

You have downloaded a document from RE-BUŚ
 repository of the University of Silesia in Katowice

Title: A closed epigraph theorem

Author: Joanna Ger

Citation style: Ger Joanna. (1990). A closed epigraph theorem. "Demonstratio Mathematica" (Vol. 23, nr 2 (1990) s. 521-528).

Uznanie autorstwa - Licencja ta pozwala na kopiowanie, zmienianie, rozprowadzanie, przedstawianie i wykonywanie utworu jedynie pod warunkiem oznaczenia autorstwa.

Joanna Ger

A CLOSED EPIGRAPH THEOREM

1. Various generalizations of the notion of convexity are known in the literature. One of them is the notion of d-convexity or convexity in Menger's sense (M-convexity) in a metric space (X, d) ($c f$. Н. Busemann [1], в.П. Солтан [2], Menger [8], [9]). We shall confine ourselves to the notion of convexity in the so called G-space. In papers of В.П. Солтан [2]-[5] and J. Ger [6] the notion of convex function defined on a metric space was introduced. Below we recall those properties of G-spaces which will be useful in the sequel referring to $[1]$ for further details.

Let ($\mathrm{X}, \mathrm{\rho}$) be a metric space and let $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$ be three pairwise distinct points. We shall say that y lies between x and z and write ($x y z$) if $\rho(x, z)=\rho(x, y)+\rho(y, z)$.

Definition 1 (cf. Busemann [1], Menger [9]). A metric space (X, ρ) is called M-convex (convex in Menger's sense) iff for every two distinct points $x, z \in X$ there exists a point $y \in X \backslash\{x, z\}$ such that (x y z).

Definition 2 (cf. Busemann [1], Menger [9]). A metric space (X, ρ) is called finitely compact iff every bounded and infinite subset of X has at least one cluster point.

Alternatively, we say that (X, ρ) is finitely compact iff every bounded and closed subset of X is compact.
H. Busemann [1] introduced and investigated the notion of a G-space defined as follows:

Definition 3 (cf. Busemann [1]). A finitely compact M-convex metric space (X, ρ) is called a G-space provided that:
1° for every point $p \in X$ there exists a positive number r_{p} such that for any two points x, y from the ball $K\left(p, r_{p}\right)$ centered at p and with radius r_{p}, there exists a point $z \in X$ such that ($\left.\begin{array}{l}x \\ y \\ z\end{array}\right)$;
2° for any two distinct points $x, y \in X$ and any points $z_{1}, z_{2} \in X$ such that $\left(x y z_{1}\right),\left(x y z_{2}\right)$ and $\rho\left(y, z_{1}\right)=\rho\left(y, z_{2}\right)$ one has $z_{1}=z_{2}$. Condition 1° is called the axiom of local prolongability, (ALP); condition 2° expresses the uniqueness of prolongation.

In this paper the symbol X always denotes a G-space; the symbols R, Q, N will stand for sets of reals, rationals and positive integers, respectively.

Fix any two distinct points $x, y \in X$. Let $I:[0, \rho(x, y)] \longrightarrow X$ be an isometry such that $I(0)=x, I(\rho(x, y))=y$ or $[(\rho(x, y))=x$, $\lceil(0)=y$. Then the set $T(x, y):=[([0, \rho(x, y)])$ is called a segment joining the points x and y. Any two distinct points in a G-space X may be joined by a segment contained in X (cf. [1], [9]). Such a segment need not be unique. If this segment is unique then there exists exactly one isometry $[:[0, \rho(x, y)] \xrightarrow{\text { onto }} T(x, y)$ and such that $I(0)=x$ and $I(\rho(x, y))=y$ (see [6] Remark 3).

Definition 4 (cf. Busemann [1]). A set $D C X$ is called convex iff for every two distinct points $x, y \in c l D$ the segment $T(x, y)$ is unique and $T(x, y) \subset D$ if $x, y \in D$.

