

## You have downloaded a document from RE-BUŚ repository of the University of Silesia in Katowice

Title: Note on convex functions bounded on regular hypersurfaces

Author: Roman Ger

**Citation style:** Ger Roman. (1973). Note on convex functions bounded on regular hypersurfaces. "Demonstratio Mathematica" (Vol. 6, nr 1 (1973) s. 97-103), doi 10.1515/dema-1973-0110



Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych Polska - Licencja ta zezwala na rozpowszechnianie, przedstawianie i wykonywanie utworu jedynie w celach niekomercyjnych oraz pod warunkiem zachowania go w oryginalnej postaci (nie tworzenia utworów zależnych).

UNIWERSYTET ŚLĄSKI w katowicach Biblioteka Uniwersytetu Śląskiego



Ministerstwo Nauki i Szkolnictwa Wyższego DEMONSTRATIO MATHEMATICA Volume VI Dedicated to Professor Stanisław Gołąb Part 1 1973

## **Roman Ger**

## NOTE ON CONVEX FUNCTIONS BOUNDED ON REGULAR HYPERSURFACES

Dedicated to Professor S. Goląb on the occasion of his 70<sup>th</sup> birthday

<u>1</u>. Let  $\mathbb{R}^n$  denote the Cartesian product of n copies of the space R of real numbers. A real valued function  $\varphi$  defined on an open and convex subset  $\triangle$  of  $\mathbb{R}^n$  is called convex iff the inequality (of Jensen)

$$\varphi\left(\frac{\mathbf{x}+\mathbf{y}}{2}\right) \leq \frac{\varphi(\mathbf{x})+\varphi(\mathbf{y})}{2}$$

holds for every pair  $(x, y) \in \Delta \times \Delta$ .

M.Kuczma and the present author have introduced in [2] some set classes relevant to the notion of convex function. In particular  $\mathcal{A}_n$  is there defined to be the family of all sets  $T \subset \mathbb{R}^n$  such that every convex function upper-bounded on T is continuous. The question whether a subset T of  $\mathbb{R}^n$  is a member of  $\mathcal{A}_n$  is of interest and has been a subject of many papers (a survey of results and references are given in [3]). One of the classical results says that  $\mathcal{A}_n$  contains all sets in  $\mathbb{R}^n$  with positive inner n-dimensional Lebesgue measure. However, it is also well known that some sets of measure zero turn out to be members of  $\mathcal{A}_n$ . Recently M.Kuczma has proved that the graph of an arbitrary nonlinear real valued and continuous function defined on an interval belongs to  $\mathcal{A}_2$  ([4], theorem

4.2). A simple counter-example is there also given to show that the assumption of nonlinearity is essential.

The quoted result suggests the investigation which hypersurfaces in  $\mathbb{R}^n$  are members of  $\mathcal{A}_n$ . The purpose of the present paper is to give a partial enswer to that question.

2. We are going to prove the following

The orem. Every (n-1)-dimensional regular hypersurface H in R<sup>n</sup>, not contained in an (n-1)-dimensional hyperplane, is a member of  $\mathcal{A}_n$ , whenever  $n \ge 2^{1}$ .

Proof: Since every k-dimensional regular hypersurface in  $\mathbb{R}^n$ ,  $1 \leq k < n$ , yields locally the graph of a map f:  $G \longrightarrow \mathbb{R}^{n-k}$  where G is an open and connected subset of  $\mathbb{R}^k$ , we can confine ourselves to the case of hypersurfaces being graphs. Thus we assume that

(1) 
$$H = \left\{ (\mathbf{x}, \mathbf{f}(\mathbf{x})) : \mathbf{x} \in \mathbf{G} \right\}$$

where G denotes an open subset of  $\mathbb{R}^{n-1}$  and f is a nonlinear real-valued function of class  $\mathbb{C}^1$ , defined on G.

