

You have downloaded a document from RE-BUŚ repository of the University of Silesia in Katowice

Title: A closed epigraph theorem

Author: Joanna Ger

Citation style: Ger Joanna. (1990). A closed epigraph theorem. "Demonstratio Mathematica" (Vol. 23, nr 2 (1990) s. 521-528).

Uznanie autorstwa - Licencja ta pozwala na kopiowanie, zmienianie, rozprowadzanie, przedstawianie i wykonywanie utworu jedynie pod warunkiem oznaczenia autorstwa.

Biblioteka Uniwersytetu Śląskiego

Ministerstwo Nauki i Szkolnictwa Wyższego

DEMONSTRATIO MATHEMATICA

Vol. XXIII No 2 1990

Joanna Ger

A CLOSED EPIGRAPH THEOREM

<u>1.</u> Various generalizations of the notion of convexity are known in the literature. One of them is the notion of d-convexity or convexity in Menger's sense (M-convexity) in a metric space (X,d) (cf. H. Busemann [1], B-II. COLTAH [2], Menger [8], [9]). We shall confine ourselves to the notion of convexity in the so called G-space. In papers of B-II. COLTAH [2]-[5] and J. Ger [6] the notion of convex function defined on a metric space was introduced. Below we recall those properties of G-spaces which will be useful in the sequel referring to [1] for further details.

Let (X,ρ) be a metric space and let $x,y,z \in X$ be three pairwise distinct points. We shall say that y lies between x and z and write $(x \ y \ z)$ if $\rho(x,z) = \rho(x,y) + \rho(y,z)$.

Definition 1 (cf. Busemann [1], Menger [9]). A metric space (X,ρ) is called M-convex (convex in Menger's sense) iff for every two distinct points $x, z \in X$ there exists a point $y \in X \setminus \{x, z\}$ such that $(x \cdot y \cdot z)$.

Definition 2 (cf. Busemann [1], Menger [9]). A metric space (X, φ) is called finitely compact iff every bounded and infinite subset of X has at least one cluster point.

Alternatively, we say that (X, ρ) is finitely compact iff every bounded and closed subset of X is compact.

H. Busemann [1] introduced and investigated the notion of a G-space defined as follows:

Definition 3 (cf. Busemann [1]). A finitely compact M-convex metric space (X, ρ) is called a G-space provided that:

 1° for every point $p \in X$ there exists a positive number r_p such that for any two points x,y from the ball $K(p,r_p)$ centered at p and with radius r_p , there exists a point $z \in X$ such that $(x \ y \ z)$;

 2° for any two distinct points x, y \in X and any points $z_1, z_2 \in X$ such that $(x \ y \ z_1)$, $(x \ y \ z_2)$ and $\rho(y, z_1) = \rho(y, z_2)$ one has $z_1 = z_2$. Condition 1° is called the axiom of local prolongability, (ALP); condition 2° expresses the uniqueness of prolongation.

In this paper the symbol X always denotes a G-space; the symbols R, Q, N will stand for sets of reals, rationals and positive integers, respectively.

Fix any two distinct points $x, y \in X$. Let $I:[0, \rho(x, y)] \longrightarrow X$ be an isometry such that I(0) = x, $I(\rho(x, y)) = y$ or $I(\rho(x, y)) = x$, I(0) = y. Then the set $T(x, y) := I([0, \rho(x, y)])$ is called a segment joining the points x and y. Any two distinct points in a G-space X may be joined by a segment contained in X (cf. [1], [9]). Such a segment need not be unique. If this segment is unique then there exists exactly one isometry $I:[0, \rho(x, y)] \xrightarrow{\text{onto}} T(x, y)$ and such that I(0) = x and $I(\rho(x, y)) = y$ (see [6] Remark 3).

Definition 4 (cf. Busemann [1]). A set DC X is called convex iff for every two distinct points $x,y \in clD$ the segment T(x,y) is unique and $T(x,y) \subset D$ if $x,y \in D$.

Let us note that if D is convex then the sets clD and intD are convex, too. (cf. [1]).

Definition 5 (cf. J. Ger [6]). Let $x, y \in clD$, $x \neq y$. Assume l: $[0, \varphi(x, y)] \longrightarrow T(x, y)$ to be an isometry such that l(0) = x and $l(\varphi(x, y)) = y$. For every $\lambda \in [0, 1]$ we define

$$\lambda \mathbf{x} \oplus (1-\lambda) \mathbf{y} := \mathbf{I}((1-\lambda)\rho(\mathbf{x},\mathbf{y})).$$

Remark (cf. [6] Lemma 1). If x, y e clD, x \neq y, $\lambda \in [0,1]$ and $z = \lambda x \oplus (1-\lambda) y$ then $\rho(z,x) = (1-\lambda)\rho(x,y)$ and $\rho(z,y) = = \lambda \rho(x,y)$.

