

You have downloaded a document from RE-BUŚ
 repository of the University of Silesia in Katowice

Title: On a local stability of the Jensen functional equation

Author: Zygfryd Kominek

Citation style: Kominek Zygfryd. (1989). On a local stability of the Jensen functional equation. "Demonstratio Mathematica" (Vol. 22, nr 2 (1989) s. 499507), doi 10.1515/dema-1989-0220

Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych Polska - Licencja ta zezwala na rozpowsze chnianie, przedstawianie i wykonywanie utworu jedynie w celach niekomercyjnych oraz pod warunkiem zachowania go w oryginalnej postaci (nie tworzenia utworów zaleznych).

Zygfryd Kominek

ON A LOCAL STABILITY OF THE JENSEN FUNCTIONAL EQUATION

The problem of stability of Cauohy's funotional equation on a restriot domain D in R has a positive answer [5]. In this paper we shall show that Caubhy's funotional equation and Jeneen's funotional equation on a restriot domain D being some subset of $R^{\mathbb{N}}$ are atable. Moreover, we shall use a such type result to give a positive answer to a problem of K. Nikodem ([3], [4]).

Let $(X,\|\cdot\|)$ be a real Banach apace and let D be a subset of X. We say that a function $f, D \longrightarrow X$ is ε-additive $(\varepsilon \geqslant 0$ is fixed) in Diff

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leqslant \varepsilon \tag{1}
\end{equation*}
$$

for all $x, y \in D$ such that $x+y \in D$. Similarly, we say that $f: D \rightarrow X$ is \in-Jensen function iff

$$
\begin{equation*}
\left\|2 f\left(\frac{x+y}{2}\right)-f(x)-f(y)\right\| \leqslant \varepsilon \tag{2}
\end{equation*}
$$

for all $x, y \in D$ such that $\frac{x+y}{2} \in D$. If $D=R^{D T}$ and (1) holds true with $\varepsilon=0$ we say that f is additive function and every function $f: D \rightarrow X$ satisfying (2) with $\varepsilon=0$ is oalled Jensen function.
F. Skof in [5] has proved that if $f:[0, a) \longrightarrow X, a>0$, is ε-additive then there exists an additive funotion $F: R \longrightarrow X$ such that $\|f(x)=F(x)\| \leqslant 3 \varepsilon$ for sach $x \in[0, a)$.

1. ε-additive funotions

We start with a theorem extending the result of F. Skof mentioned above.

Theorem 1. Let $f:[0, a)^{N} \longrightarrow X, a>0, N$ - positive integer, be an ε-additive function in $[0, a)^{N}$. Then there exists an additive function $F: R^{\mathbb{N}} \longrightarrow X$ such that $\|f(x)-F(x)\| \leqslant$ $\leqslant(4 N-1) \varepsilon$ for every $x \in[0, a)^{N}$.

Proof. We define the functions $f_{i}:[0, a) \longrightarrow X$, $i=1, \ldots, N$, by the following formulas:

$$
f_{i}\left(x_{i}\right):=f\left(0, \ldots, 0, x_{i}, 0, \ldots, 0\right)
$$

The functions $f_{1}, 1=1, \ldots, N$, are ε-additive in $[0, a)$, thus the result of F. Skof mentioned above guarentees the existence of additive functions $F_{i}: R \longrightarrow X$ for which the following inequalities
(3) $\left\|F_{i}\left(x_{i}\right)-f_{i}\left(x_{i}\right)\right\| \leqslant 3 \varepsilon, \quad x_{i} \in[0, a), \quad i=1, \ldots, N$, hold true.

Writting $x \in R^{N}$ in the form (x_{1}, \ldots, x_{N}) we see that $F: R^{N} \longrightarrow$ X given by the formula

$$
\begin{equation*}
F(x):=\sum_{i=1}^{N} F_{i}\left(x_{i}\right) \tag{4}
\end{equation*}
$$

is an additive function. Moreover, for each $x \in[0, a)^{N}$, by (3) and (1) we get
$\|F(x)-f(x)\| \leqslant \sum_{i=1}^{N}\left\|F_{i}\left(x_{i}\right)-f_{i}\left(x_{i}\right)\right\|+\left\|\sum_{i=1}^{N} f_{i}\left(x_{i}\right)-f(x)\right\| \leqslant$
$\leqslant 3 N \varepsilon+\left\|\sum_{i=1}^{N-1} f_{i}\left(x_{i}\right)-f\left(x_{1}, \ldots, x_{N-1}, 0\right)\right\|+\| f\left(x_{1}, \ldots, x_{N-1}, 0\right)+$
$+f\left(0, \ldots, 0, x_{N}\right)-f(x)\|\leqslant 3 N \varepsilon+\varepsilon+\| \sum_{i=1}^{N-1} f_{i}\left(x_{i}\right)-f\left(x_{1}, \ldots, x_{N-1}, 0\right) \| \leqslant$
$\leqslant \ldots \leqslant 3 N \varepsilon+(N-1) \varepsilon=(4 N-1) \varepsilon$.
This completes the proof.