Let  $a'_0$  be a point in G such that f is nonlinear in any neighbourhood of  $a_0$ . Without loss of generality we can assume that  $a_0 = 0$  as well as f(0) = 0 (cf. [4], theorem 1.2). Suppose that  $K(0,\epsilon)$  is an open ball centered at 0 with a radius  $\epsilon > 0$  such that  $\Im K(0,\epsilon) \subset G^{2}$ .

There exists a point  $x_1 \in K(0, \epsilon) \setminus \{0\}$  such that  $f'(0) \cdot x_1 - f(x_1)$  is different from zero (otherwise f would have to be linear). The continuity of the function

$$g(x) = f'(0) \cdot x - f(x)$$

<sup>1)</sup> H is called to be a k-dimensional regular hypersurface in  $\mathbb{R}^n$   $1 \le k \le n$ , if every point of H has a neighbourhood (in the induced topology) diffeomorphic with an open set in  $\mathbb{R}^k$ .

<sup>2)</sup> For  $A,B \subset \mathbb{R}^k$  and  $\alpha, \beta$  - real numbers we write  $\alpha A + \beta B \stackrel{\text{df}}{=} \{ \mathbf{x} \in \mathbb{R}^k : \mathbf{x} = \alpha a + \beta b, a \in A, b \in B \}$ . Similarly  $(\alpha, \beta) a \stackrel{\text{df}}{=} \{ \mathbf{x} \in \mathbb{R} : \mathbf{x} = \beta a, \beta \in (\alpha, \beta) \}$ ,  $a \in \mathbb{R}^k$ .

implies the existence of a  $\delta_1 > 0$  such that  $g(x) \neq 0$  for  $x \in K(x_1, \delta_1) \subset K(0, \varepsilon)$  whereas  $0 \notin cl K(x_1, \delta_1)$ . The case where there exists a point  $\overline{x} \in K(0, \varepsilon) \setminus \{0\}$  such that f is linear in a neighbourhood of  $\overline{x}$  will be considered separately. Now we can assume that f is nonlinear in any neighbourhood of any point  $x \in K(0, \varepsilon)$ . Then there exist a  $\delta > 0$  and a point  $x_0$  such that  $K(x_0, \delta) \subset K(x_1, \delta_1)$  and  $f'(x) \neq f'(0)$  for  $x \in K(x_0, \delta)$ . Finally, for every x from  $K(x_0, \delta)$  the following conditions are satisfied:

- (i)  $f'(x) \neq f'(0)$ ,
- (ii)  $g(x) \neq 0$ ,

(iii) f is nonlinear in any neighbourhood of x.

Let us denote by  $\psi$  the function  $x \longrightarrow (x,f(x))$ ,  $x \in G$ , and put  $U = \psi(K(x_0, \delta))$ . Evidently  $\mathbb{R}^n \ni 0 = \psi(0) \notin \psi(\text{cl } K(x_0, \delta))$ . Moreover, (iii) implies that U is not contained in any (n-1)--dimensional hyperplane. Thus we are able to construct the "cone" S with the vertex  $0 = \psi(0)$  and the "base" U, i.e. the set

$$\mathbf{S} = \bigcup_{\substack{\boldsymbol{\rho} \in U \\ \boldsymbol{\rho} \in U}} \bigcup_{\boldsymbol{\lambda} \in [\boldsymbol{\alpha} 1]} \left\{ \boldsymbol{\lambda} \mathbf{p} \right\}.$$

The interior of S is non-void in the topology of R<sup>n</sup>. Now,we are going to show that

$$(2) \qquad S \subset Q(H),$$

where Q(H) is the Q-convex hull of H, i.e. the set of all finite linear combinations  $\sum_{i=1}^{m} \alpha_i \mathbf{x_i}$ , where **m** is any positive integer, each  $\mathbf{x_i}$  is in H, each  $\alpha_i$  is nonnegative and belongs to the set Q of rationals, and  $\sum_{i=1}^{m} \alpha_i = 1$ . It is straightforward to verify that a set T in R<sup>n</sup> and its Q-convex hull Q(T) simultaneously belong or do not belong to  $\mathcal{H}_n(cf.$  for instance [1]).