Let us note that if D is convex then the sets $c l D$ and int D are convex, too. (cf. [1]).

Definition 5 (cf. J. Ger [6]). Let $x, y \in \operatorname{clD}, x \neq y$. Assume $I:[0, \rho(x, y)] \rightarrow T(x, y)$ to be an isometry such that $I(0)=x$ and $I(\rho(x, y))=y$. For every $\lambda \in[0,1]$ we define

$$
\lambda x \oplus(1-\lambda) y:=[((1-\lambda) \rho(x, y))
$$

Remark (cf. [6] Lemma 1). If $x, y \in \operatorname{clD}, x \neq y, \lambda \in[0,1]$ and $z=\lambda x \oplus(1-\lambda) y$ then $\rho(z, x)=(1-\lambda) \rho(x, y)$ and $\rho(z, y)=$ $=\lambda \rho(x, y)$.

In the whole paper the symbol D denotes a non-empty, open and convex subset of X.
2. The following theorem holds true in any linear topological Baire space E: (cf. R. Ger [7]); if f is a J-convex function defined on an open and convex set $D_{0} \subset E$ and if the set

$$
\text { epi } f:=\left\{(x, y) \in D_{0} \times R: f(x) \leqslant y\right\}
$$

is closed in $D_{0} \times R$ then f is continuous. The goal of the present paper is to show that this result carries over the case of G-spaces. We start with the following

Definition 6 (cf. [6]). A function $f: D \rightarrow R$ is called M-convex iff

$$
\begin{equation*}
f(\lambda x \oplus(1-\lambda) y) \leqslant \lambda f(x)+(1-\lambda) f(y) \tag{I}
\end{equation*}
$$

for $x, y \in D$ and every $\lambda \in[0,1]$. A function $f: D \rightarrow R$ is JM-convex (Jensen M-convex) if (I) holds for all $x, y \in D$ and $\lambda=\frac{1}{2}$.

Now, we may prove the following
Lemma 1. If $f: D \rightarrow R$ is JM-convex and if its epigraph

$$
\text { epi } f:=\{(x, y) \in D \times R: f(x) \leq y\}
$$

is closed in $D \times R$, then f is M-convex.
Proof. From Theorem in [6] we get the inequality

$$
f(\lambda x \oplus(1-\lambda) y) \leqslant \lambda f(x)+(1-\lambda) f(y)
$$

valid for every $\lambda \in[0,1] \cap Q$ and all $x, y \in D$. It means that $\left(\lambda x \oplus(1-\lambda)_{y}, \lambda f(x)+(1-\lambda) f(y)\right) \in$ epi f. Let us take an arbitrary $\lambda_{0} \in(0,1)$ and let $\left(\lambda_{n}\right)_{n \in N}$ be a rational sequence such that $\lambda_{0}=$ $=\lim _{n \rightarrow-\infty} \lambda_{n}$. Suppose that two distinct points x, y are fixed. From the fact that epi f is closed we obtain

$$
\lim _{n \rightarrow \infty}\left(\lambda_{n} x \oplus\left(1-\lambda_{n}\right) y, \lambda_{n} f(x)+\left(1-\lambda_{n}\right) f(y)\right) \in \text { epi } f
$$

or, equivalently, if I is an isometry from $[0, \rho(x, y)]$ onto $T(x, y)$ we get (see Definition 5):

$$
\left.\lim _{n \rightarrow \infty}\left(I\left(1-\lambda_{n}\right) \rho(x, y)\right), \lambda_{n} f(x)+\left(1-\lambda_{n}\right) f(y)\right) \in \text { epi } f
$$

Therefore

$$
\left(I\left(\left(1-\lambda_{0}\right) \rho(x, y)\right), \lambda_{0} f(x)+\left(1-\lambda_{0}\right) f(y)\right) \in \text { epi } f
$$

or, in other words,

$$
\left(\lambda_{0} x \oplus\left(1-\lambda_{0}\right) y, \lambda_{0} f(x)+\left(1-\lambda_{0}\right) f(y)\right) \in \text { epi } f
$$