In the whole paper the symbol D denotes a non-empty, open and convex subset of X.

<u>2</u>. The following theorem holds true in any linear topological Baire space E: (cf. R. Ger [7]); if f is a J-convex function defined on an open and convex set $D_0 \subset E$ and if the set

epi f :=
$$\left\{ (x, y) \in D_{o} \times \mathbf{R} : f(x) \leq y \right\}$$

is closed in $D_{o} \times \mathbf{R}$ then f is continuous. The goal of the present paper is to show that this result carries over the case of G-spaces. We start with the following

Definition 6 (cf. [6]). A function $f:D \longrightarrow R$ is called M-convex iff

(I)
$$f(\lambda x \oplus (1-\lambda)y) \leq \lambda f(x) + (1-\lambda) f(y)$$

for $x, y \in D$ and every $\lambda \in [0, 1]$. A function $f: D \longrightarrow \mathbb{R}$ is JM-convex (Jensen M-convex) if (1) holds for all $x, y \in D$ and $\lambda = \frac{1}{2}$.

Now, we may prove the following

Lemma 1. If $f: D \longrightarrow \mathbf{R}$ is JM-convex and if its epigraph

epi f :=
$$\{(x,y) \in D \times R: f(x) \leq y\}$$

is closed in $D \times \mathbf{R}$, then f is M-convex.

Proof. From Theorem in [6] we get the inequality

$$f(\lambda x \oplus (1-\lambda)y) \leq \lambda f(x) + (1-\lambda) f(y)$$

valid for every $\lambda \in [0,1] \cap \mathbf{Q}$ and all $x, y \in D$. It means that $(\lambda x \oplus (1-\lambda)y, \lambda f(x) + (1-\lambda) f(y)) \in epi f$. Let us take an arbitrary $\lambda_0 \in (0,1)$ and let $(\lambda_n)_{n \in \mathbb{N}}$ be a rational sequence such that $\lambda_0 =$ = $\lim_{n \to \infty} \lambda_n$. Suppose that two distinct points x, y are fixed. From the

fact that epi f is closed we obtain

$$\lim_{n \to \infty} (\lambda_n \mathbf{x} \oplus (1 - \lambda_n) \mathbf{y}, \lambda_n \mathbf{f}(\mathbf{x}) + (1 - \lambda_n) \mathbf{f}(\mathbf{y})) \in \text{epi } \mathbf{f};$$

or, equivalently, if I is an isometry from $[0, \rho(x, y)]$ onto T(x, y) we get (see Definition 5):

$$\lim_{n \to \infty} (l(1-\lambda_n)\varphi(x,y)), \lambda_n f(x) + (1-\lambda_n) f(y)) \in epi f.$$

Therefore

$$(I((1-\lambda_0)\rho(\mathbf{x},\mathbf{y})), \lambda_f(\mathbf{x}) + (1-\lambda_0) f(\mathbf{y})) \in epi f,$$

or, in other words,

$$(\lambda_0 \mathbf{x} \oplus (1-\lambda_0) \mathbf{y}, \lambda_0 \mathbf{f}(\mathbf{x}) + (1-\lambda_0) \mathbf{f}(\mathbf{y})) \in \text{epi f.}$$

This means that

$$f(\lambda_{o} \mathbf{x} \oplus (1-\lambda_{o})\mathbf{y}) \leq \lambda_{o}f(\mathbf{x}) + (1-\lambda_{o})f(\mathbf{y})$$

and ends the proof.

Lemma 2. Let $\lambda \in (0,1)$ and $x \in D$ be arbitrarily fixed points and let $r_0 = r(x_0)$ be the number occurring in Definition 3. If the function $\varphi: D \longrightarrow X$ is given by the formula

