

You have downloaded a document from RE-BUŚ

repository of the University of Silesia in Katowice

Title: Envelopes of special class of one-parameter families of curves

Author: Peter Kahlig, Janusz Matkowski

Citation style: Kahlig Peter, Matkowski Janusz. (1996). Envelopes of special class of one-parameter families of curves. "Demonstratio Mathematica" (Vol. 29, nr 4 (1996) s. 799-806), doi 10.1515/dema-1996-0415

Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych Polska - Licencja ta zezwala na rozpowsze chnianie, przedstawianie i wykonywanie utworu jedynie w celach niekomercyjnych oraz pod warunkiem zachowania go w oryginalnej postaci (nie tworzenia utworów zaleznych).

Peter Kahlig, Janusz Matkowski

ENVELOPES OF SPECIAL CLASS OF ONE-PARAMETER FAMILIES OF CURVES

Introduction

In our recent paper [6] concernig some relations between the logarithmic and arithmetic means we have obtained a family of solutions ϕ_{α} of a relevant one-parameter system of functional equations which are of the form

$$
\phi_{\alpha}(x)=g\left(\frac{x}{\alpha}\right)+g(\alpha), \quad x>0
$$

where $\alpha>0$ is the parameter, and g is a particular solution of the functional equation corresponding to the parameter $\alpha=1$. Since g completely describes the one-parameter family of solutions $\left(\phi_{\alpha}\right)_{\alpha>0}$, we call g to be its generator. Being interested in the mutual dependence of the position of graphs of the family ϕ_{α} on the parameter α, it is natural to ask what is the envelope E_{g} of the family of curves

$$
\mathcal{G}(g):=\left\{\operatorname{graph}\left(\phi_{\alpha}\right): \alpha>0\right\}
$$

This question, in the context of the family $\mathcal{G}(g)$, appears to be interesting. There are some relationships between the envelope E_{g} of the logarithmic functions.

We also show that there are structural similarities between behaviour of the above mentioned class of curves $\mathcal{G}(g)$ and its envelope E_{g}, and the classes of three families of curves being the graphs of the functions

$$
\begin{aligned}
& \phi_{\alpha}(x)=g(x-\alpha)+g(\alpha), \quad x, \alpha \in \mathbb{R} \\
& \phi_{\alpha}(x)=g(x-\alpha) g(\alpha), \quad x, \alpha \in \mathbb{R} \\
& \phi_{\alpha}(x)=g\left(\frac{x}{\alpha}\right) g(\alpha), \quad x>0
\end{aligned}
$$

and their envelopes, where g is appropriate defined. Some connections, respectively, with linear, exponential, and power functions, will be exhibited.

1. Envelopes for families $\mathcal{G}(\mathrm{g})$ of logarithmic type

By \mathbb{R} we denote the set of reals.
For an arbitrary function $g:(0, \infty) \rightarrow \mathbb{R}$ define the one-parameter family of functions $\phi_{\alpha}:(0, \infty) \rightarrow \mathbb{R}$ by

$$
\phi_{\alpha}(x):=g\left(\frac{x}{\alpha}\right)+g(\alpha), \quad x, \alpha>0
$$

of the generator g; by $\mathcal{G}(g)$ denote the family of curves being the graphs of $\phi_{\alpha}, \alpha>0$, and by E_{g}, the envelope of the family $\mathcal{G}(g)$ (provided it exists).

We often identify a function and its graph. Therefore we write down the envelope E_{g} in the form $y=E_{g}(x), x>0$, when it is possible and convenient.

Remark. 1.1. If $g(x)=c \log x+g(1), x>0$, where c and $g(1)$ are arbitrary real constant, then $\mathcal{G}(g)=\{g\}$ is a singleton, and E_{g}, the envelope of g, obviously, coincides with the graph of g.

It turns out that the converse implication holds true:
Proposition 1.1. Let $g:(0, \infty) \rightarrow \mathbb{R}$ be an arbitrary function. Then $\mathcal{G}(g)$ is a singleton if, and only if, the function g satisfies the functional equation

$$
g(x y)+g(1)=g(x)+g(y), \quad x, y>0
$$

If moreover g is continuous at least at one point, then there exists a constant $c \in \mathbb{R}$ such that $g(x)=c \log x+g(1), x>0$.