This means that

$$
f\left(\lambda_{0} x \oplus\left(1-\lambda_{0}\right) y\right) \leqslant \lambda_{0} f(x)+\left(1-\lambda_{0}\right) f(y)
$$

and ends the proof.
Lemma 2. Let $\lambda_{0} \in(0,1)$ and $x_{0} \in D$ be arbitrarily fixed points and let $r_{0}=r\left(x_{0}\right)$ be the number occurring in Definition 3. If the function $\varphi: D \rightarrow X$ is given by the formula

$$
\begin{equation*}
\varphi(x):=\lambda_{0} x \oplus\left(1-\lambda_{0}\right) x_{0}, \quad x \in D \tag{1}
\end{equation*}
$$

then, for every $r \leqslant r_{0}$, we have

$$
\varphi\left(K\left(x_{0}, r\right)\right)=K\left(x_{0}, \lambda_{0} r\right) .
$$

Proof. The mapping φ given by the formula (1) is a homeomorphism of D onto $\varphi(D)$ (see [6] Lemma 6). We shall show that for every $r<r_{0}$ the following inclusion

$$
K\left(x_{0}, \lambda_{0} r\right) \subset \varphi\left(K\left(x_{0}, r\right)\right.
$$

holds. The opposite inclusion is fulfilled in view of Remark and formula (1). Let $z \in K\left(x_{0}, \lambda_{0} r\right) \backslash\left\{x_{0}\right\}$ be an arbitrarily fixed point and let $T\left(z, x_{0}\right)$ be the segment joining z and x_{0}. From Definition 3 we infer that there exists exactly one point y such that ($x_{0} z y$), $z \in T\left(x_{0}, y\right)$. and $\rho\left(x_{0}, y\right)=\frac{1}{\lambda_{0}} \rho\left(z, x_{0}\right)$ since $\rho\left(x_{0}, y\right)=\frac{1}{\lambda_{0}} \rho\left(z, x_{0}\right) \leqslant \frac{1}{\lambda_{0}} \lambda_{0} r=r$. It means that $y \in K\left(x_{0}, r\right)$ and $\rho\left(z, x_{0}\right)=\lambda_{0} \rho\left(x_{0}, y\right)$. Therefore (see Remark) $z=\lambda_{0} y \oplus\left(1-\lambda_{0}\right) x_{0}$ and $z=\varphi(y) \in \varphi\left(K\left(x_{0}, r\right)\right)$.

The following main result yields an analogue of the closed epigraph theorem proved by R. Ger in [7]. The point is that in our case no algebraic structure in the space considered is assumed. On the other hand one cannot treat our Theorem as a direct generalization of R. Ger's result from [7] because he had not assumed the metrizability of the underlying linear space and his functions were vector-valued. Both results however yield "convex analogues" of the classical Banach closed graph theorem.

Theorem. Let $f: D \rightarrow R$ be a JM-convex function. If the epigraph of f is closed in $D \times R$ then f is continuous in D.

Proof. Fix an $x_{0} \in D$ and put

$$
A:=\left\{x \in D: f(x)-f\left(x_{0}\right) \leq 1\right\} .
$$

For an arbitrary $x \in D$ there exists an $n \in N$ such that $f(x)-f\left(x_{0}\right) \leqslant 2^{n}$. From the fact that f is M-convex (see Lemma 1) we get

$$
f\left(\frac{1}{2^{n}} x \oplus\left(1-\frac{1}{2^{n}}\right) x_{0}\right)-f\left(x_{0}\right) \leqslant \frac{1}{2^{n}} f(x)+\left(1-\frac{1}{2^{n}}\right) f\left(x_{0}\right)-f\left(x_{0}\right) \leqslant 1
$$