To check the above inclusion (2) let us define the function  $F_{a}$ : K(0, $\epsilon$ ) x (0,1) --- R by the formula

- 99 -

R.Ger

(3) 
$$F_{a}(x, \lambda) = f(x) + f(2\lambda a - x) - 2\lambda f(a)$$

where  $\mathbf{x} \in K(0, \varepsilon)$ ,  $\lambda \in (0, 1)$  and a is an arbitrarily fixed point of  $K(\mathbf{x}_0, \delta)$ . Since for a,  $\mathbf{x} \in K(0, \varepsilon)$  we have  $2\lambda a - \mathbf{x} \in 2 K(0, \varepsilon) +$ +  $K(0, \varepsilon) = 3 K(0, \varepsilon) \subset G$ , the definition of  $\mathbf{F}_a$  is correct.

Observe that

$$F_a(a, \frac{1}{2}) = f(a) + f(0) - f(a) = 0$$

whereas

4

$$\frac{\partial \mathbf{F}_{\mathbf{a}}}{\partial \lambda} (\mathbf{a}, \frac{1}{2}) = 2 \left[ \mathbf{f}' (2 \lambda \mathbf{a} - \mathbf{x}) \cdot \mathbf{a} - \mathbf{f}(\mathbf{a}) \right] \Big|_{(\mathbf{a}, \frac{1}{2})} = 2 \mathbf{g}(\mathbf{a}) \neq 0$$

٢

in view of (ii).

Applying the implicit function theorem we infer that in a neighbourhood  $K(a, \rho) \subset K(x_0, \delta)$ ,  $\rho > 0$ , of the point a there exists a continuous function  $\lambda = \lambda(x)$  taking values in (0,1) such that  $\lambda(a) = \frac{1}{2}$  and

(4) 
$$F_a(x, \lambda(x)) \equiv 0$$
 for  $x \in K(a, q)$ .

 $\lambda(x) \neq \text{const. In fact, if } \lambda(x) = \frac{1}{2} \text{ for } x \in K(a, \gamma), \text{ then (3)}$ and (4) imply

$$f(x) + f(a - x) - f(a) \equiv 0 \quad \text{for} \quad x \in K(a, \gamma),$$

or equivalently (for  $x \neq a$ )

$$\frac{f(x) - f(a) - f'(a) \cdot (x - a)}{|x - a|} + \frac{f(a - x) - f'(0) \cdot (a - x)}{|a - x|} =$$
(5)

$$= (f'(0) - f'(a)) \cdot \frac{x - a}{|x - a|}.$$

However this is impossible, since in virtue of the differentiability of f at a and O respectively, letting x tend to a

- 100 -

one would obtain that the left-hand side of (5) converges to zero. This implies f'(0) = f'(a) which is incompatible with (i).

Thus  $\lambda$  establishes a nonconstant continuous map of K(a, $\varrho$ ) into (0,1) and hence the image of K(a, $\varrho$ ) by  $\lambda$  must contain an open interval ( $\alpha,\beta$ )  $\subset$  (0,1). Let us take an arbitrary point  $x \in K \stackrel{\text{df}}{=} \lambda^{-1}$  (( $\alpha,\beta$ )) and put  $y(x) \stackrel{\text{df}}{=} 2\lambda(x)a - x \in G$ . The identity (4) assumes now the following form

$$f(x) + f(y(x)) - 2\lambda(x) f(a) \equiv 0 \quad \text{for} \quad x \in K,$$

or equivalently

(6) 
$$\lambda(x) f(a) = \frac{f(x) + f(y(x))}{2}$$
 for  $x \in K$ .

By the definition of y we have also

(7) 
$$\lambda(\mathbf{x}) = \frac{\mathbf{x} + \mathbf{y}(\mathbf{x})}{2}$$
 for  $\mathbf{x} \in \mathbb{K}$ .