Proof. The family $\mathcal{G}(g)$ is a singleton if, and only if,

$$
g\left(\frac{x}{\alpha}\right)+g(\alpha)=g\left(\frac{x}{\beta}\right)+g(\beta)
$$

for all $x, \alpha, \beta>0$. Setting $x=\beta$ gives

$$
g(\beta / \alpha)+g(\alpha)=g(1)+g(\beta), \quad \alpha, \beta>0
$$

Hence, for $\psi: \mathbb{R}_{+} \rightarrow \mathbb{R}$ defined by the formula

$$
\psi(\alpha):=g(\alpha)-g(1), \quad \alpha>0
$$

one gets $\psi(1)=0$ and

$$
\begin{equation*}
\psi\left(\frac{\beta}{\alpha}\right)+\psi(\alpha)=\psi(\beta), \quad \alpha, \beta>0 \tag{1}
\end{equation*}
$$

Hence, setting $\beta=1$ in this equation we obtain

$$
\psi\left(\frac{1}{\alpha}\right)=-\psi(\alpha), \quad \alpha>0
$$

Now replacing α by α^{-1} in (1) gives

$$
\begin{equation*}
\psi(\alpha \beta)=\psi(\alpha)+\psi(\beta), \quad \alpha, \beta>0 \tag{2}
\end{equation*}
$$

which means that

$$
g(\alpha \beta)+g(1)=g(\alpha)+g(\beta), \quad \alpha, \beta>0
$$

The converse implication is obvious. Since ψ is a solution of the logarithmic Cauchy functional equation (2), the remainig statement is a well known fact (cf. for instance Aczél [1], p. 41). This completes the proof.

Remark 1.2. Note that the continuity of g at least at one point can replaced by the measurability of g, or by the boundedness above (or below) in a neighbourhood of a point (cf. for instance Kuczma [4], p. 218).

The main result of this section reads as follows:
Theorem 1.1. Let $g:(0, \infty) \rightarrow \mathbb{R}$ be a differentiable function. Then the graph of the function

$$
\begin{equation*}
(0, \infty) \ni x \rightarrow 2 g(\sqrt{x}) \tag{3}
\end{equation*}
$$

is contained in the envelope of the family $\mathcal{G}(g)$. If the function

$$
\begin{equation*}
(0, \infty) \ni x \rightarrow g^{\prime}(x) x \quad \text { is one-to-one } \tag{4}
\end{equation*}
$$

then the envelope E_{g} has the representation $y=E g(x)=2 g(\sqrt{x}), x>0$.
Proof. According to a classical method (cf. for instance Favard [2], Chapter III), to find the envelope of the family of curves $\mathcal{G}(g)$ it is enough to eliminate the parameter α from the system of equations

$$
y=g\left(\alpha^{-1} x\right)+g(\alpha), \quad g^{\prime}\left(\alpha^{-1} x\right)\left(-\alpha^{-2} x\right)+g^{\prime}(\alpha)=0, \quad x, \alpha>0, y \in \mathbb{R}
$$

The second equation can be written in the following equivalent form

$$
g^{\prime}\left(\alpha^{-1} x\right)\left(\alpha^{-1} x\right)=g^{\prime}(\alpha) \alpha, \quad x, \alpha>0
$$

If the function $(0, \infty) \ni x \rightarrow g^{\prime}(x) x$ is one-to-one, it follows that $\alpha^{-1} x=$ α, and consequently, $\alpha=\sqrt{x}, x>0$. Setting $\alpha=\sqrt{x}$ into the first of the equations we get the function

$$
\begin{equation*}
y=2 g(\sqrt{x}), \quad x>0 \tag{5}
\end{equation*}
$$

the graph of which is the envelope of the considered family of curves.
If the function $(0, \infty) \ni x \rightarrow g^{\prime}(x) x$ is not one-to-one, then, obviously, every point of the graph of the function (3), is a point of the envelope. This completes the proof.

Remark 1.3. If $g(x)=c \log x+g(1) x>0$, then $g^{\prime}(x) x=c$ for all $x>0$, i.e. the function (4) is constant. In particular it is not one-to-one. But of course (cf. Remark 1), E_{g} even coincides with the graph of g.

