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Janusz Matkowski, Jolanta Okrzesik 

ON A COMPOSITE FUNCTIONAL EQUATION 

Abstract. We determine all continuous functions / : (0, oo) —• (0, oo) satisfying the 
functional equation 

/ (xG( / (s ) ) ) = / (z)G (/(*)) 

where G is continuous and strictly increasing function such that 1 € G((0,oo)). 

1. Introduction 
We deal with continuous solution of the composite functional equation 

(1) f ( x G ( f ( x ) ) ) = f ( x ) G ( f ( x ) ) 

where / : (0, oo) —> (0, oo) is an unknown function. In the case when a 
given G is a power function this functional equation was considered in [2]. 

In the present paper, assuming that G : (0, oo) —• (0, oo) is continuous, 
strictly increasing and such that 1 € G(0, oo), we determine all continuous 
and strictly increasing solutions of this functional equation. 

Note that (cf. also [2]) if / : (0, oo) —• (0, oo) is a bijective solution 
of the above functional equation, then the function (f> := f~l satisfies the 
following (non-composite!) linear homogenous iterative functional equation 

4>{xG{x)) = G(x)<j>{x). 

Since the theory such equations is well-known (cf. M. Kuczma [3] and M. 
Kuczma, B. Choczewski, R. Ger [4]), we are mainly interested in noninvert-
ible solution of the considered equation. 

Let us mention that in the case when G(u) = u2 equation (1) appears in 
a division model of population (cf. [1]). 
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2. Main result 
Our aim is to prove the following 

THEOREM. Suppose that G : (0, oo) —> (0, oo) is continuous, strictly in-
creasing, and there exists a 7 > 0 such that G{7) = 1. A continuous function 
f : (0,00) —> (0,00) satisfies the functional equation 
(2) f(xG(f(x))) = f(x)G(f(x)), x > 0, 

i f , and only i f , there exist a, b € [0, +00], a < b, and a ^ b if a = 0 or 
b = 00, such that 

x 0 < x< a 
7 a < x < b 
^x x > b. 

Proo f . Define the functions M, D : (0,00) —• (0,00) by 

(4) M(x):=xG(f(x)), D(x) := 1 > 0. 
x 

We can write equation (1) in the form 

(5) D(M(x)) = D{x), x > 0. 
If M(x\) = M(x2) for some xi, > 0, then, by (5), we get D(x 1) = D(x2), 
and, consequently, D{xi)M{x{) = D(x2)M(x2). In view of the definitions of 
M and D it means that f(xi)G(f(xi)) = f(x2)G(f(x2))- Since the function 
xG(x) is strictly increasing, it follows that f(x 1) = f(x2). Now the equality 
D{x\) = D(x2) implies that x\ — X2. Thus M is one-to-one, and, by the 
continuity of G, M is strictly monotonic. 

Suppose first that M is strictly increasing and put 

Fix(M) := {x > 0 : M(x) = x}. 
It is easy to see that 

Fix(M) = {x > 0 : f(x) = 7}. 
We shall prove that Fix(M) is a nonempty, closed subinterval of (0,00). 
For an indirect argument first suppose that Fix(M) = 0. The continuity 

of M implies that either M{x) < x, (x > 0), or M(x) > x, {x > 0). Hence, 
by definition (4) of M, either 

G ( / ( ®))<1, x > 0 , 
or 

G(f(x))> 1, x>0. 
Since G(7) = 1, by the monotonicity of G, we infer that either 

(6) f(x) <7, x > 0; 
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or 
(7) f ( x ) > 7 , x > 0. 

On the other hand, the continuity of M and D, the monotonicity of M, and 
equation (5), imply that 

D ((0, oo)) = D ([M(l), 1]). 
Hence, setting 

c := inf D ([M(l), 1]), C := supD ([M(l), 1]), 

we obtain the inequality 0 < c < D(x) < C < oo for all x > 0 i.e. 

0 < cx < f ( x ) < Cx < oo, x > 0, 

which contradicts (6), as well as (7). This proves that Fix(M) ^ 0. 
To show that Fix(M) is an interval, for an indirect proof, suppose that 

there exists an interval [c, d], c < d, such that c, d 6 Fix(M), and (c, d) fl 
Fix(M) = 0. Consequently, either M(x) < x for all x € (c, d), or M(x) > x 
for all x G (c, d). In the first case we would have 

l i m Mn(x) = c, xe[c,d). n—»oo 
From equation (5), by induction, for every integer n, we get 

D{x) = D(Mn(x)), x > 0. 