(6) and (7) can be jointly written in the form

(8) 
$$\lambda(\mathbf{x}) \psi(\mathbf{a}) = \frac{1}{2} \left( \psi(\mathbf{x}) + \psi(\mathbf{y}(\mathbf{x})) \right)$$
 for  $\mathbf{x} \in \mathbb{K}$ .

The last relation (8) says that the open segment  $(\alpha \psi(a); \beta \psi(a)) = (\alpha, \beta) \psi(a)$  is contained in  $\frac{1}{2}$  (H + H)  $\subset$  Q(H). Since also  $0 = \psi(0)$  and  $\psi(a)$  are elements of Q(H), the whole closed segment  $[0; \psi(a)]$  turns out to be a subset of Q(H). In fact,  $[0,\beta) \psi(a)$  and  $(\alpha,1] \psi(a)$  yield the Q-convex hulls of the sets  $\{0\} \cup (\alpha,\beta) \psi(a)$  and  $(\alpha,\beta) \psi(a) \cup \{\psi(a)\}$ , respectively.

Because of the free choice of a from  $K(x_0, \delta)$  (which is, of course, equivalent to the free choice of a point p from U) the inclusion (2) has been proved. Finally, the interior of Q(H) is non-void which implies that Q(H), and hence H, belongs to  $\mathcal{A}_{n}$ .

In order to complete the proof of our assertion it remains yet to consider the case  $f(x) = c \cdot x + \gamma$  for  $x \in K(\overline{x}, \gamma) \subset$ 

- 101 -

 $\subset K(0,\varepsilon)$ ,  $\overline{x} \neq 0$ ,  $\varphi > 0$ . Since f is nonlinear in any neighbourhood of 0, one may find a point  $z_0 \in K(0,\varepsilon), z_0 \notin cl K(\overline{x},\varphi)$ , such that

$$f(z_0) \neq c \cdot z_0 + \gamma$$
 and  $f'(z_0) \neq c$ .

Let us fix arbitrarily a point  $a \in K(\overline{x}, \varrho)$  and define the function  $F_a: K(0, \varepsilon) \ge (0, 1) \cdot - R$  by the formula

$$\mathbf{F}_{a_i}(\mathbf{x},\lambda) = \mathbf{f}(\mathbf{x}) + \mathbf{f}\left(2(\lambda \mathbf{z}_0 + (1-\lambda)\mathbf{a}) - \mathbf{x})\right) - 2\lambda \mathbf{f}(\mathbf{z}_0) - 2(1-\lambda) \mathbf{f}(\mathbf{a})$$

Then

$$F_a(z_0, \frac{1}{2}) = 0$$
 and  $\frac{\partial F_a}{\partial \lambda}(z_0, \frac{1}{2}) = 2[c \cdot z_0 + \gamma - f(z_0)] \neq 0.$ 

By the same argument as in the previous case we derive the existence of a nonconstant continuous function  $\lambda$  which allows us to show that the "cone" with the vertex  $\psi(\mathbf{z}_0)$  and the "base"  $\psi(\mathbf{K}(\bar{\mathbf{x}}, \boldsymbol{\varphi}))$  (having the non-void interior in the topology of  $\mathbb{R}^n$ ) is contained in Q(H). Thus Q(H), and hence H, belongs to  $\mathcal{A}_n$ , which was to be proved.

It should be observed that our theorem does not contain the theorem from [4] as a particular case, as we require stronger regularity assumptions.

## REFERENCES

- [1] R. Ger: Some new conditions of continuty of convex functions. Mathematica (Cluj) 12 (1970) 271-277.
- [2] R. Ger, M. Kuczma; On the boundedness and continuity of convex functions and additive functions. Aequationes Math. 4 (1970) 157-162.
- [3] M. Kuczma; Convex functions, Summer School on Functional Equations and Inequalities (La Mendola, August 1970). Proceedings (1971) 197-213

[4] M. Kuczma; On some set classes occuring in the theory of convex functions. Comment Math. Prace Mat. (in print)

INSTITUTE OF MATHEMATICS, SILESIAN UNIVERSITY, KATOWICE