

You have downloaded a document from RE-BUŚ
 repository of the University of Silesia in Katowice

Title: On a composite functional equation

Author: Janusz Matkowski, Jolanta Okrzesik

Citation style: Matkowski Janusz, Okrzesik Jolanta. (2003). On a composite functional equation. "Demonstratio Mathematica" (Vol. 36, nr 3 (2003) s. 653658), doi 10.1515/dema-2003-0315

Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych Polska - Licencja ta zezwala na rozpowsze chnianie, przedstawianie i wykonywanie utworu jedynie w celach niekomercyjnych oraz pod warunkiem zachowania go w oryginalnej postaci (nie tworzenia utworów zaleznych).

Janusz Matkowski, Jolanta Okrzesik

ON A COMPOSITE FUNCTIONAL EQUATION

$$
\begin{aligned}
& \begin{array}{l}
\text { Abstract. We determine all continuous functions } f:(0, \infty) \longrightarrow(0, \infty) \text { satisfying the } \\
\text { functional equation } \\
\qquad f(x G(f(x)))=f(x) G(f(x))
\end{array}
\end{aligned}
$$

where G is continuous and strictly increasing function such that $1 \in G((0, \infty))$.

1. Introduction

We deal with continuous solution of the composite functional equation

$$
\begin{equation*}
f(x G(f(x)))=f(x) G(f(x)) \tag{1}
\end{equation*}
$$

where $f:(0, \infty) \longrightarrow(0, \infty)$ is an unknown function. In the case when a given G is a power function this functional equation was considered in [2].

In the present paper, assuming that $G:(0, \infty) \longrightarrow(0, \infty)$ is continuous, strictly increasing and such that $1 \in G(0, \infty)$, we determine all continuous and strictly increasing solutions of this functional equation.

Note that (cf. also [2]) if $f:(0, \infty) \longrightarrow(0, \infty)$ is a bijective solution of the above functional equation, then the function $\phi:=f^{-1}$ satisfies the following (non-composite!) linear homogenous iterative functional equation

$$
\phi(x G(x))=G(x) \phi(x)
$$

Since the theory such equations is well-known (cf. M. Kuczma [3] and M. Kuczma, B. Choczewski, R. Ger [4]), we are mainly interested in noninvertible solution of the considered equation.

Let us mention that in the case when $G(u)=u^{2}$ equation (1) appears in a division model of population (cf. [1]).

Key words and phrases: composite functional equation, continuous solution.

2. Main result

Our aim is to prove the following
Theorem. Suppose that $G:(0, \infty) \longrightarrow(0, \infty)$ is continuous, strictly increasing, and there exists a $\gamma>0$ such that $G(\gamma)=1$. A continuous function $f:(0, \infty) \longrightarrow(0, \infty)$ satisfies the functional equation

$$
\begin{equation*}
f(x G(f(x)))=f(x) G(f(x)), \quad x>0 \tag{2}
\end{equation*}
$$

if, and only if, there exist $a, b \in[0,+\infty], a \leq b$, and $a \neq b$ if $a=0$ or $b=\infty$, such that

$$
f(x)= \begin{cases}\frac{\gamma}{a} x & 0<x \leq a \tag{3}\\ \gamma & a<x<b \\ \frac{\gamma}{b} x & x \geq b\end{cases}
$$

Proof. Define the functions $M, D:(0, \infty) \longrightarrow(0, \infty)$ by

$$
\begin{equation*}
M(x):=x G(f(x)), \quad D(x):=\frac{f(x)}{x}, \quad x>0 \tag{4}
\end{equation*}
$$

We can write equation (1) in the form

$$
\begin{equation*}
D(M(x))=D(x), \quad x>0 \tag{5}
\end{equation*}
$$

If $M\left(x_{1}\right)=M\left(x_{2}\right)$ for some $x_{1}, x_{2}>0$, then, by (5), we get $D\left(x_{1}\right)=D\left(x_{2}\right)$, and, consequently, $D\left(x_{1}\right) M\left(x_{1}\right)=D\left(x_{2}\right) M\left(x_{2}\right)$. In view of the definitions of M and D it means that $f\left(x_{1}\right) G\left(f\left(x_{1}\right)\right)=f\left(x_{2}\right) G\left(f\left(x_{2}\right)\right)$. Since the function $x G(x)$ is strictly increasing, it follows that $f\left(x_{1}\right)=f\left(x_{2}\right)$. Now the equality $D\left(x_{1}\right)=D\left(x_{2}\right)$ implies that $x_{1}=x_{2}$. Thus M is one-to-one, and, by the continuity of G, M is strictly monotonic.