Remark 1.4. Denote by $\mathcal{F}((0, \infty), \mathbb{R})$ the set of all functions $\psi:(0, \infty)$ $\rightarrow \mathbb{R}$. For a given function $F: \mathbb{R} \rightarrow \mathbb{R}$ define an operator $T: \mathcal{F}((0, \infty), \mathbb{R}) \rightarrow$ $\mathcal{F}((0, \infty), \mathbb{R})$ by the formula $T(\psi):=F \circ \psi$. Let $\mathcal{G}(g)$ and $\mathcal{G}(h)$ be the suitable families of curves of continuous generators g and h. Note that $T(\mathcal{G}(g)) \subseteq$
$\mathcal{G}(h)$ if, and only if, there exists a function $\beta:(0, \infty) \rightarrow(0, \infty)$ such that F, g and h satisfy the functional equation

$$
F(g(x / \alpha)+g(\alpha))=h(x / \beta(\alpha))+h(\beta(\alpha)), \quad x, \alpha>0
$$

Assuming that $g:(0, \infty) \rightarrow \mathbb{R}$ is bijective and $\beta(\alpha)=\alpha$ for all $\alpha>0$, we shall prove that $T(\mathcal{G}(g)) \subseteq \mathcal{G}(h)$ iff T is affine. In fact, as

$$
F(g(x / \alpha)+g(\alpha))=h(x / \alpha)+h(\alpha), \quad x, \alpha>0
$$

setting $x:=\alpha^{2}$ gives $F(2 g(\alpha))=2 h(\alpha)$ for all $\alpha>0$. It follows that

$$
F(x)=2 h \circ g^{-1}(x / 2), \quad x \in \mathbb{R}
$$

Substituting this function into the previous relation we get

$$
2 h \circ g^{-1}\left(\frac{g(x / \alpha)+g(\alpha)}{2}\right)=h(x / \alpha)+h(\alpha), \quad x, \alpha>0
$$

Replacing α by y, and x by $x y$, gives

$$
2 h \circ g^{-1}\left(\frac{g(x)+g(y)}{2}\right)=h(x)+h(y), \quad x, y>0
$$

Replacing here x by $g^{-1}(x)$, and y by $g^{-1}(y), x, y \in \mathbb{R}$, we obtain

$$
h \circ g^{-1}\left(\frac{x+y}{2}\right)=\frac{h \circ g^{-1}(x)+h \circ g^{-1}(y)}{2}, \quad x, y \in \mathbb{R} .
$$

It follows that there are $a, b \in \mathbb{R}$ such that $h \circ g^{\boldsymbol{1}}(x)=a x+b$ for all $x \in \mathbb{R}$ (cf. for instance Aczél [1], p. 43), and consequently

$$
F(x)=2 h \circ g^{-1}(x / 2)=2(a(x / 2)+b)=a x+2 b, \quad x \in \mathbb{R}
$$

which was to be shown.
Remark 1.5. Note that an element ϕ_{α} of the family $\mathcal{G}(g)$ coincides with the generator g if, and only if, there is an $\alpha>0$ such that g satisfies the functional equation

$$
g(x)=\phi_{\alpha}(x)=g(x / \alpha)+g(\alpha), \quad x>0
$$

In particular, if the generator g is strictly increasing and $g(1)=0$, then $\phi_{1}=\mathrm{g}$.

Remark 1.6. In general, no member of the family $\mathcal{G}(g)$ will coincide with the envelope E_{g}. If it is the case, then there exists an $\alpha_{0}>0$ such that g satisfies the functional equation

$$
2 g(\sqrt{x})=g\left(x / \alpha_{0}\right)+g\left(\alpha_{0}\right), \quad x>0
$$

We shall prove that if g is differentiable at the point $x=\alpha_{0}$, and satisfies this equation, then there is $a c \in \mathbb{R}$ such that

$$
\begin{equation*}
g(x)=c \log x+g\left(\alpha_{0}\right), \quad x>0 \tag{6}
\end{equation*}
$$

Replacing x by $\alpha_{0}^{2} x$ we get

$$
2 g\left(\alpha_{0} \sqrt{x}\right)=g\left(\alpha_{0} x\right)+g\left(\alpha_{0}\right), \quad x>0
$$

Now it is easy to see that the function $\phi:(0, \infty) \rightarrow \mathbb{R}$,

$$
\phi(x):=g\left(\alpha_{0} x\right)-g\left(\alpha_{0}\right), \quad x>0,
$$

satisfies the functional equation

$$
2 \phi(\sqrt{x})=\phi(x), \quad x>0
$$

and ϕ is differentiable at the point $x=1$. According to Fubini's result [3] (cf. also [5], p.394), there exists a constant $c \in \mathbb{R}$ such that

$$
\phi(x)=c \log x, \quad x>0 .
$$

Hence we get the formula (6).
Thus, under the weak and natural assumption of the differentiability of the function g, the envelope E_{g} is a member of the family $\mathcal{G}(g)$ if, and only if, $\mathcal{G}(g)$ is a singleton with $g=\log$.

