

You have downloaded a document from RE-BUŚ
 repository of the University of Silesia in Katowice

Title: Note on convex functions bounded on regular hypersurfaces

Author: Roman Ger

Citation style: Ger Roman. (1973). Note on convex functions bounded on regular hypersurfaces. "Demonstratio Mathematica" (Vol. 6, nr 1 (1973) s. 97103), doi 10.1515/dema-1973-0110

Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych Polska - Licencja ta zezwala na rozpowsze chnianie, przedstawianie i wykonywanie utworu jedynie w celach niekomercyjnych oraz pod warunkiem zachowania go w oryginalnej postaci (nie tworzenia utworów zaleznych).

DEMONSTRATIO MATHEMATICA

volume vir

Dedicated to Professor Stanisław Goląb
Part 1 1973

Roman Ger

NOTE ON CONVEX FUNCTIONS BOUNDED ON REGULAR HYPERSURFACES

Dedicated to Professor S. Gołąb on the occasion of his $70^{\text {th }}$ birthday

1. Let R^{n} denote the Cartesian product of n copies of the space R of real numbers. A real valued function φ defined on an open and convex subset Δ of R^{n} is calléd convex iff the inequality (of Jensen)

$$
\varphi\left(\frac{x+y}{2}\right) \leqslant \frac{\varphi(x)+\varphi(y)}{2}
$$

holds for every pair $(x, y) \in \Delta \times \Delta$.
M.Kuczma and the present author have introduced in [2] some set classes relevant to the notion of convex function. In particular A_{n} is there defined to be the family of all sets $T \subset R^{n}$ such that every convex function upper-bounded on T is continuous. The question whether a subset T of R^{n} is a member of \mathcal{A}_{n} is of interest and has been a subject of many papers (a survey of results and references are given in [3]). One of the classical results says that \mathscr{A}_{n} contains all sets in R^{n} with positive inner n-dimensional Lebesgue measure. However, it is also well known that some sets of measure zero turn out to be members of \mathcal{A}_{n}. Recently M.Kuczma has proved that the graph of an arbitrary nonlinear real valued and continuous function defined on an interval belongs to \mathcal{A}_{2} ([4], theorem
4.2). A simple counter-example is there also given to show that the assumption of nonlinearity is essential.

The quoted result suggests the investigation which hypersurfaces in R^{n} are members of \mathcal{A}_{n}. The purpose of the present paper is to give a partial answer to that question.
2. We are going to prove the following

Theorem. Every (n-1)-dimensional regular hypersurface H in R^{n}, not contained in an ($n-1$)-dimensional hyperplane, is a member of A_{n}, whenever $n \geqslant 2^{1}$.

Proof: Since every k-dimensional regular hypersurface in $R^{n}, 1 \leqslant k<n$, yields locally the graph of a map f : $G \rightarrow R^{n-k}$ where G is an open and connected subset of R^{k}, we clan confine ourselves to the case of hypersurfaces being graphs. Thus we assume that

$$
\begin{equation*}
H=\{(x, f(x)): x \in G\} \tag{1}
\end{equation*}
$$

where G denotes an oven subset of R^{n-1} and f is a nonlinear real-valued function of class C^{1}, defined on G.

Let a_{o}^{\prime} be a point in G such that f is nonlinear in any neighbourhood of a_{0}. Without loss of generality we can assume that $a_{0}=0$ as well as $f(0)=0$ (cf. [4], theorem 1.2). Suppose that $K(0, \varepsilon)$ is an open ball centered at 0 with a radius $\varepsilon>0$ such that $3 \mathrm{~K}(0, \varepsilon) \subset \mathrm{G}^{2)}$.

There exists a point $x_{1} \in K(0, \varepsilon) \backslash\{0\}$ such that $f^{\prime}(0) \cdot x_{1}-$ - $f\left(x_{1}\right)$ is different from zero lotherwise f would have to be linear). The continuity of the function

$$
g(x)=f^{\prime}(0) \cdot x-f(x)
$$

[^0]implies the existence of a $\delta_{1}>0$ such that $g(x) \neq 0$ for $x \in K\left(x_{1}, \delta_{1}\right) \subset K(0, \varepsilon)$ whereas $0 \notin \operatorname{cl} K\left(x_{1}, \delta_{1}\right)$. The case where there exists a point $\bar{x} \in K(0, \varepsilon) \backslash\{0\}$ such that f is linear in a neighbourhood of $\overline{\mathrm{x}}$ will be considered separately. Now we can assume that f is nonlinear in any neighbourhood of any point $x \in K(0, \varepsilon)$. Then there exist $a \delta>0$ and a point x_{0} such that $K\left(x_{0}, \delta\right) \subset K\left(x_{1}, \delta_{1}\right)$ and $f^{\prime}(x) \notin f^{\prime}(0)$ for $x \in K\left(x_{0}, \delta\right)$. Finally, for every x from $K\left(x_{0}, \delta\right)$ the following conditions are satisfied:
(i) $\quad f^{\prime}(x) \neq f^{\prime}(0)$,
(ii) $g(x) \neq 0$,
(iii) f is nonlinear in any neighbourhood of x.