I emma 1. If a function $f:(-a, a) \longrightarrow X$ is ε-additive in ($-\mathrm{a}, \mathrm{a}$) then there exists an additive function $F: R \longrightarrow X$ such that

$$
\begin{equation*}
\|F(x)-f(x)\| \leqslant 4 \varepsilon \text { for all } x \in(-a, a) \tag{5}
\end{equation*}
$$

Proof. Putting

$$
f_{1}(x):=\frac{1}{2}[f(x)+f(-x)], \quad x \in(-a, a)
$$

and

$$
f_{2}(x):=\frac{1}{2}[f(x)-f(-x)], \quad x \in(-a, a)
$$

we note that

$$
\begin{equation*}
\left\|f_{1}(x)\right\| \leqslant \varepsilon, \quad \text { for every } x \in(-a, a) \tag{6}
\end{equation*}
$$

and

$$
\left\|f_{2}(x+y)-f_{2}(x)-f_{2}(y)\right\| \leqslant \varepsilon, \text { for all } x, y \in(-a, a) \text { such }
$$

that $x+f \in(-a, a)$. On account of a result of F. Skof there exists an additive function $F: R \rightarrow X$ such that $\left\|F(x)-f_{2}(x)\right\| \leqslant$ $\leqslant 3 \varepsilon$ for each $x \in[0, a)$. But f_{2} and F are odd and therefore

$$
\left\|F(x)=f_{2}(x)\right\| \leqslant 3 \varepsilon, \text { for all } x \in(-a, a)
$$

Hence, and by (6) we get condition (5).
I $\Theta m m$ 2. If $f:(-a, a)^{N} \longrightarrow X$ is an ε-additive in $(-a, a)^{N}$ then there exists an additive function $F: R^{N} \longrightarrow X$ such that

$$
\|F(x)-f(x)\| \leqslant(5 N-1) \varepsilon, \quad \text { for any } \quad x \in(-a, a)^{N} \text {. }
$$

Proof. It is quite similar to the proof of Theom rem 1. Here, we use Lemma 1 inetead of a result of F. Skof.

Theorem 2. Let $D \subset R^{N}$ be a bounded eet containing zero in its interior. If, moreover,
(i)

$$
\frac{1}{2} D \subset D
$$

and $f: D \rightarrow X$ is ε-additive in D then there exist additive function $F: R^{N} \longrightarrow X$ and constant $K>0$ such that

$$
\|F(x)-f(x)\| \leqslant K, \text { for all } x \in D
$$

More preaisely, if non-negative integer p and positive a are suoh that the conditions

$$
\begin{equation*}
(-a, a)^{N_{C}} \subset D_{\xi} \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
2^{P}(-a, a)^{N} \supset D \tag{iii}
\end{equation*}
$$

hold, then $\|F(x)-f(x)\| \leqslant\left(2^{p} 5 N-1\right) \varepsilon$, for all $x \in D_{\text {. }}$
Proof. Assume that a and p fulfil the conditions (ii) and (iii). On acoount of Lemma 2, we get the exiatence of an additive function $F: R^{\mathbb{N}} \longrightarrow X$ for which the inequam lity

$$
\begin{equation*}
\|F(x)-f(x)\| \leqslant(5 N-1) \varepsilon, \quad x \in(-a, a)^{\mathbb{N}}, \tag{7}
\end{equation*}
$$

holde true. Taking an arbitrary $x \in D$ we observe, by (i), that $\frac{1}{2^{k}} x \in D$ for any $k \in\{1,2, \ldots, p\}$, and oondition (iii) implies that $\frac{1}{2^{p}} x \in(-a, a)^{N}$. It follows from (1) that for every $x \in D$ and oach $k \in\{1,2, \ldots, p\}$

$$
\left\|2^{k-1} f\left(\frac{x}{2^{k-1}}\right)-2^{k} f\left(\frac{x}{2^{k}}\right)\right\| \leqslant 2^{k-1} \varepsilon
$$

and therefore
(8)

$$
\left\|f(x)-2^{p}\left(\frac{x}{2^{p}}\right)\right\| \leqslant\left(2^{p-1) \varepsilon_{0}}\right.
$$

