

You have downloaded a document from RE-BUŚ repository of the University of Silesia in Katowice

Title: Kahlenbergite, a New Potassium β-Alumina Mineral : [abstract]

Author: Biljana Krüger, Evgeny V. Galuskin, Irina O. Galuskina, Hannes Krüger, Yevgeny Vapnik

Citation style: Krüger Biljana, Galuskin Evgeny V., Galuskina Irina O., Krüger Hannes, Vapnik Yevgeny (2019). Kahlenbergite, a New Potassium β -Alumina Mineral : [abstract]. "Acta Crystallographica Section A: Foundations and Advances" Vol. 75, pt. a2 (2019), art. no. e206, s. 1 DOI: 10.1107/S2053273319093501

Uznanie autorstwa - Licencja ta pozwala na kopiowanie, zmienianie, rozprowadzanie, przedstawianie i wykonywanie utworu jedynie pod warunkiem oznaczenia autorstwa.

Biblioteka Eiblioteka Uniwersytetu Śląskiego

Ministerstwo Nauki i Szkolnictwa Wyższego

MS14-03 | KAHLENBERGITE, A NEW POTASSIUM & ALUMINA MINERAL

Krüger, Biljana (University of Innsbruck, Innsbruck, AUT); Galuskin, Evgeny V. (University of Silesia, Faculty of Earth Sciences, Sosnowiec, POL); Galuskina, Irina O. (University of Silesia, Faculty of Earth Sciences, Sosnowiec, POL); Krüger, Hannes (University of Innsbruck, Institute of Mineralogy and Petrography, Innsbruck, AUT); Vapnik, Yevgeny (Ben-Gurion University of the Negev, Beer-Sheva, ISR)

Kahlenbergite (IMA 2018-158) is a natural potassium β -alumina, with an empirical formula of (K_{0.87}Mg_{0.09}Ca_{0.03}Ba_{0.01})_{s1}(Al_{9.46}Fe³⁺_{1.36}Mg_{0.14}Cr³⁺_{0.02}Si_{0.02})_{s11}O₁₇. It occurs in small hematite segregations within wollastonite-gehlenite rocks. The mineral association suggests formation temperature between 1000 and 1200 °C (Sharygin, 2019). Kahlenbergite forms platy, light-brown crystals, epitaxially replaced and overgrown by hibonite. The unit cell dimensions (a=5.64860(6), b=22.8970(3) Å) and space group *P*6₃/*mmc* of kahlenbergite corresponds to that of synthetic K β -alumina. The crystal structure was refined using synchrotron diffraction data (beamline X06DA, SLS, PSI). Compared to synthetic K β -alumina, which often shows considerable amounts of positional and occupational cation disorder, the structure of kahlenbergite is fairly simple. It exhibits a fully occupied position of the K atom at ($\frac{1}{2}$, \frac

The structure of kahlenbergite and the Fe³⁺-analog of hibonite contain identical blocks, which are connected by *P*-layers in kahlenbergite and so-called *R*-layers in the Fe³⁺-analog of hibonite. The *R*-layers contain Ca atoms, AIO_5 -bipyramids, and further AIO_6 octahedra. Therefore, the connecting layers are most likely the source of the disorder.

[1] Sharygin, (2019) Mineralogical Magazine 83, 123–135