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Włodzimierz Fechner

FUNCTIONAL EQUATIONS MOTIVATED 
BY THE LAGRANGE'S IDENTITY

Abstract. We solve two functional equations motivated by the following Lagrange's
identity:

i=1

nn

= ai bi - (aibj - aj bi) ,
i=1 i=1 1^i<j^n

which is valid for every n 6 N and each a1,... ,an,b1,bn from a commutative ring.

The classical Lagrange's identity states that for every n G N = {1,2,...} 
and each ai, bi from a commutative ring R, where i = 1, .. . , n, we have: 

n 2 n n
aibi = ai2 bi2 -

i=1 i=1 i=1

(1) (aibj - ajbi)2
1^i<j^n

or, if division by 2 is uniquely performable in R:
n 2 n n n n

(2) ($2 aibi) = (52a*2) (52b2)- 2 £ 52(aibj- abtf-

i=1 i=1 i=1 i=1 j=1

These identities motivate the following two functional equations:
n n n

(3) f aibi = f(ai) f(bi) - f(aibj - ajbi)
i=1 i=1 i=1 1^i<j^n

and
n n n n n

(4) f (52 aibi) = (52 f (ai0(52 f (bi^ - 2^52 f (aibj - ajbi) ’
i=1 i=1 i=1 i=1 j=1

which can be discussed for an unknown mapping f acting between fields, 
rings or algebras. Dealing with equation (4) we need to assume additionally
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that the target space of f contains unit element 1 and 1. Observe also 
that equations (3) and (4) need not to be equivalent, unless f is even and 
f(0) = 0.

It is worth to note that another functional equation related to the La­
grange's identity is already known. The following version of the Euler- 
Lagrange quadratic functional equation:

n n n
(5) Q aixi + Q(aixj - aj xi) = ai2 Q(xi)

i=1 1^i<j^n i=1 i=1

and its several modifications jointly with the corresponding stability ques­
tions have been studied by J. M. Rassias [9], [10], [11], [12], H.-M. Kim, J. 
M. Rassias and Y.-S. Cho [5], H.-M. Kim and J. M. Rassias [6], M. J. Rassias 
and J. M. Rassias [13], A. Pietrzyk [8], among others.

The main difference between (3) or (4) and (5) seems to lie in the non­
linearity of (3) and (4). Indeed, if Q1 and Q2 solve (5) then for each scalars 
Ai, A2 the map A1Q1 + A2Q2 provides a solution of (5). It is clear that (3) 
and (4) do not possess an analogical property and therefore one may expect 
a different behavior of these equations.

The purpose of the present paper is to determine general solutions of (3) 
and (4). Therefore we provide an answer to the question whether, or to what 
extent, the Lagrange's identity characterizes the mapping x x2 on rings 
or algebras.

Clearly, if the Lagrange's identity holds for a given n 2 then a simple 
substitution an = bn = 0 proves the validity of this identity for n - 1 (on 
a ring or on an arbitrary structure with adequate operations and the zero 
element). The converse implication is not straightforward and therefore one 
may ask if the Lagrange's identity assumed for n and then assumed for n-1 
are equivalent (in a sense that corresponding functional equations have the 
same solutions). To settle the question we will solve corresponding functional 
equations (3) or (4), respectively assuming its validity for a fixed n only.

Observe that if n = 1 then (3) reduces to the multiplicative Cauchy 
equation:

(6) f(a1b1) = f(a1)f(b1)

whereas (4) reduces to

(7) f(a1M = f(a1)f(M - 2f(0)-

The description of solutions of (6) is well known in the literature, see e.g. 
M. Kuczma [7, pp. 343-350]. Under some mild assumptions equation (7) 
can be easily solved by a reduction to (6).
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Proposition 1. Assume that R and S are arbitrary rings such that 1 G S 
and 1, 3 G S, f: R S and at least one of the elements f (0) and 3 — f (0) 
is not a zero divisor in S. Then f is a solution of (7) if and only if either 
f vanishes at zero and satisfies the multiplicative Cauchy equation (6) or f 
is constant and equal to 3.

Proof. Substitute a1 = b1 = 0 in (7) to get

(2 — f (0)) f (0) = 0.

Therefore, either f (0) =0 or f (0) = 3 (by our assumption both elements 
f(0), 2 — f(0) are not zero divisors simultaneously). In the first case (7) is 
equivalent to (6). If f (0) = | then substitution bi =0 gives us

3 3 3
2 = f (0) = f (ai •0) = f (ai) • 2 — 4 ’

i.e. f is constantly equal to |.
The converse implication is straightforward. ■

Now, let us discuss the general case with arbitrarily fixed n > 1.

