Title: Delta-convexity with given weights

Author: Roman Ger

DELTA-CONVEXITY WITH GIVEN WEIGHTS

ROMAN GER

Dedicated to Professor Zygfryd Kominek on the occasion of his 75th birthday

Abstract. Some differentiability results from the paper of D.Ş. Marinescu & M. Monea [7] on delta-convex mappings, obtained for real functions, are extended for mappings with values in a normed linear space. In this way, we are nearing the completion of studies established in papers [2], [5] and [7].

1. Motivation and main results

While solving Problem 11641 posed by a Romanian mathematician Nicolae Bourbăcuț in [2] I was announcing in [5] (without proof) the following

Theorem 1.1. Assume that we are given a differentiable function φ mapping an open real interval (a, b) into the real line \mathbb{R}. Then each convex solution $f: (a, b) \rightarrow \mathbb{R}$ of the functional inequality

\[
(*) \quad \frac{f(x) + f(y)}{2} - f\left(\frac{x + y}{2}\right) \leq \frac{\varphi(x) + \varphi(y)}{2} - \varphi\left(\frac{x + y}{2}\right), \quad x, y \in (a, b),
\]

Received: 08.11.2019. Accepted: 06.03.2020. Published online: 08.05.2020.

Key words and phrases: delta convexity, Jensen delta convexity, delta (s,t)-convexity, functional inequalities, absolute continuity, Radon-Nikodym property (RNP).

©2020 The Author(s).
This is an Open Access article distributed under the terms of the Creative Commons Attribution License CC BY (http://creativecommons.org/licenses/by/4.0/).
is differentiable and the inequality

\[|f'(x) - f'(y)| \leq |\varphi'(x) - \varphi'(y)| \]

holds true for all \(x, y \in (a, b) \).

The proof reads as follows.

Put \(g := f - \varphi \). Then (\() \) states nothing else but the Jensen concavity of \(g \), i.e.

\[\frac{1}{2}g(x) + \frac{1}{2}g(y) \leq g\left(\frac{x + y}{2}\right), \quad x, y \in (a, b). \]

It is widely known that a continuous Jensen concave function is concave in the usual sense. Since \(f \) itself is continuous (as a convex function on an open interval) and \(\varphi \) is differentiable then, obviously, our function \(g \) is continuous and hence concave. In particular, the one-sided derivatives of \(g \) do exist on \((a, b) \) and we have

\[g'_+(x) \leq g'_-(x) \quad \text{for all} \quad x \in (a, b). \]

Therefore

\[f'_+(x) = g'_+(x) + \varphi'(x) \leq g'_-(x) + \varphi'(x) = f'_-(x) \leq f'_+(x) \]

for all \(x \in (a, b) \) because of the convexity of \(f \), which proves the differentiability of \(f \) on \((a, b) \).

To show that \(f \) satisfies the assertion inequality, observe that whenever \(x, y \in (a, b) \) are such that \(x \leq y \), then

\[
|f'(x) - f'(y)| = f'(y) - f'(x) = g'(y) + \varphi'(y) - g'(x) - \varphi'(x)
\leq \varphi'(y) - \varphi'(x) = |\varphi'(x) - \varphi'(y)|,
\]

because the derivative of a differentiable convex (resp. concave) function is increasing (resp. decreasing). In the case where \(y \leq x \) it suffices to interchange the roles of the variables \(x \) and \(y \) in the latter inequality, which completes the proof.

Note that the convexity assumption imposed upon \(f \) in the above result renders (\() \) to be equivalent to

\[\frac{|f(x) + f(y)|}{2} - f\left(\frac{x + y}{2}\right) \leq \frac{\varphi(x) + \varphi(y)}{2} - \varphi\left(\frac{x + y}{2}\right), \quad x, y \in (a, b), \]
defining (in the class of continuous functions) the notion of delta convexity in the sense of L. Veselý and L. Zajíček (see [10]).

In that connection, D.Ş. Marinescu and M. Monea have proved, among others, the following result (see [7, Theorem 2.7]).