Geometrical comments 1.1. Let $g:(0, \infty) \rightarrow \mathbb{R}$ be a differentiable function, and suppose that the function $x \rightarrow g^{\prime}(x) x$ is one-to-one in \mathbb{R}_{+}. Then E_{g} coincides with the graph of the function $x \rightarrow 2 g(\sqrt{x})$, so we can write $E_{g}(x)=2 g(\sqrt{x}), x>0$. Moreover, for every fixed $\alpha>0$,

$$
y=g\left(\frac{x}{\alpha}\right)+g(\alpha), \quad x>0
$$

the curve $\phi_{\alpha} \in \mathcal{G}(g)$, touches the envelope E_{g} at the point $\left(\alpha^{2}, 2 g(\alpha)\right)$. At this point of contact of the curves ϕ_{α} and E_{g}, the common tangent has the slope

$$
\phi^{\prime}\left(\alpha^{2}\right)=E_{g}^{\prime}\left(\alpha^{2}\right)=g^{\prime}(\alpha) / \alpha
$$

Example 1. For the generator $g(x)=x, x>0$, we get the family $\mathcal{G}(g)$ of functions ϕ_{α},

$$
\phi_{\alpha}(x)=\frac{x}{\alpha}+\alpha, \quad x>0
$$

Applying the above commentaries, we get the envelope E_{g} :

$$
E_{g}(x)=2 \sqrt{x}, \quad x>0
$$

points of contact: $\left(\alpha^{2}, 2 \alpha\right)$; slope of common tangent: $1 / \alpha$.

2. Envelopes for families $\mathcal{G}(g)$ of affine type

Analogously as in the previous section, for an arbitrary generator func-
tion $g: \mathbb{R} \rightarrow \mathbb{R}$ define the one-parameter family of functions $\phi_{\alpha}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\phi_{\alpha}(x):=g(x-\alpha)+g(\alpha), \quad x, \alpha \in \mathbb{R}
$$

and introduce the same notations: $\mathcal{G}(g)$ and E_{g}.
Remark 2.1. If $g(x)=c x+g(0), x \in \mathbb{R}$, where c and $g(0)$ are arbitrary real constants, then $\mathcal{G}(g)=\{g\}$ is a singleton, and E_{g}, the envelope of g, coincides with the graph of g.

In an analogous way as Proposition 1.1 we can prove:
Proposition 2.1. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be an arbitrary function. Then $\mathcal{G}(g)$ is a singleton if, and only if, the function g satisfies the functional equation

$$
g(x+y)+g(0)=g(x)+g(y), \quad x, y \in \mathbb{R}
$$

If moreover g is continuous at least at one point, then there exists a constant $c \in \mathbb{R}$ such that $g(x)=c x+g(0), x \in \mathbb{R}$.

Theorem 2.1. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function. Then the graph of the function $\mathbb{R} \ni x \rightarrow 2 g\left(\frac{x}{2}\right)$, is contained in the envelope of the family $\mathcal{G}(g)$. If the function $\mathbb{R} \ni x \rightarrow g^{\prime}(x)$ is one-to-one, then $y=E_{g}(x)=2 g\left(\frac{x}{2}\right)$, $x \in \mathbb{R}$.

3. Envelopes for families $\mathcal{G}(g)$ of exponential type

Suppose that $g: \mathbb{R} \rightarrow(0, \infty)$ is a generator of the one-parameter family of functions $\phi_{\alpha}: \mathbb{R} \rightarrow(0, \infty)$:

$$
\phi_{\alpha}(x):=g(x-\alpha) g(\alpha), \quad x, \alpha \in \mathbb{R}
$$

and let $\mathcal{G}(g)$ and E_{g} be defined correspondingly.
Remark 3.1. If $g(x)=g(0) e^{c x}, x \in \mathbb{R}$, where $c \in \mathbb{R}$, and $g(0)>0$, are arbitrary constants, then $\mathcal{G}(g)=\{g\}$ is a singleton, and E_{g}, the envelope of g, coincides with the graph of g.