Lemma 1. Assume that n > 1 is an integer, R and S are arbitrary rings 
such that S is commutative, 1 G S and 1,1, 2 1 , o G S, f: R S is a| n n2-n+|

solution of (3) and at least one of the elements f (0) and n -n+2 — f (0) is not 
a zero divisor in S. Then either f(0) = 0 and f satisfies the multiplicative 
Cauchy equation (6) or f is constant and equal to n —"2+2■

Proof. Put ai = 0, . . . , an = 0 and bi = 0, . . . , bn = 0 in (3) to obtain
|

f (0) = n2f (0)2 — f (0),

i.e.
( n2 — n + 2 
I 2

n|f(0) f(0) = 0.

By our assumption, from the above equality it follows that either f(0) = 0 
or f (0) = n2-n+2. If f (0) = 0 then (3) applied for a2 = ... = an = 0 and 
b| = . . . = bn = 0 implies immediately (6). In the second case, fix arbitrarily 
x G R and substitute ai = x, . . . , an = x and bi = 0, . . . , bn = 0 in (3). We 
get

2
f (0)= n2f (x)f (0) — f (0),

which implies the equality f (x) = n —n+2• ■

In a similar way we obtain an analogous result for equation (4). 
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Lemma 2. Assume that n > 1 is an integer, R and S are arbitrary rings 
such that S is commutative, 1 G S and 1, n, 2+2 G S, f: R S is a2 n n +2

solution of (4) and at least one of the elements f (0) and — f (0) is not 
a zero divisor in S. Then either f(0) = 0 and f satisfies the multiplicative 
Cauchy equation (6) or f is constant and equal to nn2'

Proof. Substitution a1 = 0, . . . , an = 0 and b1 = 0, . . . , bn = 0 in (4) leads 
to the equality

n2
f (0) = n2f (0)2 — f (0),

which is equivalent to

(—nf (0))/ (o)=o.

Again, if f(0) = 0 then one may substitute a2 = . . . = an = 0 and b2 = . . . = 
bn = 0 in (3) to obtain (6). Further, if f (0) = 0 then f (0) = n2+22• Next, for 
an arbitrarily fixed x G R put a1 = x, . . . , an = x and b1 = 0, . . . , bn = 0 in
(3).  We arrive at

n2
f (0)= n2f (x)f (0) — f (0),

which gives us the equality f (x) = —n2• ■

Remark 1. One may easily check that if one of equations (3) or (4) is 
satisfied for two different integers n1, n2 which are greater than one then 
each solution of (3) or (4), respectively, is a multiplicative mapping. Indeed, 
since both mappings 

{2, 3,...} 9 n
n2 — n + 2

2n2
{2, 3,...} 9 n

n2 + 2
2n2

are injective then by Lemma 1 and Lemma 2 each solution of (3) and (4) is 
multiplicative.

Remark 2. If S is a Banach algebra and \\f (0)|| < "^t2 then n2+2 — f (0) 
is invertible in S (and thus not a zero divisor).

Our next step is to provide conditions under which each solution of (3) or
(4) which satisfy f(0) = 0 is a quadratic mapping. We will need to assume 
additionally that the ring R contains unit element.

Recall that a map f: R S (between Abelian groups) is called quadratic 
if and only if f satisfies:

(8) f(x + y) + f(x — y) = 2f(x) + 2f(y)

for each x, y G R. It is well known (see e.g. J. Aczel and J. Dhombres [1, 
Chapter 11, Proposition 1] or K. Baron and P. Volkmann [2, Proposition]) 
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that if unique division by 2 is possible in R or in S then f: R S is a 
quadratic mapping if and only if there exists a bi-additive and symmetric 
functional B: R x R S such that

f(x) = B(x, x), x G R.

Lemma 3. Under assumptions of Lemma 1, if 1 G R and f: R S is a 
solution of (3) such that f(0) = 0 then f is a quadratic mapping.

Proof. By Lemma 1 f satisfies (6) and thus in particular

f (x) = f (x • 1) = f (x)f (1)
for every x G R. Apply (3) for a3 = . . . = an = 0, bi = b2 = 1 and 
b3 = . . . = bn = 0 to obtain

f(ai + a2) = 2f(ai) + 2f(a2) — f(ai — a2)

for each ai, a2 G R, i.e. f is quadratic. ■

Lemma 4. Under assumptions of Lemma 2, if 1 G R and f: R S is a 
solution of (4) such that f(0) = 0 then f is a quadratic mapping.

