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Vol. XXXVIII No 1 2005 

Lech Bartiomiejczyk 

IRREGULAR SOLUTIONS OF THE FEIGENBAUM 
FUNCTIONAL EQUATION 

Abstract. We describe the structure of orbits generated by two commuting bijections 
and using this description we construct irregular solutions of the Feigenbaum functional 
equation: 

ip(<p( Ax)) = A <p(x) = 0 

and its generalizations: 
yp2(x) = s M / ( x ) ) ) . 

The graph of such a solution almost cover the plane in the sense of measure and topology. 

1. Introduction 
Let X and Y be two sets and TZ be a family of subsets of X x Y. We 

say that <p : X —» Y has a big graph with respect to TZ if its graph Grip 
meets every set of TZ. We are interested in finding conditions under which 
functional equations of the form 
(1) <p2(x) = *(¥>( /(*))) 

have a solution with big graph with respect to a sufficiently large family. 
(More exactly, we would like to obtain such a solution under conditions 
which axe automatically satisfied in the case of the famous Feigenbaum 
equation 
(2) ¥>(v(Ax)) + A <p(x) = 0. 
The idea of constructing solutions with big graphs go back to F. B. Jones 
[8] (see also [11, Ch.12, §4], [1]). Since [9] by P. Kahlig and J. Smital it 
becomes known in iterative functional equtions theory (cf. [2]). Unfortunetly, 
concerning the Feigenbaum equation, we can apply to it only [3, Corollary 1] 
and only in the case where A = 1. It is the aim of this paper to fill this gap. 
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The main part of the paper we supply by topological and measure-theoretical 
properties of functions with big graph taken from [3]. It shows in particular 
that we are able to get a solution of (1) with the graph almost covering 
X x F i n the sense of measure and topology. 

The results have been presented on The Twenty-Sixth Summer Sympo-
sium in Real Analysis and appeared (without proofs) in [4]. 

2. Main result 
Let X be a nonempty set and suppose that / : X —> X and g: X —> X 

are commuting bijections (one-to-one and onto). For every x 6 X denote 
by C(x) the orbit of the point x generated by functions / and g, i.e. the 
equivalence class containing x of the relation ~ on X defined by 

x ~ y <=>• y = fmgn(x) for some m,n & Z. 
Clearly 

C(x) = {fmgn(x):rn>neZ}. 
The following obvious remarks slightly explain how to construct a solution 
of( l ) . 
REMARK 1. For every x 6 X the function <p : C(x) —> C{x) given by 
<P = f 0 9\c{x) is a solution of (1) and commutes with / and g. 
REMARK 2. Assume : X —• X is a solution of (1) which commutes with 
/ and g. Then: 
(i) if y € ip(X) then <p(y) = f(g(y))~, 
(ii) for every x € X we have ip(C(x)) — C(<p(x)). 

Recall some notions. We say that an x € X is a periodic point of / with 
period p (being a positive integer) iff 

fP(x) = x, fk(x) ¿x for k = 1,... ,p - 1. 
The set of all such points will be denoted by Per(/, p) and we put 

oo 
Per/ = [J Per(f,p). 

P=l 
Below we clasify all the possible types of orbits generated by two com-

muting bijections. 
DEFINITION. L e t x e X . 

(i) The orbit C(x) is of the type (0,0) iff 
fk{x)^gl{x) for M€Z,|fc| + |J|^0. 

(ii) If m is a positive integer then the orbit C(x) is of the type (m, 0) iff 
x G Per(/, m) and fk(x) ^ gl(x) for k,leZ,l^0, 
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and it is of the type (0, m) iff 

x i Per(/) and gm(x) = fk(x) for some k € Z 
and gl(x) ± fk(x), for 0 < I < m, k€ Z. 

(iii) If m and n are positive integers then the orbit C(x) is of the type (m, n) 
iff 

x € Per(/, m), gn(x) = fk(x) for some k G Z, 
and gl(x) / fk(x) for 0 < I < n, k G Z. 