(1)
$$\varphi(\mathbf{x}) := \lambda_0 \mathbf{x} \oplus (1-\lambda_0) \mathbf{x}_0, \quad \mathbf{x} \in \mathbf{D},$$

then, for every $r \leq r_{o}$, we have

$$\varphi(K(x_{\alpha},r)) = K(x_{\alpha},\lambda_{\alpha}r).$$

- 524 -

Proof. The mapping φ given by the formula (1) is a homeomorphism of D onto $\varphi(D)$ (see [6] Lemma 6). We shall show that for every $r \leq r_{c}$ the following inclusion

$$K(\mathbf{x}_{\alpha},\lambda_{\alpha}\mathbf{r}) \subset \varphi(K(\mathbf{x}_{\alpha},\mathbf{r}))$$

holds. The opposite inclusion is fulfilled in view of Remark and formula (1). Let $z \in K(x_0, \lambda_0 r) \setminus \{x_0\}$ be an arbitrarily fixed point and let $T(z, x_0)$ be the segment joining z and x_0 . From Definition 3 we infer that there exists exactly one point y such that $(x_0 z y), z \in T(x_0, y)$ and $\varphi(x_0, y) = \frac{1}{\lambda_0} \varphi(z, x_0)$ since $\varphi(x_0, y) = \frac{1}{\lambda_0} \varphi(z, x_0) \leq \frac{1}{\lambda_0} \lambda_0 r = r$. It means that $y \in K(x_0, r)$ and $\varphi(z, x_0) = \lambda_0 \varphi(x_0, y)$. Therefore (see Remark) $z = \lambda_0 y \oplus (1 - \lambda_0) x_0$ and $z = \varphi(y) \in \varphi(K(x_0, r))$.

The following main result yields an analogue of the closed epigraph theorem proved by R. Ger in [7]. The point is that in our case no algebraic structure in the space considered is assumed. On the other hand one cannot treat our Theorem as a direct generalization of R. Ger's result from [7] because he had not assumed the metrizability of the underlying linear space and his functions were vector-valued. Both results however yield "convex analogues" of the classical Banach closed graph theorem.

Theorem. Let $f: D \longrightarrow R$ be a JM-convex function. If the epigraph of f is closed in $D \times R$ then f is continuous in D.

Proof. Fix an $x \in D$ and put

 $A := \left\{ x \in D: f(x) - f(x_0) \leq 1 \right\}.$

For an arbitrary $x \in D$ there exists an $n \in \mathbb{N}$ such that $f(x) - f(x_0) \leq 2^n$. From the fact that f is M-convex (see Lemma 1) we get

$$f\left(\frac{1}{2^{n}} \times \oplus \left(1 - \frac{1}{2^{n}}\right) \times_{o}\right) - f(\times_{o}) \leq \frac{1}{2^{n}} f(\times) + \left(1 - \frac{1}{2^{n}}\right) f(\times_{o}) - f(\times_{o}) \leq 1^{*}.$$

Therefore, we have

(2) for every $x \in D$ there exists an $n \in \mathbb{N}$ such that $\frac{1}{2^n} x \oplus \left(1 - \frac{1}{2^n}\right) x \in A$. Let $\varphi_n : clD \longrightarrow X$ be a mapping given by the formula

(3)
$$\varphi_n(\mathbf{x}) := \frac{1}{2^n} \mathbf{x} \oplus \left(1 - \frac{1}{2^n}\right) \mathbf{x}_0, \quad \mathbf{x} \in \text{clD}.$$

By virtue of (2) we obtain the inclusion

$$D \subset \bigcup \varphi_n^{-1}(A \cap D_n) \text{ where } D_n := \varphi_n^{(clD)}, n \in \mathbb{N}$$

Note that the function φ_n given by (3) has the form (1); consequently Lemma 2 may be applied. Since D is open and nonempty subset of a complete metric space, by the classical theorem of Baire, D is of the second Baire category whence

(4)
$$\operatorname{int} \operatorname{cl} \varphi_n^{-1}(A \cap D_n) \neq \emptyset$$

for some $n \in N$. We are goint to show that

$$int cl(A \cap D_n) \neq \emptyset.$$

To this aim we shall first prove the following inclusion

(5)
$$\operatorname{cl} \varphi_n^{-1}(A \cap D_n) \subset \varphi_n^{-1}(\operatorname{cl}(A \cap D_n)).$$

^{*)} This inequality may also be derived directly from the JM-convexity of f without using Lemma 1 (see Theorem 1 from [6]) because the coefficients occurring here are rational.

