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Abstract
The staticfield potential in quantum electrodynamics in the space of three dimensions (QED3)
produced by a point chargewas investigated taking into account the polarization of the vacuum. The
polarization operator is taken in the -N 1 approximationwhichwas previously used to study the
dynamic violation of chiral symmetry inQED3. An approximate analytical analysis is accompanied by
numerical calculations; there is a good quantitative agreement between the results obtained using
thesemethods. The case ofmassive dynamical fermions is considered. The limiting transition to the
massless case is analyzed, as well as the confinement problemoccurring in thismodel.

1. Introduction

Quantumelectrodynamics in the space of three dimensions (QED3)has recently been the object of attention of
many authors. The reasons for this interest are different. Among them, one can observe the presence of a
dynamic violation of chiral symmetry (including the IT systems) [1–6] and confinement [7, 8] (understood as
the growth of the potentialmodulus with increasing distance). These two phenomena are interrelated in this
model. However, there are also other reasons for the interest inQED3.. Thus, breaking chiral symmetry
accompanied by the appearance of the dynamic particlemass takes place in quantumfield theory [9, 10]. In this
case, a close analogy is observed between the processes of particle occurrence in the center of a strong field in the
one-particle problemof relativistic quantummechanics and the dynamic particlemass appearing in the
quantumfield approach [11–13]. In this respect, quantum electrodynamics of three-dimensional space
(QED2+1) represents an example of a quantum fieldmodel inwhich, in a certain approach, chiral symmetry
breaking, studied in ample detail in [14–17], is observed. This is not the case for the corresponding two-
dimensional relativistic quantummechanical problem that was studied only in a fewworks (see [18–21]).
Moreover, a number of problems studied in detail in the spatial case [14–17] remained uninvestigated for the
two-dimensional analog.

Particular attentionwas paid to the staticfield of the point charge inQED3.Wewill note here that an explicit
expression for the potential of such afield is necessary for solving a number of specific problems, in particular,
for solving the corresponding quantum-mechanical problemmentioned above.On the other hand, as shown
by relevant studies [22], it is important to take into account the polarization of the vacuum, since this can
significantly change the character of the dependence of the potential on the distance between the point and the
source. By contrast, an exact account of the vacuumpolarization in theN− 1 approximation, carried out in [22]
and being one of the simplest approaches, does not allow expressing this potential through known functions. In
this case, the followingways can be used to obtain the desired expression for the potential:
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(a) numerical integration followed by interpolation;

(b) approximation of the integrand by a simpler expression that makes it possible to calculate the integral
explicitly, in a subsequent comparisonwith the result of numerical integration using the exact expression
for the polarization operator.

In this paper the consideration of the staticfield of a point charge inQED3 is discussed. As for the photon
propagator, the same approximation is used here as in the literature [8]. Anyway, the novelty in comparisonwith
the previous studies described in the literature of the field comprises the following:

(a) studying approximations of various character within the linear fractional case for a function inverse to the
polarization operator (earlier in [8]; for this purpose, only two-point approximationwas used, see
also [23]);

(b) using numerical methods (in particular, Mathematica 9.0) when calculating the potential within the
framework of the approximation used for the above function;

(c) comparing the result obtained by means of numerical methods for the potential with the result obtained
using approximations of various types within the linear-fractional approximation for a function inverse to
the polarization operator;

(d) analyzing the dependence of the investigated potential on the quantum coupling constant and the fermion
mass in a sufficiently wide range of values of the indicated quantities.

2. The general expression for the static potential of the point chargefield inQED3

Tofind the static potential, we start from the standard expression [17]

( ) ( ) ( ) ( )( ) ·   

òp=A r iQ D k e d k2 , 0 , 1R
t ik r

0
2 2

whereQ—charge of the source, ( )( )


D k , 0R
t —transverse part of the total photon propagator at zero frequency,

regularized in a gauge-invariantmanner. It can be represented as

( ) ( · ( )) ( )( )  j=D k ik k, 0 1 ; 2R
t 2

(here ∣ ∣


=k k ), and the function ( )j k , associatedwith the polarization operator inQED3, wasfirst calculated in
the approximation considered in [22]. It has the following form:
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whereα stands for the dimensional coupling constant inQED3, andm is themass of the fermion. Further,
introducing dimensionless quantities ( )b a p= =x k m m2 , 8 ,we represent the functionj as
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Substituting (2) and (3) into expression (1) and bearing inmind representation (4), as a result of integration over
the angle, we have
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where r = mr2 .Wedraw attention to the fact that the integral (5) diverges at the lower limit if ¹m 0.To avoid
this divergence, we represent the function ( ) ( )j =x f x1 as
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Here
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3. Results and discussion

3.1. Approximation of the integrand
The integrals (5), (8)with function (4) are not expressed in terms of the known elementary and special functions;
therefore, in the present paper, both the approximation of the integrand by a simpler expression and numerical
integration are used for the calculation.