Now, by (7), (8) and the additivity of Fwe get

$$
\begin{aligned}
\|F(x)-f(x)\| & \leqslant\left\|2^{p} p\left(\frac{x}{2^{p}}\right)-2^{p} f\left(\frac{x}{2^{p}}\right)\right\|+\left\|2^{p} f\left(\frac{x}{2^{p}}\right)-f(x)\right\| \leqslant \\
& \leqslant 2^{p}(5 N-1) \varepsilon+\left(2^{p}-1\right) \varepsilon=\left(2^{\left.p_{5 N}-1\right) \varepsilon}\right.
\end{aligned}
$$

for any $x \in D$, whioh ende the proof.

2. ${ }^{\circ} \dot{\varepsilon}$-Jensen functions

L○ 由 a a 3. If $g i(-a, a)^{N} \longrightarrow X, a>0$, is an ε-Jensen function then there exista a Jensen function $G \& R^{N} \rightarrow X$ uoh that - 502 -

$$
\begin{equation*}
\|G(x)-g(x)\| \leqslant(25 N-4) \varepsilon, \text { for all } x \in(-a, a)^{2 N} \tag{9}
\end{equation*}
$$

Proof. The function $f_{1}:(-a, a)^{N} \longrightarrow X$ defining by the formula $f_{1}(x):=g(x)-g(0)$ is ε-Jensen function, too, and moreover, $f_{1}(0)=0$. We define a funotion $f_{z}\left(\{-a, a)^{N} \longrightarrow X\right.$ in the following manner: for any positive integer n and $x \in A_{n}:=\left(-\frac{a}{2^{n-1}}, \frac{a}{2^{n-1}}\right)^{N} \backslash\left(-\frac{a}{2^{n}}, \frac{a}{2^{n}}\right)^{N}$ we put $f(x):=$ $:=\frac{1}{2^{n-1}} f_{1}\left(2^{n-1} x\right)$.

Aocording to (2) and $f_{1}(0)=0$, for every $y \in(-a, a)^{\text {IV }}$ and each positive integer k we have

$$
\left\|p_{1}(y)-2^{k} f_{1}\left(\frac{y}{2^{k}}\right)\right\| \leqslant\left(2^{k}-1\right) \varepsilon_{0}
$$

Henoe, and by the definition of f, if $x \in A_{n}$ then

$$
\begin{equation*}
\left\|f(x)-f_{1}(x)\right\| \leqslant \varepsilon . \tag{10}
\end{equation*}
$$

Moreover,

$$
f(x)=2 f\left(\frac{x}{2}\right) \text { for ang } x \in(-a, a)^{I N}
$$

The last equality together with (10) and (2) (for the funotion f_{1}) imply that

$$
\begin{aligned}
& \|f(x+y)-f(x)-f(y)\|=\left\|2 f\left(\frac{x+y}{2}\right)-f(x)-f(y)\right\| \leqslant \\
& \leqslant \\
& \qquad 2\left\|f\left(\frac{x+y}{2}\right)-f_{1}\left(\frac{x+y}{2}\right)\right\|+\left\|f(x)-f_{1}(x)\right\|+\left\|f(y)-f_{1}(y)\right\|+ \\
& +\left\|2 f_{1}\left(\frac{x+y}{2}\right)-f_{1}(x)-f_{1}(y)\right\| \leqslant 5 \varepsilon
\end{aligned}
$$

for all $x, y \in(-a, a)^{\text {II }}$ such that $x+y \in(-a, a)^{N N}$, whioh means that f is 5ε-additive in $(-a, a)^{N}$. By Lemma 2 we infer that there exists an additive function $F: R^{\mathbb{N}} \longrightarrow X$ such that

$$
\begin{equation*}
\|F(x)-f(x)\| \leqslant(5 N-1) 5 \varepsilon, \quad \text { for all } \quad x \in(-a, a)^{N} \tag{11}
\end{equation*}
$$

Putting

$$
G(x):=F(x)+g(0), \quad x \in R^{\mathbb{N}},
$$

we see that G is a Jensen function and (see (10) and (11)) $\|G(x)-g(x)\|=\left\|F(x)-f_{1}(x)\right\| \leqslant 25 N \varepsilon-5 \varepsilon+\varepsilon=(25 N-4) \varepsilon$ for every $x \in(-a, a)^{N}$.