Therefore, we have
(2) for every $x \in D$ there exists an $n \in N$ such that $\frac{1}{2^{n}} x \oplus\left(1-\frac{1}{2^{n}}\right) x_{0} \in A$. Let $\varphi_{\mathrm{n}}: \mathrm{clD} \rightarrow \mathrm{X}$ be a mapping given by the formula

$$
\begin{equation*}
\varphi_{n}(x):=\frac{1}{2^{n}} x \oplus\left(1-\frac{1}{2^{n}}\right) x_{0}, \quad x \in \operatorname{clD} \tag{3}
\end{equation*}
$$

By virtue of (2) we obtain the inclusion

$$
D \subset \bigcup_{n \in N} \varphi_{n}^{-1}\left(A \cap D_{n}\right) \quad \text { where } \quad D_{n}:=\varphi_{n}(c l D), \quad n \in N
$$

Note that the function φ_{n} given by (3) has the form (1); consequently Lemma 2 may be applied. Since D is open and nonempty subset of a complete metric space, by the classical theorem of Baire, D is of the second Baire category whence

$$
\begin{equation*}
\operatorname{int} \operatorname{cl} \varphi_{\mathrm{n}}^{-1}\left(\mathrm{~A} \cap D_{\mathrm{n}}\right) \nLeftarrow \emptyset \tag{4}
\end{equation*}
$$

for some $n \in \mathbb{N}$. We are goint to show that

$$
\text { int } \operatorname{cl}\left(A \cap D_{n}\right) \neq \phi
$$

To this aim we shall first prove the following inclusion

$$
\begin{equation*}
\operatorname{cl}_{\mathrm{n}}^{-1}\left(A \cap D_{n}\right) \subset \varphi_{n}^{-1}\left(\operatorname{cl}\left(A \cap D_{n}\right)\right) \tag{5}
\end{equation*}
$$

*) This inequality may also be derived directly from the JM-convexity of f without using Lemma 1 (see Theorem 1 from [6]) because the coefficients occurring here are rational.

Indeed, take an $x \in \operatorname{cl} \varphi_{n}^{-1}\left(A \cap D_{n}\right)$. Then there exists a sequence $\left(a_{k}\right)_{k \in N}, a_{k} \in A \cap D_{n}, k \in N$, such that $x=\lim _{k \rightarrow \infty} \varphi_{n}^{-1}\left(a_{k}\right)$. Let $b_{k}:=\varphi_{n}^{-1}\left(a_{k}\right)$. Then $x=\lim _{k \rightarrow \infty} b_{k}$, and $\varphi_{n}\left(b_{k}\right)=a_{k}$. From (3)we have $a_{k}=\frac{1}{2^{n}} b_{k} \oplus\left(1-\frac{1}{2^{n}}\right) x_{0}$. We have also $a_{k} \in T\left(b_{k}, x_{0}\right)$ and $\rho\left(a_{k}, x_{0}\right)=\frac{1}{2^{n}} \rho\left(b_{k}, x_{0}\right)$. Since $\lim _{k \rightarrow \infty} b_{k}=x$ we have $\lim _{k \rightarrow \infty} a_{k}=a$ and $a=\frac{1}{2^{n}} \times \oplus\left(1-\frac{1}{2^{n}}\right) x_{0}$ (see [6] Corollary 1) and from (3) we get $a=\varphi_{n}(x)$ or, equivalently, $x=\varphi_{n}^{-1}\left(\lim _{k \rightarrow \infty} a_{k}\right)=\varphi_{n}^{-1}(a) \in \varphi_{n}^{-1}\left(c l\left(A \cap D_{n}\right)\right)$. From Lemma 2 we obtain that φ_{n} is an open mapping, and so

$$
\text { int } \varphi_{n}^{-1}\left(\operatorname{cl}\left(A \cap D_{n}\right)\right) \subset \varphi_{n}^{-1}\left(\text { int } \operatorname{cl}\left(A \cap D_{n}\right)\right)
$$

