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Roman Ger

NOTE ON CONVEX FUNCTIONS
BOUNDED ON REGULAR HYPERSURFACES

Dedicated to Professor S. Golqb
on the occasion of his ?Ot birthday

1. Let R denote the Cartesian product of n coples of the
space R of real numbers, A real valued function ks defined on
an open and convex subset A of RD is called convex 1ff the
inequality (of Jensen)

(x+y>\ (x) + oly)
p (237 <tlel pota)

holds for every pair (x,y)le A x a .

M.Kuczma and the present author have introduced in [2] 80~
me set classes relevant to the notion of convex function. In
particular .;f is there defined to be the family of all sets
T ¢ R" such that every convex function upper—bounded on T is
continuous. The question whether a subset T of R® is a member
of Jl i1s of interest and has been a subject of many papers
(a survey of results and references are given in [5]). One of
the classlcal results says that .ﬂn contains all sets in R"
wlth positive lnner n-dimensional Lebesgue measure. However,
‘1t is also well known -that some sets of measure zero turn out
to be members of ﬂn. Recently M.Kuczma has proved that the
graph of an arbitrary nonlinear real valued and continuous
function defined on an interval belongs to J’Eg ([4], theorem
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2 R,Ger

4.2). A simple counter-example is there also given ' to show
that the assumption of nonlinearity is essential.

The quoted result suggests the investigation which hyper-‘
surfaces in R® are members of tﬂn. The purpose of the present
paper is to give a partial answer to that question.

2. We are going to prove the following

T heoren, Every (n«ﬂ)-dimensiqnal regular hyper-
surface H in Rn, not contained in an (n-1)~dimensional hyper-
plane, is a member of # , whenever n > 21,

Proof: Since every k-dimensional regular hypersur-
face in Rn, 1< k <n, yields locally the graph of a map f:
G —» gR-K where G is an open and connected subset of Rk, we
c¢an confine ourselves to +%he case of hypersurfaces being
graphs. Thus we assume that

(1) H = {(x,f(x)') : Xe G}
where G denotes an oven subset of R*™
real-valued function of class C1, defined on G.

Let 36 be a point in G such that f 1s nonlinear in
any neighbourhood of 8, Without loss of generality we can
assume that a = 0 as well as £(0) = 0 (ef., [#], theorem
1.2} . Suppose that EK[(O,¢} is an open ball centered at O with
a radius ¢ > O such that 3 K(0,¢) C G2).

‘There exists a polnt x,e K(0,e) {0} such that £’ (0)ex,~
- f(xq) is different from zero (otherwise £ would have to be
linear). The continulity of the function

and f i1s a nonlinear

g({x) = £°(0) ex - £(x)

1) H is called to be a k-dimensional regular hypersurface in o 1< k<n,
if every point of H has a neighbourhood (in the induced topology)
diffeomorphic with an open set in R™,

2) For A,B C RK ;Lnd «, A ~ real numbers we write

«A+pBY{xeR": x=aa+ Bb, atA, bEB}. A
Similarly (x,A) a&‘{xeR : X =ga, re (0(,/3)} , a€eR .,
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Note on convex functions 3

implies the existence of a 61 > 0 such that g(x) £0 for
xeK{x;, 04) c K(O,¢) whereas O ¢ cl K(x,, 6,). The case
where there exists a point XeK(0,¢)\ {0} such that f is 1li-
near in a neighbourhood of X will be considered separately,
Now we can assume that £ is nonlinear in any neighbourhood of
any point xeK(0,¢}. Then there exist a & > O and a point X,
such that K(x,¢) c Klx,, 6, and f£'(x) # £'(0) for
X€ K(xo, &). Finally, for every x from K(xo, §) the following
conditions are satisfied:
(1) £ (x) £ £'(0) ,
(11)  &lx) #0,
(iii) £ 1is nonlinear in any neighbourhood of x.

Let us denote by y the function x — (x,f(x)), xe G,and
put U = y(K(x_, ¢)). Evidently R"5 0 = y(0)¢ y(cl K(x_, o)).
Moreover, (iil) implies that U is not contained in any (n-1)-
—dimensional hyperplane, Thus we are able to construct the
"*cone" S with the vertex 0 = y(0) and the "base" U, i.e. the
set

5 =pg1 x;éq {Rp].

The interior of S is non-void in the topology of RY, Now,we
are going to show that

(2) S c QH ,

where Q(H) is the Q—convex%hull of H, i.e, the set of all fi-
nite linear combinations Z: x; X; , Where n is any positive
integer, each X5 is in H,-;ach’;xi is nonnegative amibelopgs
to the set @ of rationals, and ;;,u 4 = 1. 1t is straightfor-

ward to verify that a set T in R® and its Q-convex hull Q(T)
simultaneously belong or do not belong to J@n(cf. for instan-
ee [1]).