Theorem 3. Let $D_{1} \subset R^{N}$ be a bounded set with non-empty interior. If there exiats an element $x_{0} \in$ int D_{1} auch that the set $D:=D_{1}-x_{0}$ satisfies condition (i) then for every ε-Jensen function $g_{1}: D_{1} \rightarrow X$ there exist Jensen function $G_{1}: R^{\mathbb{N}} \longrightarrow X$ and constant K (depending on g_{1}) such that

$$
\left\|G_{1}(x)-g_{1}(x)\right\| \leqslant K \text { for any } x \in D_{1} \text {. }
$$

More preoisely, if non-negative integer p and positive a fulfil oonditions (ii) and (iii) then

$$
\left.\left\|G_{1}(x)-g_{1}(x)\right\| \leqslant 2^{p}(25 N-3)-1\right] \varepsilon \quad \text { for each } \quad x \in D_{1}
$$

Proof. Assume that a, p and D fulfil conditions (i), (ii) and (iii). The function

$$
g(x):=g_{1}\left(x+x_{0}\right), \quad x \in D,
$$

is an $\varepsilon-J e n s e n$ function in D. Similarly as in the proof of Lemma 3 we define the functions f_{1} and f, namely

$$
\begin{gathered}
f_{1}(x):=g(x)-g(0), \quad x \in D, \\
f(x):=\frac{1}{2^{n-1}} f_{1}\left(2^{n-1} x\right), \quad x \in A_{n}, \quad n=1,2, \ldots .
\end{gathered}
$$

We note that
(12) $\left\|f_{1}(y)-2^{p} f_{1}\left(\frac{y}{2^{p}}\right)\right\| \leqslant\left(2^{p}-1\right) \varepsilon$, for each $y \in D$, and (see (10))

$$
\begin{gather*}
\left\|f(x)-f_{1}(x)\right\| \leqslant \varepsilon, \quad \text { for any } x \in(-a, a)^{N} . \tag{13}\\
-504-
\end{gather*}
$$

Let $F: R^{\text {N }}$ - I be an additive function such that (of. (11))

$$
\|F(x)-f(x)\| \leqslant(5 N-1) 5 \varepsilon \text { for all } x \in(-a, a)^{M} \text {. }
$$

Taking any $x \in D$, by (12) and (13), we observe that
(14) $\left\|F(x)-f_{1}(x)\right\| \leqslant 2^{p}\left\|F\left(\frac{x}{2^{p}}\right)-f_{1}\left(\frac{x}{2^{p}}\right)\right\|+\left\|2^{p_{1}}\left(\frac{x}{2^{p}}\right)-f_{1}(x)\right\| \leqslant$
$\leqslant 2^{p}\left(\left\|P\left(\frac{x}{2^{p}}\right)-f\left(\frac{x}{2^{p}}\right)\right\|+\left\|f\left(\frac{x}{2^{p}}\right)-f_{1}\left(\frac{x}{2^{p}}\right)\right\|\right)+\left\|2^{p} f_{1}\left(\frac{x}{2^{p}}\right)-f_{1}(x)\right\| \leqslant$

$$
\leqslant 2^{P}(25 N-5+1) \varepsilon+\left(2^{P}-1\right) \varepsilon=\left[2^{P}(25 N-3)-1\right] \varepsilon .
$$

Now. we put

$$
G_{1}(x):=F\left(x-x_{0}\right)+g(0), \quad x \in R^{N}
$$

Hence, by definitions of g and f_{1} and (14) we get

$$
\begin{aligned}
\| G_{1}(x) & -g_{1}(x)\|=\| F\left(x-x_{0}\right)+g(0)-g\left(x-x_{0}\right) \|= \\
& \left.=\left\|F\left(x-x_{0}\right)-f_{1}\left(x-x_{0}\right)\right\|<{ }^{r} .^{p}(25 N-3)-1\right] \varepsilon .
\end{aligned}
$$

for any $x \in D_{1}$. Thus the proof is oomplete.
3. Application

A real function f defined on an open and convex subset D of R^{N} is said to be J-convex (oonvex in the sense of Jensen) if inequality

$$
f\left(\frac{x+y}{2}\right) \leqslant \frac{f(x)+f(y)}{2}
$$

holds for all $x, \mathcal{J} \in D_{\text {. . If the }}$ inequality aign " \leq " is replaced by " \geqslant " in the above inequality we say that f is a J-concave function. In the paper [1] R. Ger and it. Kuczma introduced the following class A of sets. A set $T \subset R^{N}$ belongs to the class \mathcal{A} iff every J-convex function defined on a convex open domain DכT bounded above on T is continuous in D. Some in-
terenting results conoerning of this class of sets may be found in [2].