Let usfirst consider the calculation of the indicated integral by approximating the function ( )f x , choosing
the fractional-linear approximation as the simplest one.On the other hand, this choice is prompted by the type
of the specified functionwhen =m 0 [24]. In this case, the approximated function can be represented as

( ) ( )=
+
+

F x
a a x

b b x
, 91 2

1 2

here constants a ,1 a ,2 b ,1 b2 are determined by the requirement of the functions ( )f x and ( )F x values
coincidence at given points. Using in this case relations (5), (6), we obtain
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where L1 is determined by thefirst of the relations (8), and L̃2 is given by
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here H0 and N0 are, respectively, the zero-order Struve andNeumann functions [25].
Giving a certainmeaning to the divergent integral L1 can be argued as follows [26].Wefind the derivative

· ( ) ·ò x x= = -
r r r

¥
J d ;dL

d

1

0
1

11 then, as a result of integrating the resulting expression, we obtain

( )r r= -L Cln ln .1

If we choose as the constantC the value r0 which has themeaning of a dimensionless fundamental length,
then for the desired integral we have

( ) ( )r
r
r

=L ln . 121
0

To solve the problem, the two-point approximationwas used in [3, 16, 17] (it was required that the above
functions coincide at the point =x 0 andwith  ¥x ). However, for determining all the constants of the two
relations that result from the coincidence of the values of the functions in question at the indicated points, it
turns out to be insufficient. In [3, 16, 17] there is no consideration of this question. Therefore, this gap isfilled,
namely, it is assumed that when  ¥x it coincides not only with thefirst but also the second terms in the
expansion of the functions ( )f x and ( )F x by degree x1 . In this case, for the constants entering into the relation
(6), we can obtain the following values:

( )p b p= = = + =a a b b3; 8 ; 3 4 ; 8 . 131 2 1 2

These values coincidewith the results of [8, 23].
It is quite natural in this case to use also the three-point approximation, proceeding from the coincidence of

the values of the functions ( )f x and ( )F x in points =x 0; =x 1 aswell as  ¥x .Then for constants a ,1 a ,2

b ,1 b2 we have

( )b= = = + =a a b b3; 1; 3 4 ; 1. 141 2 1 2

Figure 1 shows the plots of the functions ( )f x and ( )F x , corresponding to two-point ( ( )F x2 ) and three-
point ( ( )F x3 ), approximating (functions ( )f x correspond to the dotted line, the functions ( )F x2 and ( )F x3 are
plottedwith red and blue lines, respectively). In the process of numerical calculations, the computational
package ofMathematica 9.0 was used.
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The analysis of the curves presented infigure 1 aswell as formulae (9), (13), (14) shows the following:

(1) Both the two-point approximation and its three-point analogue, in general terms, from a qualitative point
of view correctly convey the behavior of the function in question throughout the investigated region of
photon pulses.

(2) For smallmomenta in the case of smallβ; the accuracy of the three-point approximation proves to be higher
than the two-point approximation; this accuracy decreases with increasing constantβ.

(3) For sufficiently large β the accuracy of the two-point and three-point approximations in the region of both
small and largemomenta turn out to be comparable.

(4) With the increase in constants, β the output of both functions to the asymptotic mode of values occurs later
than at its small values.

Figure 1.Plots of the integrand at (a) b = 0.01, (b) b = 0.1, (c) b = 1, (d) b = 10, (e) b = 100 and (f) b = 500.
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3.2. Calculation of the static potential of the point chargefield inQED3

Weproceed to– calculating the potential which is of interest to us, using,first of all, the results of approximation.
Using formulae (10)–(14), for the two-point approximationwe have
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Similarly, we obtain for the three-point approximation

⎟

⎛
⎝⎜

⎞
⎠

( ) · ·

· ( (( ) · ) (( ) · )) ( )

r
p b

r
r

b
b

p

b r b r

=
+

+
+

+ - +

A
Q

NH

2

3

3 4
ln

4

3 4 2

3 4 3 4 . 160

0
0

0

Dependence of potential ( )rA0 on the dimensionless distance at different b is shown infigure 2.
Turning to thesefigures and comparing the results obtained using approximating functions, as well as those

obtained on the basis of the exact function (4), we reach the conclusions listed below.

Figure 2.Plots of the dimensionless potential as a function of the dimensionless distance at (a) b = 0.01, (b) b = 0.1, (c) b = 1,
(d) b = 10, (e) b = 100 and (f) b = 500.
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(1) The approximations in question describe the qualitative behavior of the potential ( )rA0 well in the
investigated interval of distances; we also observe a good quantitative agreement between the results of the
approximation and the exact result for the dependence of the potential under consideration on the distance
in the investigated range of distances.

(2) With increasing the b constant, the accuracy of the approximation improves.

(3) The accuracy of the approximation proves to be higher in the regions of both the small and large distances.

(4) In the investigated range of distances, the accuracy of the three-point approximation is higher than the two-
point approximation.