Let us denote by ψ the function $x \rightarrow(x, f(x)), x \in G$, and put $U=\psi\left(K\left(x_{0}, \delta\right)\right)$. Evidently $R^{n} \ni 0=\psi(0) \notin \psi\left(c l K\left(x_{0}, \delta\right)\right)$. Moreover, (iii) implies that U is not contained in any $(n-1)-$ -dimensional hyperplane. Thus we are able to construct the "cone" S with the vertex $0=\psi(0)$ and the "base" U, i.e. the set

$$
S=\bigcup_{\rho \in U} \bigcup_{\lambda \in[0,1]}\{\lambda p\} .
$$

The interior of S is non-void in the topology of R^{n}. Now, we are going to show that $S \subset Q(H)$,
where $Q(H)$ is the Q-convex hull of H, i.e. the set of all finite linear combinations $\sum_{i=1}^{m} \alpha_{i} x_{i}$, where m is any positive integer, each x_{i} is in H, each α_{i} is nonnegative and belongs to the set Q of rationals, and $\sum_{i=1}^{m} \alpha_{i}=1$. It is straightforward to verify that a set T in R^{n} and its Q-convex hull $Q(T)$ simultaneously belong or do not belong to \mathscr{A}_{n} (cf. for instanee [1]).

To cheok the above inclusion (2) let us define the function $F_{a}: K(0, \varepsilon) \times(0,1) \rightarrow R$ by the formula
(3)

$$
F_{a}(x, \lambda)=f(x)+f(2 \lambda a-x)-2 \lambda f(a)
$$

where $x \in K(0, \varepsilon), \lambda \in(0,1)$ and a is an arbitrarily fixed point of $K\left(x_{0}, \delta\right)$. Since for $a, x \in K(0, \varepsilon)$ we have $2 \lambda a-x \in 2 K(0, \varepsilon)+$ $+K(0, \varepsilon)=3 K(0, \varepsilon) \subset G$, the definition of F_{a} is correct.

Observe that

$$
F_{a}\left(a, \frac{1}{2}\right)=f(a)+f(0)-f(a)=0
$$

whereas

$$
\frac{\partial F_{a}}{\partial \lambda}\left(a, \frac{1}{2}\right)=2\left[f^{\prime}(2 \lambda a-x) \cdot a-\left.f(a)\right|_{\left(a, \frac{1}{2}\right)}=2 g(a) \neq 0\right.
$$

in view of (ii).
Applying the implicit function theorem we infer that in a neighbourhood $K(a, \eta) \subset K\left(x_{0}, \delta\right), \eta>0$, of the point a there exists a continuous function $\lambda=\lambda(x)$ taking values in $(0,1)$ such that $\lambda(a)=\frac{1}{2}$ and

$$
\begin{equation*}
F_{a}(x, \lambda(x)) \equiv 0 \quad \text { for } \quad x \in K(a, \eta) \tag{4}
\end{equation*}
$$

$\lambda(x) \not \equiv$ const. In fact, if $\lambda(x) \equiv \frac{1}{2}$ for $x \in K(a, \eta)$, then (3) and (4) imply

$$
f(x)+f(a-x)-f(a) \equiv 0 \quad \text { for } \quad x \in K(a, \eta)
$$

or equivalently (for $x \neq a$)

$$
\frac{f(x)-f(a)-f^{\prime}(a) \cdot(x-a)}{|x-a|}+\frac{f(a-x)-f^{\prime}(0) \cdot(a-x)}{|a-X|}=
$$

(5)

$$
=\left(f^{\prime}(0)-f^{\prime}(a)\right) \cdot \frac{x-a}{|x-a|}
$$

However this is impossible, since in virtue of the differentiability of f at a and 0 respectively, letting x tend to a
one would obtain that the left-hand side of (5) converges to zero. This implies $f^{\prime}(0)=f^{\prime}(a)$ which is incompatible with (i).