Theorem M-M. Let \(\varphi: (a,b) \longrightarrow \mathbb{R} \) be a differentiable function and let \(f: (a,b) \longrightarrow \mathbb{R} \) be a convex function admitting some scalars \(s,t \in (0,1) \) such that the inequality

\[
 tf(x) + (1 - t)f(y) - f(sx + (1 - s)y)
\]

\[
 \leq t\varphi(x) + (1 - t)\varphi(y) - \varphi(sx + (1 - s)y)
\]

is satisfied for all \(x,y \in (a,b) \). Then the function \(f \) is differentiable and the inequality

\[
|f'(x) - f'(y)| \leq |\varphi'(x) - \varphi'(y)|
\]

holds true for all \(x,y \in (a,b) \).

Without any convexity assumption we offer the following counterpart of Theorem M-M for vector valued mappings.

Theorem 1.2. Given an open interval \((a,b) \subset \mathbb{R} \), a normed linear space \((E, \| \cdot \|) \), and two real numbers \(s,t \in (0,1) \) (weights) assume that a map \(F: (a,b) \longrightarrow E \) is delta \((s,t)\)-convex with a differentiable control function \(f: (a,b) \longrightarrow \mathbb{R} \), i.e. that a functional inequality

\[
\|tF(x) + (1 - t)F(y) - F(sx + (1 - s)y)\|
\]

\[
\leq tf(x) + (1 - t)f(y) - f(sx + (1 - s)y)
\]

is satisfied for all \(x,y \in (a,b) \). If the function

\((a,b) \ni x \mapsto \|F(x)\| \in \mathbb{R} \)

is upper bounded on a set of positive Lebesgue measure, then \(F \) is differentiable and the inequality

\[
\|F'(x) - F'(y)\| \leq |f'(x) - f'(y)|
\]

holds true for all \(x,y \in (a,b) \).
Corollary. Under the assumptions of Theorem 1.2, the vector valued map F is continuously differentiable.

Proof. Fix arbitrarily an $x \in (a, b)$ and $h \in \mathbb{R}$ small enough to have $x + h \in (a, b)$ as well. Then

$$\|F'(x + h) - F'(x)\| \leq |f'(x + h) - f'(x)|$$

and the right-hand side difference tends to zero as $h \to 0$ because a differentiable convex function is of class C^1. □

The assumption that the function $(a, b) \ni x \mapsto \|F(x)\| \in \mathbb{R}$ is upper bounded on a set of positive Lebesgue measure, may be replaced by numerous alternative conditions forcing a scalar Jensen convex function on (a, b) to be continuous.

Theorem 1.3. Given an open interval $(a, b) \subset \mathbb{R}$, a normed linear space $(E, \| \cdot \|)$ that is reflexive or constitutes a separable dual space, and two weights $s, t \in (0, 1)$, assume that a map $F: (a, b) \to E$ is delta (s, t)-convex with a C^2-control function $f: (a, b) \to \mathbb{R}$. If the function

$$(a, b) \ni x \mapsto \|F(x)\| \in \mathbb{R}$$

is upper bounded on a set of positive Lebesgue measure, then F is twice differentiable almost everywhere in (a, b) and the domination

$$\|F''(x)\| \leq f''(x)$$

holds true for almost all $x \in (a, b)$.

The assumption that a normed linear space $(E, \| \cdot \|)$ spoken of in Theorem 1.3 is reflexive or constitutes a separable dual space may be replaced by a more general requirement that $(E, \| \cdot \|)$ has the Radon-Nikodym property (RNP), i.e. that every Lipschitz function from \mathbb{R} into E is differentiable almost everywhere. This definition (of Rademacher type character) is not commonly used but is more relevant to the subject of the present paper. R.S. Phillips [9] showed that reflexive Banach spaces enjoy the RNP whereas N. Dunford and B.J. Pettis [3] proved that separable dual spaces have the RNP.
2. Proofs

To prove Theorem 1.2 we need the following

Lemma. Given weights \(s, t \in (0, 1) \) assume that a map \(F : (a, b) \rightarrow E \) is delta \((s, t)\)-convex with a control function \(f : (a, b) \rightarrow \mathbb{R} \). Then the inequality

\[
\| \lambda F(x) + (1 - \lambda) F(y) - F(\lambda x + (1 - \lambda) y) \| \leq \lambda f(x) + (1 - \lambda) f(y) - f(\lambda x + (1 - \lambda) y)
\]

is valid for all \(x, y \in (a, b) \) and every rational \(\lambda \in (0, 1) \). In particular, \(F \) is delta Jensen convex with a control function \(f \), i.e. the inequality

\[
\left\| \frac{F(x) + F(y)}{2} - F\left(\frac{x + y}{2}\right) \right\| \leq \frac{f(x) + f(y)}{2} - f\left(\frac{x + y}{2}\right)
\]

holds true for all \(x, y \in (a, b) \).

