©(cl(AD D )) c ® l(int cl(A HD)). 
~n n rn n

This, (4) and inclusion (5) imply that

0 int cl(m l(AfiD ))c int ffl"l(cl(An D ))c© \int cl(A 0 D )).
rn n rn n rn n

Therefore

U ;■> int cllAOD ) / 0. n

Now, we shall prove that the set ACID is closed in D. To show this 

let us fix a z e D\(Afl D ); then (z,f(x )+l)€ (DxR) x epi f. From n o
the fact that the set (DxR)xepi f is open we get the existence of

a neighbourhood Uz of the point z and a number 6 > 0 such that 
(U *(f(x )+l-6, f(x )+l+6)C (DxR)xepi f. So, for every xeU , we z o o . z
have (x,f(xQ)+l) e (DxR)\epi f whence f(x) >f(xQ)+l. Consequently, 

xe D\A which means that (AflD ) is closed in D. Moreover n

0 / UflAHD - UDDnclCADD ) - UODn n 
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8 J. Ger

and UflD is an open, nonempty subset of A. We have shown that 

int A / 0. The function f is M-convex and upper bounded on A. 
From Corollary 2 in E6] we obtain that f is continuous in A.

Corollary. If f:D—•• R is JM-convex and lower semicontinuous 

in D then f is M-convex and continuous in D.

The proof follows from Lemma 1, Theorem and the fact that if f 

is lower semicontinuous function then epi f is closed (see R. Sikorski 
Lio], exercise 5, p.131).
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