This, (4) and inclusion (5) imply that
$\emptyset \nLeftarrow \operatorname{int} \operatorname{cl}\left(\varphi_{\mathrm{n}}^{-1}\left(\mathrm{~A} \cap \mathrm{D}_{\mathrm{n}}\right)\right) \subset \operatorname{int} \varphi_{\mathrm{n}}^{-1}\left(\mathrm{cl}\left(\mathrm{A} \cap \mathrm{D}_{\mathrm{n}}\right)\right) \subset \varphi_{\mathrm{n}}^{-1}\left(\right.$ int $\left.\operatorname{cl}\left(\mathrm{A} \cap \mathrm{D}_{\mathrm{n}}\right)\right)$.

Therefore

$$
U:=\text { int } \mathrm{cl}\left(A \cap D_{n}\right) \neq \varnothing
$$

Now, we shall prove that the set $A \cap D_{n}$ is closed in D. To show this let us fix a $z \in D \backslash\left(A \cap D_{n}\right)$; then $\left(z, f\left(x_{0}\right)+1\right) \in(D x R) \backslash$ epi f. From the fact that the set ($D \times R$) \epi f is open we get the existence of a neighbourhood U_{z} of the point z and a number $\delta>0$ such that $\left(U_{z} x\left(f\left(x_{0}\right)+1-\delta, f\left(x_{0}\right)+1+\delta\right) \subset(D x R) \backslash\right.$ epi f. So, for every $x \in U_{z}$, we have $\left(x, f\left(x_{0}\right)+1\right) \in(D x R) \backslash$ epi f whence $f(x)>f\left(x_{0}\right)+1$. Consequently, $x \in D \backslash A$ which means that $\left(A \cap D_{n}\right)$ is closed in D. Moreover

$$
\emptyset \nLeftarrow U \cap A \cap D_{n}=U \cap D \cap \operatorname{cl}\left(A \cap D_{n}\right)=U \cap D
$$

and $U \cap D$ is an open, nonempty subset of A. We have shown that int $A \neq \emptyset$. The function f is M-convex and upper bounded on A. From Corollary 2 in [6] we obtain that f is continuous in A.

Corollary. If $f: D \rightarrow R$ is JM-convex and lower semicontinuous in D then f is M-convex and continuous in D.

The proof follows from Lemma 1, Theorem and the fact that if f is lower semicontinuous function then epi f is closed (see R. Sikorski [10], exercise 5, p.131).

REFERENCES

[1] H. Busemann: The geometry of geodesic. Academic Press, New York, 1955.
[2] В.П. Со л т а : Введение в аксиоматическую теорию внпуклости. Китинев, 1984.
[3] В.П. Со л т а н : Аксиоматическии подход к теории выпукльх функцци, Dokl. Akad. Nauk SSSR 254 (1980), 813-816.
[4] В.П. Солтан, П.C. Со лтан: d-выпуклые функции, Dokl. Akad. Nauk SSSR 240 (1979), 555-558.
[5] В.П• Солтан, В•Д० Ч ен О : Некоторые классы d-выпуклых функции в графе, Dokl. Akad. Nauk SSSR 273 (1983), 1314-1317.
[6] J. Ger: Convex functions in metric spaces, Radovi Mat. 2 (1986), 217-236.
[7] R. Ger: Convex transformations with Banach lattice range, Stochastica 11 (1987), 13-23.
[8] K. Menger: Ergebnisse eines math. Kolloq., Wien, v. 1 (931).
[9] K. Menger: Untersuchungen uber allgemeine Metrik I, II, III, Math. Ann. 100 (1928), 75-163.
[10] R. Sikorski: Funkcje rzeczywiste, Tom I. Monografie Mat. 35, PWN (Polish Scientific Publishers), Warszawa 1958.

INSTITUTE OF MATHEMATICS, SILESIAN UNIVERSITY IN KATOWICE, 40-007 KATOWICE, POLAND

Received January 6, 1989.