Proof. Similarly as in the proof of Lemma (3) we have that f(x) = f(x)f(1) 
for every x G R. Equation (4) applied for a3 = . . . = an = 0, bi = b2 = 1 
and b3 = . . . = bn = 0 gives us

(9) f (ai + 02) = 2f (ai) + 2f (02) — 2[f (ai — a2) + f (02 — ai)]

for each ai, a2 G R. Apply this equality for a2 = 0. We see that

f (ai) = 2f (ai) — 2 f (ai) — 2 f (—ai)’

i.e. f is even. Therefore, by joining this with (9) we see that f is a quadratic 
mapping. ■

Now, we may formulate our main result.

Theorem 1. Assume that n > 1 is an integer, R is a commutative ring 
with unit, S is a field with characteristic different from 2 and from n and 
f: R S is not constant. Then the following conditions (i), (ii) and (iii) 
are equivalent:

(i) f is a solution of (3);
(ii) f is a solution of (4);

(iii) there exists an additive and multiplicative functional u: R S such 
that f(x) = u2(x) for each x G R.

Proof. Implications (iii) (i) and (iii) (ii) follow from the Lagrange's 
identity written in the form (1) or (2), respectively.
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We will show the converse implications. Making an advantage of the 
similarities of equations (3) and (4) we may prove both implications simul­
taneously.

Since the target space of f is a field and thus in particular contains no 
zero divisors and f is not constant then by Lemma 1 if f satisfies (3) then 
f(0) = 0 and it is multiplicative and then by Lemma 3 f is quadratic. 
Similarly, by Lemmas 2 and 4 if f satisfies (4) then f is multiplicative and 
quadratic.

Let us denote by S the algebraic closure of the field S and for any element 
a G S let the symbol S(a) stand for the smallest field extension of S which 
contains a.

We will apply a result of Z. Gajda [3, Theorem] which states that a 
multiplicative and quadratic mapping f: R S, where S is a field with 
characteristic different from 2 and R a commutative ring with unit, can be 
represented in the form:

f(x) = u(x) • v(x), x G R,

where both u: R S(a) and v: R S(a) are additive and multiplicative
functionals such that:

u(x) + v(x) G S, u(x) - v(x) G aS

and a G S is an element which satisfies a2 G S. Moreover, we may assume 
that u(1) = v(1) = 1 (clearly, other possibility for multiplicative functionals 
is u(1) = 0 or v(1) = 0 which leads to u = 0 or v = 0 and, consequently, to 
f = 0).

Now, we will join the representation f (x) = u(x) • v(x) with (3) or (4), 
respectively. Fix arbitrarily an x G R and let us put a1 = x, a2 = 1 and 
a3 = ... = an = 0 in case n > 3, b1 = x, b2 = 1 and b3 = ... = bn = 0 if 
n 3 in (3) or (4), respectively. We have:

n
f aibi = f(x2 +1) = u(x2 +1)v(x2 +1)

i=1

= u2(x)v2(x) +u2(x) +v2(x) + 1,
nn

f(ai) f(bi) = [f(x) +f(1)]2 = u2(x)v2(x) +2u(x)v(x) +1,
i=1 i=1

and

^2 f (aibj - ajbi) = f (x • 1 - 1 • x) = f (0) = 0,
1^i<j^n
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nn
2 12 f (aibj — ajbi) = 2[f (x2 — x2) + f (x 1 — 1 x)
2 i=1 j=1 2

+ f (1 • x — x • 1) + f (12 — 12)] =0.

Therefore, both (3) and (4) turn into

u2(x)v2(x) + u2(x) + v2(x) + 1 = u2(x)v2(x) + 2u(x)v(x) + 1,

which immediately gives us

[u(x) — v(x)]2 = 0.

Therefore, we have proved the equality u = v, which means that

f(x) = u2(x), x G R.

Finally, from the equality u = v we easily deduce that a G S and thus the 
range of u is contained in the field S. ■

Remark 3. Theorem of Z. Gajda [3], used in the proof of our Theorem 
1, is a generalization of a result of C. Hammer and P. Volkmann from [4]. 
They have proved that a mapping f: R R which is multiplicative and 
quadratic can be written as

f (x) = (Kw(x))2 + (3w(x))2,

with additive and multiplicative w: C C. However, in case of real-to-real 
solutions of (3) or (4) we can easily calculate that the function

f(x) = x2, x G R

is the only nonconstant solution of (3) or (4), since it is well known that the 
only nonzero additive multiplicative real-to-real functional is the identity 
mapping.
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