Suppose first that M is strictly increasing and put

$$
\operatorname{Fix}(M):=\{x>0: M(x)=x\} .
$$

It is easy to see that

$$
F i x(M)=\{x>0: f(x)=\gamma\}
$$

We shall prove that $F i x(M)$ is a nonempty, closed subinterval of $(0, \infty)$.
For an indirect argument first suppose that $F i x(M)=\emptyset$. The continuity of M implies that either $M(x)<x,(x>0)$, or $M(x)>x,(x>0)$. Hence, by definition (4) of M, either

$$
G(f(x))<1, \quad x>0
$$

or

$$
G(f(x))>1, \quad x>0
$$

Since $G(\gamma)=1$, by the monotonicity of G, we infer that either

$$
\begin{equation*}
f(x)<\gamma, \quad x>0 \tag{6}
\end{equation*}
$$

$$
f(x)>\gamma, \quad x>0
$$

On the other hand, the continuity of M and D, the monotonicity of M, and equation (5), imply that

$$
D((0, \infty))=D([M(1), 1])
$$

Hence, setting

$$
c:=\inf D([M(1), 1]), \quad C:=\sup D([M(1), 1])
$$

we obtain the inequality $0<c \leq D(x) \leq C<\infty$ for all $x>0$ i.e.

$$
0<c x \leqslant f(x) \leqslant C x<\infty, \quad x>0
$$

which contradicts (6), as well as (7). This proves that $F i x(M) \neq \emptyset$.
To show that $\operatorname{Fix}(M)$ is an interval, for an indirect proof, suppose that there exists an interval $[c, d], c<d$, such that $c, d \in \operatorname{Fix}(M)$, and $(c, d) \cap$ $F i x(M)=\emptyset$. Consequently, either $M(x)<x$ for all $x \in(c, d)$, or $M(x)>x$ for all $x \in(c, d)$. In the first case we would have

$$
\lim _{n \rightarrow \infty} M^{n}(x)=c, \quad x \in[c, d)
$$

From equation (5), by induction, for every integer n, we get

$$
D(x)=D\left(M^{n}(x)\right), \quad x>0
$$

The continuity of D implies

$$
D(x)=\lim _{n \rightarrow \infty} D\left(M^{n}(x)\right)=D(c), \quad x \in[c, d)
$$

Hence, again by the continuity of D, we get $D(c)=D(d)$, i.e. that

$$
f(c) d=f(d) c
$$

On the other hand we have $M(c)=c$ and $M(d)=d$, which means that

$$
G(f(c))=1, \quad G(f(d))=1
$$

Since G is one-to-one, it follows that $f(c)=f(d)$. Consequently $c=d$. This contradiction proves that $F i x(M)$ is an interval. If $M(x)>x$ we argue in the same way.

Put

$$
a:=\inf F i x(M), \quad b:=\sup F i x(M)
$$

According to what we have proved,

$$
0 \leqslant a<+\infty, \quad 0<b \leqslant+\infty
$$

Since M is continuous we have

$$
F i x(M)=[a, b] \cap(0, \infty)
$$

Hence,

$$
\begin{equation*}
f(x)=\gamma, \quad x \in[a, b] \cap(0,+\infty) \tag{8}
\end{equation*}
$$

If $b<+\infty$ then we have either $M(x)<x$ for all $x>b$, or $M(x)>x$ for all $x>b$. Suppose that $M(x)<x$ for all $x>b$. Then, for a fixed $x>b$,

$$
\lim _{n \rightarrow \infty} M^{n}(x)=b
$$

Hence, by (5) and the continuity of D,

$$
D(x)=\lim _{n \rightarrow \infty} D\left(M^{n}(x)\right)=D(b), \quad x>b
$$

Suppose that $M(x)>x$ for all $x>b$. Then, for a fixed $x>b$,

$$
\lim _{n \rightarrow \infty} M^{-n}(x)=b
$$

and, for the same reason,

$$
D(x)=\lim _{n \rightarrow \infty} D\left(M^{-n}(x)\right)=D(b), \quad x>b
$$

Now the definition of D and the relation $b \in \operatorname{Fix}(M)$ imply

$$
f(x)=b^{-1} f(b) x=b^{-1}(\gamma) x, \quad x>b
$$

If $a>0$, we show in the same way that

$$
f(x)=a^{-1} f(a) x=a^{-1}(\gamma) x, \quad 0<x<a .
$$

Thus, if $0<a \leqslant b<+\infty$ then we arrive at formula (3) for f. If $a=0$ and $b=\infty$ obviously $f(x)=\gamma, x \in(0, \infty)$, in accordance with (3), too.