Indeed, take an
$$x \in cl\varphi_n^{-1}(A \cap D_n)$$
. Then there exists a sequence
 $(a_k)_{k \in \mathbb{N}}, a_k \in A \cap D_n, k \in \mathbb{N}$, such that $x = \lim_{k \to \infty} \varphi_n^{-1}(a_k)$. Let
 $b_k := \varphi_n^{-1}(a_k)$. Then $x = \lim_{k \to \infty} b_k$, and $\varphi_n(b_k) = a_k$. From (3) we
have $a_k = \frac{1}{2^n} b_k \oplus (1 - \frac{1}{2^n}) x_0$. We have also $a_k \in T(b_k, x_0)$ and
 $\rho(a_k, x_0) = \frac{1}{2^n} \rho(b_k, x_0)$. Since $\lim_{k \to \infty} b_k = x$ we have $\lim_{k \to \infty} a_k = a$ and
 $a = \frac{1}{2^n} x \oplus (1 - \frac{1}{2^n}) x_0$ (see [6] Corollary 1) and from (3) we get
 $a = \varphi_n(x)$ or, equivalently, $x = \varphi_n^{-1}(\lim_{k \to \infty} a_k) = \varphi_n^{-1}(a) \in \varphi_n^{-1}(cl(A \cap D_n))$.
From Lemma 2 we obtain that φ_n is an open mapping, and so

int
$$\varphi_n^{-1}(cl(A \cap D_n)) \subset \varphi_n^{-1}(int cl(A \cap D_n)).$$

This, (4) and inclusion (5) imply that

$$\emptyset \neq \text{ int } \operatorname{cl}(\varphi_n^{-1}(A \cap D_n)) \subset \operatorname{int } \varphi_n^{-1}(\operatorname{cl}(A \cap D_n)) \subset \varphi_n^{-1}(\operatorname{int } \operatorname{cl}(A \cap D_n)).$$

Therefore

U := int cl(A
$$\cap$$
 D_n) $\neq \emptyset$.

Now, we shall prove that the set $A \cap D_n$ is closed in D. To show this let us fix a $z \in D \setminus (A \cap D_n)$; then $(z, f(x_0)+1) \in (DxR) \setminus epi f$. From the fact that the set $(DxR) \setminus epi f$ is open we get the existence of a neighbourhood U_z of the point z and a number $\delta > 0$ such that $(U_z^x(f(x_0)+1-\delta, f(x_0)+1+\delta) \subset (DxR) \setminus epi f$. So, for every $x \in U_z$, we have $(x, f(x_0)+1) \in (DxR) \setminus epi f$ whence $f(x) > f(x_0)+1$. Consequently, $x \in D \setminus A$ which means that $(A \cap D_n)$ is closed in D. Moreover

$$\emptyset \neq U \cap A \cap D_n = U \cap D \cap cl(A \cap D_n) = U \cap D$$

- 527 -

and $U \cap D$ is an open, nonempty subset of A. We have shown that int A $\neq \emptyset$. The function f is M-convex and upper bounded on A. From Corollary 2 in [6] we obtain that f is continuous in A.

Corollary. If $f: D \rightarrow R$ is JM-convex and lower semicontinuous in D then f is M-convex and continuous in D.

The proof follows from Lemma 1, Theorem and the fact that if f is lower semicontinuous function then epi f is closed (see R. Sikorski [10], exercise 5, p.131).

REFERENCES

- H. Busemann: The geometry of geodesic. Academic Press, New York, 1955.
- [2] В.П. Солтан: Введение в аксиоматическую теорию выпуклости. Кишинев, 1984.
- [3] В.П. Солтан: Аксиоматический подход к теории выпуклых функций, Dokl. Akad. Nauk SSSR 254 (1980), 813-816.
- [4] В.П. Солтан, П.С. Солтан: d-выпуклые функции, Dokl. Akad. Nauk SSSR 240 (1979), 555-558.
- [5] В.П. Солтан, В.Д. Ченой: Некоторые классы d-выпуклых функций в графе, Dokl. Akad. Nauk SSSR 273 (1983), 1314-1317.
- [6] J. Ger: Convex functions in metric spaces, Radovi Mat. 2 (1986), 217-236.
- [7] R. Ger: Convex transformations with Banach lattice range, Stochastica 11 (1987), 13-23.
- [8] K. Menger: Ergebnisse eines math. Kolloq., Wien, v.1 (931).
- [9] K. Menger: Untersuchungen uber allgemeine Metrik I, II, III, Math. Ann. 100 (1928), 75-163.
- [10] R. Sikorski: Funkcje rzeczywiste, Tom I. Monografie Mat. 35, PWN (Polish Scientific Publishers), Warszawa 1958.

INSTITUTE OF MATHEMATICS, SILESIAN UNIVERSITY IN KATOWICE, 40-007 KATOWICE, POLAND

Received January 6, 1989.

8