Thus λ establishes a nonconstant continuous map of $K(a, \eta)$ into $(0,1)$ and hence the image of $K(a, \eta)$ by λ must contain an open interval $(\alpha, \beta) \subset(0,1)$. Let us take an arbitrary point $x \in K \stackrel{d f}{=} \lambda^{-1}((\alpha, \beta))$ and put $y(x) \stackrel{\text { df }}{=} 2 \lambda(x) a-x \in G$. The 1dentity (4) assumes now the following form

$$
f(x)+f(y(x))-2 \lambda(x) f(a) \equiv 0 \quad \text { for } \quad x \in K,
$$

or equivalently

$$
\begin{equation*}
\lambda(x) f(\dot{a})=\frac{f(x)+f(y(x))}{2} \quad \text { for } \quad x \in K . \tag{6}
\end{equation*}
$$

By the definition of y we have also

$$
\begin{equation*}
\lambda(x) a=\frac{x+y(x)}{2} \text { for } \quad x \in K \tag{7}
\end{equation*}
$$

(6) and (7) can be jointly written in the form

$$
\begin{equation*}
\lambda(x) \psi(a)=\frac{1}{2}(\psi(x)+\psi(y(x))) \quad \text { for } \quad x \in K \tag{8}
\end{equation*}
$$

The last relation (8) says that the open segment ($\alpha \psi(a)$; $\beta \psi(a))=(\alpha, \beta) \psi(a)$ is contained in $\frac{1}{2}(H+H) \subset Q(H)$. Since also $0=\psi(O)$ and $\psi(a)$ are elements of $Q(H)$, the whole closed segment $[0 ; \psi(a)]$ turns out to be a subset of $Q(H)$. In fact, $[0, \beta) \psi(a)$ and $(\alpha, 1] \psi(a)$ yield the Q-convex hulls of the sets $\{0\} \cup(\alpha, \beta) \psi(a)$ and $(\alpha, \beta) \psi(a) \cup\{\psi(a)\}$, respectively.

Because of the free choice of a from. $K\left(x_{0}, \delta\right)$ (which is, of course, equivalent to the free choice of a point p from U) the inclusion (2) has been proved. Finally, the interior of $Q(H)$ is non-void which implies that $Q(H)$, and hence H, belongs to \mathscr{A}_{n}.

In order to complete the proof of our assertion it remains jet to consider the case $f(x)=c \cdot x+\gamma$ for $x \in K(\bar{x}, \rho) \subset$
$c K(0, \varepsilon), \bar{x} \neq 0, \rho>0$. Since f is nonlinear in any neighbourhood of 0 , one may find a point $z_{0} \in K(0, \varepsilon), z_{o} \notin c l K(\bar{x}, \rho)$, such that

$$
f\left(z_{0}\right) \neq c \cdot z_{0}+\gamma \quad \text { and } \quad f^{\prime}\left(z_{0}\right) \neq c .
$$

Let us fix arbitrarily a point $a \in \mathbb{K}(\bar{x}, \rho)$ and define the function $F_{a}: K(0, \varepsilon) \times(0,1) \cdots R$ by the formula

$$
\left.F_{a_{i}}(x, \lambda)=f(x)+f\left(2\left(\lambda z_{0}+(1-\lambda) a\right)-x\right)\right)-2 \lambda f\left(z_{0}\right)-2(1-\lambda) f(a)
$$

Then

$$
F_{a}\left(z_{0}, \frac{1}{2}\right)=0 \quad \text { and } \quad \frac{\partial F_{a}}{\partial \lambda}\left(z_{0}, \frac{1}{2}\right)=2\left[c \cdot z_{0}+\gamma-f\left(z_{0}\right)\right] \neq 0
$$

By the same argument as in the previous case we derive the existence of a nonconstant continuous function λ which allows us to show that the "cone" with the vertex $\psi\left(z_{0}\right)$ and the "base" $\psi(K(\bar{x}, \rho))$ (having the non-void interior in the topology of R^{n}) is contained in $Q(H)$. Thus $Q(H)$, and hence H, belongs to A_{n}, which was to be proved.

It should be observed that our theorem does not contain the theorem from [4] as a particular case, as we require stronger regularity assumptions.

REFERENCES

[1]R. Ger: Some new conditions of continuty of convex functions, Mathematica (Cluj) 12 (1970) 271-277.
[2]R. Ger, M. K uczmz: on the boundedness and continuity of convex functions and additive functions. Aequationes Math. 4 (1970) 157-162.
[3]M. Kuczm-a; Convex functions, Summer school on Functional Equations and Inequalities (La Mendola, August 1970). Proceedings (1971) 197-213
[4.] M. Kuczma; on some set classes occuring in the theory of convex functions. Comment Math. Prace Mat. (in print)

Institute of mathematics, silesian university, katowice

[^0]: 1) H is called to be a k-dimensional regular hypersurface in $\mathrm{R}^{\mathrm{n}} 1 \leqslant \mathrm{k} \leqslant \mathrm{n}$, if every point of H has a neighbourhood (in the induced topology) diffeomorphic with an open set in R^{k}.
 2) For $A, B \subset R^{k}$ and α, β - real numbers we write
 $\alpha A+\beta B \stackrel{d t}{=}\left\{x \in R^{k}: \quad x=\alpha a+\beta b, \quad a \in A, \quad b \in B\right\}$.