Proposition 3.1. Let $g: \mathbb{R} \rightarrow(0, \infty)$ be an arbitrary function. Then $\mathcal{G}(g)$ is a singleton if, and only if, the function g satisfies the functional equation

$$
g(0) g(x+y)=g(x) g(y), \quad x, y \in \mathbb{R}
$$

If moreover g is continuous at least at one point, then there exists a constant $c \in \mathbb{R}$ such that $g(x)=g(0) e^{c x}, x \in \mathbb{R}$.

Theorem 3.1. Let $g: \mathbb{R} \rightarrow(0, \infty)$ be a differentiable function. Then the graph of the function

$$
\mathbb{R} \ni x \rightarrow\left[g\left(\frac{x}{2}\right)\right]^{2}
$$

is contained in the envelope of the family $\mathcal{G}(g)$. If the function g^{\prime} / g is one-to-one, then the envelope E_{g} has the representation

$$
y=E_{g}(x)=\left[g\left(\frac{x}{2}\right)\right]^{2}, \quad x>0 .
$$

4. Envelopes for families $\mathcal{G}(g)$ of power type

Suppose that $g:(0, \infty) \rightarrow(0, \infty)$ is a generator of the one-parameter family of functions $\phi_{\alpha}:(0, \infty) \rightarrow(0, \infty)$:

$$
\phi_{\alpha}(x):=g\left(\frac{x}{\alpha}\right) g(\alpha), \quad x, \alpha>0,
$$

and let $\mathcal{G}(g)$ and E_{g} be defined correspondingly.
Remark 4.1. If $g(x)=g(1) x^{c}, x>0$, where $c \in \mathbb{R}$, and $g(1)>0$, are arbitrary constants, then $\mathcal{G}(g)=\{g\}$ is a singleton, and E_{g}, the envelope of g, coincides with the graph of g.

Proposition 4.1. Let $g:(0, \infty) \rightarrow(0, \infty)$ be an arbitrary function. Then $\mathcal{G}(g)$ is a singleton if, and only if, the function g satisfies the functional equation

$$
g(1) g(x y)=g(x) g(y), \quad x, y>0 .
$$

If moreover g is continuous at least at one point, then there exists a constant $c \in \mathbb{R}$ such that $g(x)=g(1) x^{c}, x>0$.

Theorem 4.1. Let $g:(0, \infty) \rightarrow(0, \infty)$ be a differentiable function. Then the graph of the function

$$
(0, \infty) \ni x \rightarrow[g(\sqrt{x})]^{2}
$$

is contained in the envelope E_{g} of the family $\mathcal{G}(g)$. If the function

$$
(0, \infty) \ni x \rightarrow \frac{g^{\prime}(x)}{g(x)} x
$$

is one-to-one, then the envelope curve has the representation

$$
y=E_{g}(x)=[g(\sqrt{x})]^{2}, \quad x>0 .
$$

References

[1] J. Aczél, Lectures on functional equations and their applications, Academic Press, New York and London 1966.
[2] J. Favard, Cours de géométrie différentialle locale, Gauthier-Villars, Paris 1957.
[3] G. Fubini, Di una nova succesione di numeri, Period. Mat. 14 (1899), 147-149.
[4] M. Kuczma, Functional equations in a single variable, Monografie Mat. 46, Polish Scientific Publishers (PWN), Warszawa 1968.
[5] M. Kuczma, B. Choczewski, R. Ger, Iterative functional equations, Encyclopedia of Mathematics, Cambridge University Press, Cambridge-New York 1990.
[6] P. Kahlig, J. Matkowski, Functional equations involving the logarithmic mean, Z. Angew. Math. Mech. 76(1996), 385-390.

Peter Kahlig
INSTITUT METEOROLOGY AND GEOPHYSICS UNIVERSITY OF VIENNA
A- 1190 VIENNA, AUSTRIA

Janusz Matkowski
DEPARTMENT OF MATHEMATICS
TECHNICAL UNIVERSITY
PL-43-309 BIELSKO-BIALA, POLAND

Received August 28, 1995.