The last remark needs additional comments. Thus, it is known thatwhen =m 0 ( )b  ¥ the integral (5)
converges and is computed in a closed form. In this case we have [24]

⎜ ⎟ ⎜ ⎟
⎛
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⎞
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⎠⎟( ) ( )a a

= -A r
Q r

N
r

H
4 8 8

. 1700 0

This relation can be obtained by passing to the limit from the finitemass of the fermion to the case m 0 in
formula (15), but not (16), whereas with regard to item4) of the conclusions of the section under consideration
we should expect the opposite. This fact is a consequence of the divergence of the integral (5), which implies the
order of the transition m 0 and integration over the photonmomenta.

Fromwhat has been said, the following follows. If it is necessary to use the expression for potential ( )rA0 in
the analytical form, in awide range of values of the constant b of values b 1and up to the values b 1, but
finite, three-point approximation is preferable (formula (16)).When ( )b  ¥ =m 0 , the formula (17) should
be used.

Thus, when analyzing the potential under consideration, if it is an analytic expression, it is reasonable to start
from the relation (16) towhichwe turn.Here, we consider the possibility of weakening the condition for the
disappearance of confinement, understood as the disappearance of the field at infinity. It is known [4, 15–17,
25–27] that inQED3 confinement takes place if ¹m 0 (this can be easily seen from expression (16)). If =m 0,
confinement disappears.

Analyzing the graphs shown infigure 2, one can see the following:

(a) when the virtual fermionmass is not equal to zero and the coupling constant is fixed in the considered range
of coupling constants and distances, the potential under study is amonotonously decreasing function of the
distance from the observation point to the source;

(b) at a fixed value of the indicated distance, a weak dependence of the potential on the coupling constant is
observed at its small values, starting to increase significantly with the growth of this constant from the values
of b > 1.

An investigation of the dependence of the potential on the distance can be performed inmore detail, if we
choose the value of the distance scale

( )p=r m c3 . 18m 0

where

( )
b

=
+

c
1

1
190 4

3

Then, as shown in [8], we have:
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p
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2
ln 4 3 , . . 20

m

m

0 0

0 0 0

Thus, it can be observed that at large distances the role of the chargewhich is the source of the field, is the
magnitude ·c Q.0 In other words, themagnitude c0 in our case is the renormalization constant, the appearance
of which is associatedwith the creation of virtualmassive fermions in a vacuum. In additional, we see, that
potential ( )A r0 beingmonotonically decreasing function of the distance between afield source and observation
point changes its sign if noticed distance increases.

Let us consider now the situationwhen virtual fermions aremassless. Here the natural scale of distances is
the quantity
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( )a=r 8 21m

Thenwe have
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Wenotice that in this case, the potential depending from the distance between afield source and an
observation point is different for different distances (with an increasing distance). In addition, we had
established that in the case under consideration the potential keeps its sign. The physical aspects of this
phenomenon are discussed in detail in [8]. Briefly, in this case, a pole appears in the photon propagator in the
space-like region ofmomenta, which leads to the appearance ofmass in the photon. The presence of an
imaginarymass, on the one hand, leads to instability of the bulk state, which is responsible for screening at large
distances, and, on the other hand,means its instability. This effectmanifests itself in a faster decrease compared
to the case ofmassive vacuum fermions of the studied potential with distance from the point under
consideration fields to the source.

Since in the problemunder consideration, there are three dimensional parameters which are the
dimensional fundamental length r ,0 themass of the fermion m and the coupling constant a, it is possible to
construct various dimensionless combinationswith themwhich can play the role of characteristic parameters
for the corresponding problems. In particular, here, whenwe try toweaken the condition for the disappearance
of confinement in the sense indicated above, we use the value introduced previously b = a

pm8
and, instead of the

traditional condition for this case b  ¥, it is assumed that

( )b 1. 23

Using expression (16), and alsowriting out the principal termof the asymptotic representation of the
difference ( ) ( )-z N zH0 0 [25], as a condition of screening (lack of confinement), it is necessary to take

( )
( )b

a
+

+
>

r

r mr r r
3 ln

4

6
0. 240

Taking into account condition (18), and also that r r ;0 from the relation (19), we obtain

· ( )( )<r r e , 25mr
0

1 6

fromwhich it follows that the screening is impossible and, hence, the presence of confinement only for strictly
nonzero values of the loop fermionmasses.

4. Conclusions

When calculating the potential of the static charge field inQED3 in -N 1 approximation, the possibility of using a
fractional-linear approximation for a function associatedwith a polarization operator is investigated.When
comparing the application of different variants of fractional-linear approximation for the considered function
with the result of numerical integration, it turns out that the best approximation gives a three-point
approximation.On the basis of this approximation, an analytical expression is obtained for the required
potential and it is shown that when themass of loop fermions vanishes, this expression does not go over into the
known exact expression; the reason for this discrepancy is analyzed.On the basis of the expression for the
potential obtainedwith the help of the three-point approximation, the possibility of weakening the condition for
the disappearance of confinementwas investigated and it is shown that in the approximation considered this
possibility is absent.
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