Proof. Fix arbitrarily a continuous linear functional \(x^* \) from the unit ball in the dual space \(E^* \). Then the delta \((s, t)\)-convexity of \(F \) implies that for all \(x, y \in (a, b) \) one has

\[
t(x^* \circ F)(x) + (1 - t)(x^* \circ F)(y) - (x^* \circ F)(sx + (1 - s)y)
\leq tf(x) + (1 - t)f(y) - f(sx + (1 - s)y)
\]

or, equivalently,

\[
(f - x^* \circ F)(sx + (1 - s)y) \leq t(f - x^* \circ F)(x) + (1 - t)(f - x^* \circ F)(y).
\]

By means of Theorem 3 from N. Kuhn’s paper [6] we deduce that the function \(g := f - x^* \circ F \) enjoys the convexity type property

\[
g(\lambda x + (1 - \lambda)y) \leq \lambda g(x) + (1 - \lambda)g(y), \quad x, y \in (a, b), \lambda \in (0, 1) \cap \mathbb{Q},
\]

where \(\mathbb{Q} \) stands for the field of all rationals. Consequently, for all \(x, y \in (a, b) \) and \(\lambda \in (0, 1) \cap \mathbb{Q} \), we get the inequality

\[
\lambda(x^* \circ F)(x) + (1 - \lambda)(x^* \circ F)(y) - (x^* \circ F)(\lambda x + (1 - \lambda)y)
\leq \lambda f(x) + (1 - \lambda)f(y) - f(\lambda x + (1 - \lambda)y).
\]
Replacing here the functional \(x^* \) by \(-x^*\) we infer that \textit{a fortiori}
\[
|x^*(\lambda F(x) + (1 - \lambda)F(y) - F(\lambda x + (1 - \lambda)y))| \\
\leq \lambda f(x) + (1 - \lambda)f(y) - f(\lambda x + (1 - \lambda)y),
\]
which due to the unrestricted choice of \(x^* \) gives the assertion desired. \(\square \)

\textbf{Remark 2.1.} Using another method, A. Olbryś ([8, Lemma 1]) with the aid of the celebrated Daróczy and Páles identity
\[
\frac{x + y}{2} = s\left[\frac{s x + y}{2} + (1 - s)y\right] + (1 - s)\left[sx + (1 - s)\frac{x + y}{2}\right],
\]
has proved that any delta \((s,t)\)-convex map on a convex subset of a real Banach space is necessarily delta Jensen convex.

\textbf{Proof of Theorem 1.2.} In view of the Lemma, \(F \) is delta Jensen convex with a control function \(f \). Due to the differentiability of \(f \) and the regularity assumption upon \(F \) the map
\[
(a, b) \ni x \mapsto f(x) + \|F(x)\| \in \mathbb{R}
\]
is upper bounded on a set of positive Lebesgue measure. Thus, with the aid of author’s result from [4], we obtain the local Lipschitz property of \(F \) and, in particular, the fact that \(F \) is a delta convex map controlled by \(f \) in the sense of L. Veselý & L. Zajíček (see [10]). Therefore, for any member \(x^* \) from the unit ball in the dual space \(E^* \) the function \(g_* := f + x^* \circ F \) is convex. Moreover, on account of Proposition 3.9 (i) in [10] p. 22] (see also Remark 2.2 below), \(F \) yields a differentiable map. Hence, \(g_* \) is differentiable as well and the derivative \(g'_* \) is increasing. Consequently, for any two fixed elements \(x, y \in (a, b), x \leq y \), we obtain the inequality
\[
(x^* \circ F)'(x) - (x^* \circ F)'(y) = g'_*(x) - f'(x) - g'_*(y) + f'(y) \\
\leq -f'(x) + f'(y) \leq |f'(x) - f'(y)|.
\]
Replacing here the functional \(x^* \) by \(-x^*\) we arrive at
\[
|x^*(F'(x) - F'(y))| = |(x^* \circ F)'(x) - (x^* \circ F)'(y)| \leq |f'(x) - f'(y)|,
\]
which, due to the unrestricted choice of \(x^* \) from the unit ball in \(E^* \), implies that
\[
\|F'(x) - F'(y)\| \leq |f'(x) - f'(y)|.
\]
In the case where \(y \leq x \) it suffices to interchange the roles of \(x \) an \(y \) in the latter inequality. Thus the proof has been completed.