To check the above inclusion (2) let us define the func-
tion F, : K(0,¢) x (0,1 — R Dby the formula
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4 R.Ger

(3) F (x, 2) = £(x) + f(22a - x) = 2Af(a)

where xeK(0,¢) , 2e{(0,1) and a is an arbitrarily fixed point

of K(x ,6). Since for a, xeK(0,¢) we have 22 a-xe 2 K(0,¢)+

+ K(0,¢) = 3 K(0,¢) c G, the definition of F, is correct,
Observe that

Fola, 3) = £(a) + £(0) - £(a) = 0,

whereas
3Fa 1 , )
7% (a,§ =2[f (2')\a-x)-a-f(a)] 1) =2gla) £0

a, 5
in view of (ii).

Applying the 1mplicit function theorem we infer that in a
neighbourhood K(a,p) < K(x,,6), p >0, of the point a there
exists a continuous function A = A(x) taking values in (0,1)
such that 2(a) =% and

(4) Fa(x, Alx)) =0 for xeK(a,p).

Al(x) # const. In fact, if A(x) = :2]_ for xekK(a,p), then (3)
and (4) imply

f(x) + f(a - x) - f(a}) = 0 for xe K(a,n),
or equivalently (for x # a)

f(x) - fla) ~ £'(a)(x ~a) fla - x) - £ (0)ela - x) _
% = 4l & - x| =

(5)

= (£7(0) - 2'(a)) « T2,

However this is impossible, since in virtue of the differen-~
tiability of f at a and O respectively, letting x tend to a
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Note on convex functions 5

one would obtain that the left-hand side of (5) converges to
zero. This implies £ (0) = £’ (a) which 18 incompatible with
(1).

Thus 2 establishes a nonconstant continuous map of K(a,p)
into {0,1) and hence the image of K(a,?) by A must contain
an open interval (x,B) ¢ (0,1). Let us take an arbitrary point
xekK & 277 ((«,8)) and put yix) € 22a(x)a - xeG. The 1den-
tity (4) assumes now the following form

£(x) + £(y(x)) - 2a(x) £(a) =0 for xek ,
or equivalently

(6) Ax) £(a) = 2l 2 £l e g,

By the definition of y we have also

(7) Al{x) a =E—12-M for xekK ,

(6) and (7) can be jointly written in the form

(8) Alx) y(a) = %(w(x) + w(y(x))) for xeK .

The last relation (8) says that the open segment (xy(a);
Ay la)) = (x,B) v(a) is-contained in % (H + H c Q(H). Since
also O = y(0) and y(a) are elements of Q(H), the whole closed
segment [O ; v (a)] turns out to be a subset of Q(H). In
fact, | 0,B) v (a) and (m,’l] y(a) yleld the Q-convex hulls of
the sets {O}u (x,8) y(a) and (x,8) y (a)u{y(a)} ,respectively.

Because of the free cholce of a from K(x,,8) (which is,of
course, equivalent to the free choice of a point p <from U)
the inclusion (2) has been proved, Finally, the interior of
Q(H) is non-void which implies that Q(H),and hence H, belongs
to .ﬁ'h.

In order to complete the proof bf our assertion it remains
yet to consider the case f(x) = cex + 3 for xeK(X, ¢)cC
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6 R.Ger

c K{(0,¢), X # 0, ¢>0, Since f 4is nonlinear in any neigh-
bourhood of O, one may find a point z e K(0,¢),z ¢ cl K(X,9),
such that

f(z,) £ cezy + g and f'(zo) Ac.

Let us fix arbitrarily a point ae K(X,¢) and define the func-
tion F_: K(0,¢) x (0,1):—=R by the formula

F (x,2) = £(x)+£(2(az ¢ (1-Ma) - x)) = 222(z )-2(1-A £(a)

Then

oF

Fy‘i(zo’ %} = 2[cozo +% - f(zo)] £ 0.

F.lz, % 0 and

By the samé argument as in the previous case we derive the
existence of a nonconstant continuous function A which allows
us to show that the '"cone' with the vertex w(zo) and the "ba-~
se" W(K(J—C,Q)) {having the non-void interior in the topology
of RP) is contained in Q(H). Thus Q(H), and hence H, belongs
to o , which was to be proved,

It should be observed that our theorem does not contaln
the theorem from [4] as a particular case,as we require stron-
ger regularity assumptions,
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