For nonnegative integers m, n let Z-m,n denote the (cardinal) number of 
all orbits of the type (m, n). 

Note that in the case of the Feigenbaum equation on reals we have f(x) = 
j x and = —Ax whence 

C(x) = {Anx, —Anx : n € Z}. 
Hence C(0) is of the type (1,1) and for every A different from 1 and —1 and 
for every x ^ 0 the orbit C(x) is of the type (0,2). Consequently 

L\ t\ - 1, Lo,2 = c 
and Lm n = 0 for (m, n) different from (1,1) and (0,2). 

For any set R C X x X and x G X we denote by Rx the vertical section 
of R, i.e. the set {y G X: (x, y) € i?}. The following is our main result. 

THEOREM 1. Assume X is uncountable and let f and g be commuting bi-
jections of X such that there are nonnegative integers mo, no with 
(3) cardX = LmQino 

and 
(4) J 2 Lm>„ < cardX. 

(m,n)/(mo,no) 
IfTZisa family of subset of X x X such that 
(5) card7£ < cardX 
and 
(6) card{x G X : cardi^ = cardX} = cardX for R € Tl 
then there exists a solution ¡p : X —> X of (1) which commutes with f and 
g and has a big graph with respect to H. 
Proo f . Let 

A = {x € X: C(x) is of the type (mo, no)}. 
According to (3) we have 

(7) card^4 = cardX. 
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Hence and from (4) for 
A - i = X \ A 

we get 
(8) carcL4_i < cardX. 

Define ip-1: —> A-\ by <p-\ = / o g\A_1. Then (cf. Remark 1) 

(9) V- i = 9 ° <P-i ° f U - i -

Now we start to define a solution of (1) on the set A. Let 7 be the smallest 
ordinal such that its cardinal equals that of 1Z and let (Ra : a < 7 ) be a 
one-to-one transfinite sequence of all the elements of 1Z. We shall define a 
sequence (A a : a < 7) of countable subsets of A and a sequence (<pa: a < 7) 
of functions <pa: Aa —• Aa such that for every a < 7 the following conditions 
(10)-(13) hold: 

(10) f ( A a ) = Aa, g(Aa) = Aa, 

(11) ^ = 9 0 ^ 0 / 1 ^ , ipa o f\Aa = f\Aa o ipa, <pa o g\Aa = g\Aa o ipa, 

( 1 2 ) A ß n A a = <D f o r ß < a, 

(13) Gryja 

Suppose a < 7 and that we have already defined suitable Aß's and ipp's 
for every ß < a. According to (6)-(8) we have 

card{x 6 A : card(iiQ)x = caxdA"} = cardA 

which allows us to fix an x G A \ |J/3<Q Aß such that 

card(i?Q)x = cardX. 

Taking (8) into account we see that cardyln (i2Q)x = cardX and we can find 

( 1 4 ) y e (AC) ( R a ) x ) \ ( ( J Aß U C ( x ) ) . 

ß <a 

Put Aa = C(x) U C(y) and define ipa: Aa —> Aa by 

Va|c(j/) = f°9\c(y) 

and 
( 1 5 ) <p(fm9n(x)) = f m g n ( y ) f o r m, n € Z . 

Since orbits C(x) and C(y) are of the same type (mo, no), the function ipa 

is well defined. It is easy to see that (10) - (12) hold. According to (15) we 
have (pa(x) = y which jointly with (14) gives (13). The transfinite induction 
is completed. 