\[\square \]

Remark 2.2. Actually, Proposition 3.9 (i) in \([10] \) p. 22] states that \(F \) is even strongly differentiable at each point \(x \in (a, b) \), i.e. for every \(\varepsilon > 0 \) there exists a \(\delta > 0 \) and an element \(c(x) \in E \) such that for all points \(u, v \in (x - \delta, x + \delta) \subset (a, b), u \neq v \), one has

\[
\left\| \frac{F(v) - F(u)}{v - u} - c(x) \right\| \leq \varepsilon.
\]

Obviously, every strongly differentiable map is differentiable (in general, in the sense of Fréchet).

Proof of Theorem 1.3. In view of Theorem 1.2 \(F \) is differentiable and the inequality

\[
\| F'(x) - F'(y) \| \leq | f'(x) - f'(y) |
\]

holds true for all \(x, y \in (a, b) \). Let a closed interval \([\alpha, \beta]\) be contained in \((a, b)\). Since, a continuously differentiable function, \(f'_{[\alpha, \beta]} \) yields an absolutely continuous function, for every \(\varepsilon > 0 \) there exists a \(\delta > 0 \) such that, for every finite collection of pairwise disjoint subintervals \((a_1, b_1), (a_2, b_2), \ldots, (a_k, b_k)\) of \([\alpha, \beta]\) with \(\sum_{i=1}^{k} (b_i - a_i) < \delta \), one has \(\sum_{i=1}^{k} |f'(b_i) - f'(a_i)| < \varepsilon \), whence

\[
\sum_{i=1}^{k} \| F'(b_i) - F'(a_i) \| \leq \sum_{i=1}^{k} |f'(b_i) - f'(a_i)| < \varepsilon.
\]

This proves that the map \(F'_{[\alpha, \beta]} \) is absolutely continuous as well. Since the space \((E, \| \cdot \|)\) enjoys the Radon-Nikodym property, in virtue of Theorem 5.21 from the monograph \([1]\) by Y. Benyamini and J. Lindenstrauss, the map \(F''_{[\alpha, \beta]} \) is differentiable almost everywhere in \([\alpha, \beta]\), i.e. off some nullset \(T \subset [\alpha, \beta] \) the second derivative \(F''(x) \) of \(F \) at \(x \) does exist for all \(x \in [\alpha, \beta] \setminus T \).

Now, fix arbitrarily a strictly decreasing sequence \((\alpha_n)_{n \in \mathbb{N}}\) and a strictly increasing sequence \((\beta_n)_{n \in \mathbb{N}}\) such that \(a < \alpha_n < \beta_n < b, n \in \mathbb{N} \), convergent to \(a \) and \(b \), respectively. Then, for every \(n \in \mathbb{N} \) one may find a nullset \(T_n \subset [\alpha_n, \beta_n] \) such that the second derivative \(F''(x) \) of \(F \) at \(x \) does exist for all \(x \in [\alpha, \beta] \setminus T_n \). Putting \(T := \bigcup_{n \in \mathbb{N}} T_n \) we obtain a set of Lebesgue measure zero, contained in \((a, b)\), such that the second derivative \(F''(x) \) does exist for all points \(x \in (a, b) \setminus T \). Fix arbitrarily a point \(x \in (a, b) \setminus T \). Then for any point \(y \in (a, b) \setminus \{x\} \) we have

\[
\left\| \frac{F'(y) - F'(x)}{y - x} \right\| \leq \left| \frac{f'(y) - f'(x)}{y - x} \right|
\]
and passing to the limit as \(y \to x \) we conclude that
\[
\|F''(x)\| \leq |f''(x)| = f''(x),
\]
because of the convexity of \(f \), which completes the proof. \(\square \)

Remark 2.3. Theorem 5.21 from [1] states, among others, that any absolutely continuous map from the unit interval \([0,1]\) into a normed linear space \(E \) with the Radon-Nikodym property is differentiable almost everywhere. It is an easy task to check (an affine change of variables) that any absolutely continuous map on a compact interval \([\alpha,\beta] \subset \mathbb{R}\) with values in \(E \) is almost everywhere differentiable as well.

References