Theorem 4. Let $D \subset R^{\mathbb{N}}$ be an open convex set and let $T \subset D$ be a fixed set belonging to the class A. If fid $\rightarrow R$ is J-oonvex and gid $-R$ is J-conoave and, moreover,

$$
f(x) \leqslant g(x) \quad f 0 r \text { all } \quad x \in T
$$

then thers exiat additive function $H: R^{N} \rightarrow R$, coavex funotion $f_{1}: D \rightarrow R$ and ooncave fuation $g_{1}: D \rightarrow R$ such that $f(x)=$ $-H(x)+f_{1}(x)$ and $g(x)=H(x)+E_{1}(x)$ for overy $x \in D_{\text {。 }}$

Proof. Putting

$$
\varphi(x) \quad f=f(x)-g(x), \quad x \in D
$$

we note that φ is $\mathrm{J} \rightarrow 0$ orvex function bounded above on T. Thus φ is oontinuous in D. Let D_{1} be an open oonvex and bounded subset of D for whioh there exists a oonstant $M>0$ auch that

$$
\begin{equation*}
|\varphi(x)| \leqslant M \quad \text { for and } \quad x \in D_{1} . \tag{15}
\end{equation*}
$$

From the definitions of φ, J-oonoavity of g, J-convexity of f and (15) it follows that

$$
\begin{gathered}
0 \leqslant 2 g\left(\frac{x+y}{2}\right)-g(x)-g(y)= \\
=2 f\left(\frac{x+y}{2}\right)-f(x)-f(y)-2 \varphi\left(\frac{x+y}{2}\right)+\varphi(x)+\varphi(y) \leqslant 4 M
\end{gathered}
$$

for all $x, y \in D_{1}$. In partioular,

$$
\left|2 g\left(\frac{x+y}{2}\right)-g(x)-g(y)\right| \leqslant 4 M \text { for all } x, y \in D_{1}
$$

On account of Theorem 3 there exist Jeneen function $G: R^{I I} \longrightarrow R$ and constant $K>0$ such that

$$
\begin{equation*}
|G(x)-g(x)| \leqslant K \quad \text { for every } \quad x \in D_{1} \tag{16}
\end{equation*}
$$

Now, we define functions H, g_{1} and f_{1} by the formulas

$$
H(x) \quad s=G(x)-G(0), \quad x \in R^{I N} .
$$

$$
\begin{aligned}
& g_{1}(x):=g(x)-H(x), \quad x \in D \\
& f_{1}(x):=\varphi(x)+g_{1}(x), \quad x \in D_{0}
\end{aligned}
$$

Of coures, H is an additive function. The funotion g_{1} is J-concave bounded below on D_{1} (of. (16)) and therefore it is concave function on $D_{\text {. The function }} f_{1}$ is convex, beoause it 1. continuous and $f_{f}(x)=\varphi(x)+g(x)-H(x)=f(x)-H(x)$, whioh imply that f_{1} is J-convex. Morsover, it is easily seen that $f(x)=H(x)+f_{1}(x)$ and $g(x)=H(x)+g_{1}(x)$ for any $x \in D$.

Analogous result was obtained by K. Nikodem [4] and C.T. Ng [6] but the assumptions in Theorem 4 are alightly weaker and the method of the proof is completely different from that presented in both papers.

REPBRENCES

[1]R. Gex, M. Kuczma: On the boundedness and continuity of oonvex functions and additive functions, Aequationes Math. 4 (1970) 157-162.
[2] M. K a o zma: An Introduotion to the Theory of Functional Equations and Inequalities, PWN, Warszawa-Kra-ków-Katowioe, 1985.
[3]K. Nikodem: Problem, Rocznik NaukowomDydaktyozny WSP w Krakowie, Zeszyt 97, Prace Mat. XI (1985) 257-258.
[4] K. Nikodem: Midpoint oonvex function majorized by midpoint conoave functions, Aequationse Math. 32 (1987) 45-51.
[5] F. Skof: Proprieta Locali e Approseimazione di Operatori, Rend. Semin. Mat. Fie. Milano 53, 113-129 (1983).
[6]C.T. N g : On midconvex functions with midconcave bounds (manusoript).

INSTITUTE OF MATHEMATICS, SILESIAN UNIVERSITY, 40-007 KATOWICE, POLAND

Received July 23, 1987.