The continuity of D implies 

D(x)= \imoD(Mn(x))^ D{c), x€[c,d). 

Hence, again by the continuity of D, we get D(c) = D(d), i.e. that 

f(c)d = f(d)c. 

On the other hand we have M(c) = c and M(d) = d, which means that 

G(/(c)) = 1, G ( f ( d ) ) = 1. 
Since G is one-to-one, it follows that /(c) = f(d). Consequently c = d. This 
contradiction proves that Fix(M) is an interval. If M(x) > x we argue in 
the same way. 

Put 
a : = inf Fix(M), b : = s u p F i x ( M ) . 

According to what we have proved, 

0 < a < +oo, 0 < b < +oo. 

Since M is continuous we have 

Fix(M) = [a, b] PI (0, oo) . 
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Hence, 
(8) f(x)= 7, x € [a, 6] ("I (0,+oo). 

lib < +oo then we have either M(x) < x for all x > b, or M(x) > x for all 
x > b. Suppose that M{x) < x for all x > b. Then, for a fixed x > b, 

lim Mn(x) = b. 
n—>oo 

Hence, by (5) and the continuity of D, 

D(x) = Jirn D (Mn(x)) = D(b), x > b. 

Suppose that M(x) > x for all x > b. Then, for a fixed x > b, 

lim M~n(x) = b 
n—>oo v ' 

and, for the same reason, 

D{x) = Jirn D ( M ~ n ( x ) ) = D(6), x > b. 

Now the definition of D and the relation b G Fix(M) imply 

f(x) = b~l}(b)x = 6"1 (7) x, x > b. 

If a > 0, we show in the same way that 

f(x) = a - 1 / ( a )a : = a - 1 (7) x, 0 < x < a. 

Thus, if 0 < a < b < +00 then we arrive at formula (3) for / . If a = 0 and 
b = 00 obviously / (x) = 7, x 6 (0,00), in accordance with (3), too. 

On the other hand, it is easy to verify that the functions given by this 
formula satisfy equation (1). 

Now suppose that M is strictly decreasing. Then, by the definition of 
M, the function G o / is also strictly decreasing. Because G is strictly in-
creasing, so / is strictly decreasing. This is a contradiction because the 
function f o M, the left-hand side of equation (1), is strictly increasing, 
and the function / - ( G o / ) , the right-hand side of equation (1), is strictly 
decreasing. 

This completes the proof. 

REMARK 1. The assumption that the function G is strictly increasing is 
essential. It is a consequence of point 2° and 3° of Theorem 1 in [2] where 
G(u) = u~2 or G(u) = i t - 1 , u > 0. 

In the case when G(u) = u~2, besides functions given by (3), for every 
continuous function /1 : [l,oo) —• [l,oo) such that / i ( l ) = 1, and 

fi(x) x —• — — is increasing on [1,00), 
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there exists a unique continuous solution / of equation (1) such that f(x) = 
fi(x) for all x > 1; moreover, the function / is an increasing homeomorphic 
mapping of (0, oo) onto itself. 

In the case when G(u) = u~1, a continuous / : (0,oo) —• (0, oo) satisfies 
(1) if, and only if, there are a, b G [0, oo), a < b, and a ^ b if a = 0 or 
b = oo; and continuous functions fa : (0, a] —> (0, oo), /(, : [6, oo) —> (0, oo) 
satisfying the conditions 

X X X X 
T < f a ( x ) < ~ , z € (0, a]; - < fb(x) < - , x G (b, oo]; 
b a b a 

lim f a ( x ) = 1 = lim f b ( x ) 
x—»a- x—tb+ 

such that 
( fa(x) 0 < x < a 

f ( x ) = <1 a < x <b 

{ f b ( x ) x > b . 

Thus, these two cases show that if the function G is not increasing, 
besides (3), some other type of solutions may appear. 
R E M A R K 2. If G is constant, say G = c, c € (0, oo), then equation (2) 
becomes f ( c x ) = c f ( x ) , x € (0, oo), and the continuous solution of this 
equation depends on an arbitrary function (cf. M. Kuczma [3]). Thus the 
strict monotonicity of G in the theorem is indispensable. 
R E M A R K 3. The assumption that 1 E G((0, oo)) is also essential. It is easily 
seen from equation (2) that if 1 ^ G(0, oo) then there is not a constant 
solution. 
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