On the other hand, it is easy to verify that the functions given by this formula satisfy equation (1).

Now suppose that M is strictly decreasing. Then, by the definition of M, the function $G \circ f$ is also strictly decreasing. Because G is strictly increasing, so f is strictly decreasing. This is a contradiction because the function $f \circ M$, the left-hand side of equation (1), is strictly increasing, and the function $f \cdot(G \circ f)$, the right-hand side of equation (1), is strictly decreasing.

This completes the proof.
Remark 1. The assumption that the function G is strictly increasing is essential. It is a consequence of point 2° and 3° of Theorem 1 in [2] where $G(u)=u^{-2}$ or $G(u)=u^{-1}, u>0$.

In the case when $G(u)=u^{-2}$, besides functions given by (3), for every continuous function $f_{1}:[1, \infty) \rightarrow[1, \infty)$ such that $f_{1}(1)=1$, and

$$
x \rightarrow \frac{f_{1}(x)}{x} \text { is increasing on }[1, \infty)
$$

there exists a unique continuous solution f of equation (1) such that $f(x)=$ $f_{1}(x)$ for all $x \geq 1$; moreover, the function f is an increasing homeomorphic mapping of $(0, \infty)$ onto itself.

In the case when $G(u)=u^{-1}$, a continuous $f:(0, \infty) \rightarrow(0, \infty)$ satisfies (1) if, and only if, there are $a, b \in[0, \infty), a \leq b$, and $a \neq b$ if $a=0$ or $b=\infty$; and continuous functions $f_{a}:(0, a] \rightarrow(0, \infty), f_{b}:[b, \infty) \rightarrow(0, \infty)$ satisfying the conditions

$$
\begin{gathered}
\frac{x}{b} \leq f_{a}(x) \leq \frac{x}{a}, \quad x \in(0, a] ; \quad \frac{x}{b} \leq f_{b}(x) \leq \frac{x}{a}, \quad x \in(b, \infty) ; \\
\lim _{x \rightarrow a^{-}} f_{a}(x)=1=\lim _{x \rightarrow b^{+}} f_{b}(x)
\end{gathered}
$$

such that

$$
f(x)= \begin{cases}f_{a}(x) & 0 \leq x<a \\ 1 & a \leq x \leq b \\ f_{b}(x) & x>b\end{cases}
$$

Thus, these two cases show that if the function G is not increasing, besides (3), some other type of solutions may appear.
REMARK 2. If G is constant, say $G=c, c \in(0, \infty)$, then equation (2) becomes $f(c x)=c f(x), x \in(0, \infty)$, and the continuous solution of this equation depends on an arbitrary function (cf. M. Kuczma [3]). Thus the strict monotonicity of G in the theorem is indispensable.
Remark 3. The assumption that $1 \in G((0, \infty))$ is also essential. It is easily seen from equation (2) that if $1 \notin G(0, \infty)$ then there is not a constant solution.

References

[1] J. Dhombres, Some Aspects of Functional Equations, Department of Math., Chulalongkorn University, Bangkok, 1979.
[2] P. Kahlig, A. Matkowska, J. Matkowski, On a class of composite functional equation in a single variable, Aequationes Math. 52(1996), 260-283.
[3] M. Kuczma, Functional Equations in a Single Variable, Monografie Mat., Vol. 46, Polish Scientific Publishers, Warsaw, 1968.
[4] M. Kuczma, B. Choczewski, R. Ger, Iterative Functional Equations, Encyclopedia of Math. and its Applications, Vol. 32, Cambridge University Press, Cambridge - New York - Port Chester - Melbourne - Sydney, 1990.

Janusz Matkowski

INSTITUTE OF MATHEMATICS
UNIVERSITY OF ZIELONA GÓRA
Prosta 50
65-246 ZIELONA GÓRA, POLAND
and
INSTITUTE OF MATHEMATICS
SILESIAN UNIVERSITY
Bankowa 14
40-007 KATOWICE, POLAND
E-mail: J.Matkowski@im.uz.zgora.pl
Jolanta Okrzesik
DEPARTMENT OF MATHEMATICS
A.T.H. BIELSKO-BIAEA

Willowa 2
43-309 BIELSKO-BIALA, POLAND
E-mail: jokrzesik@ath.bielsko.pl

Received November 14, 2001.