With 
A-2 = A\ (J 

a<i 
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we define a function ¡p-2 : A-i —> A-2 by 

¥>-2 = / ° S U _ 2 -
Then 
(16) ¥>i2 = 9 0 ( P - 2 0 / U _ 2 -

Now X = U A—2 U Ua<-y with disjoint summands which allows 
us to define a function <p: X X by 

ip = ip-l U <P—2 u (J (pa. 
a < 7 

According to (9), (11) and (16) it is a solution of (1). Due to (13), which 
holds for every a < 7, <p has a big graph with respect to TZ. Since every ips 
commutes both with / and g, the same concerns ip. m 

COROLLARY. Assume X is a nonzero real number. If 71 is a family of subsets 
of R x R such that card??. < c and 

card{a; 6 R: cardi^ = c} = c for RtlZ 

then there exists an even solution ip: R —> R of (2) which has a big graph 
1with respect to 1Z and such that 

ip(Xx) = Xtp(x) for x € R. 

3. Properties of functions with big graph 
Given a topological space X, consider the family 

(17) {i? 6 B(X x X): {x € X: Rx is uncountable} is uncountable} 

where B(X x X) denotes the cr-algebra of all Borel subsets of X x X. 
The following remark is a consequence of the theorem of Mazurkiewicz-

Sierpinski ([10, 29.19]), the theorem of Souslin ([12, p. 437], [10, 29.1]) and 
the fact that there are not more than c many Borel sets in a Polish space. 

REMARK 3. If X is an uncountable Polish space, then the family 1Z defined 
by (17) satisfies the requirements (5) and (6) of Theorem. 

The following observation shows that if a function <p : X —» X has a 
big graph with respect to the family (17), then its graph is big from the 
topological point of view. 

PROPOSITION 1. Assume T\-space X has a countable base and has no iso-
lated point. If (p: X X has a big graph with respect to the family (17) 
then the set (X x X) \ Grip contains no subset of X x X of second category 
having the property of Baire. 
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Proo f . Assume (X x X)\Gr<p contains a set F of second category having the 
property of Baire. Let G be a second category Qg subset of X x X contained 
in F. Clearly the set G does not belong to the family (17). Consider the sets 

|J{{x} x Gx: Gx is countable}, [J{{x} x Gx: Gx is uncountable} 

summing up to G. Since G is not in (17), the second one is a countable sum 
of Borel sets. Consequently both these sets are Borel. Since all the sections 
of the first one are of first category, the set itself is of first category according 
to the Kuratowski-Ulam Theorem (see [13, Theorem 15.4], [10, 8.41]). Hence 
{x E X : Gx is uncountable} is uncountable, i.e., G belongs to the family 
(17), a contradiction. • 

Making use of the Fubini Theorem, instead of that of Kuratowski-Ulam, 
(and the fact that B(X x X) coincides with the product cr-algebra B(X) x 
B(X) if X has a countable base) we obtain the following measure-theoretic 
analogue of Proposition 1. 

PROPOSITION 2. Assume X is a T\-space with a countable base. Let ¡JL and v 
be a-finite Borel measures on X vanishing on all the singletons. If(p:X^X 
has a big graph with respect to the family (17) then the set (X x X) \ Gup 
contains no Borel subset of X x X of positive product measure fix v. 

In other words (/j x is)*(X xX\Gr<p) = 0 and, consequently, (/x x i/)*(Bf] 
Gr<p) = ( / ix v)(B) for every B G B(X x X). Here A* and A* denote inner 
and outer measures, respectively, generated by a Borel measure A; cf. [7, 
Sec. 14]. 

It is worthwhile to mention that if a Polish space has no isolated point 
then there are lot of Borel measures on it vanishing on all the singletons [14, 
p. 55], 

Assume now that X is an abelian Polish group. Following J. P. R. Chris-
tensen [5], [6, p. 115] we say that a Borel subset R of X x Y is a Haar zero set 
if there exists a probability measure A on B(X x X) such that X(R + z) — 0 
for every z G X x X. Using a version of the Fubini Theorem for Haar zero 
sets established by J. P. R. Christensen on pp. 259-260 of [5], we have the 
following. 

PROPOSITION 3. Assume X is locally compact abelian Polish group without 
isolated points. If<p:X—>X has a big graph with respect to the family (17) 
then the set (X x X) \ Gr<p contains no Borel subset of X x X being not a 
Haar zero set. 
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