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Maciej Sablik, Paweł Urban

ON THE SOLUTIONS OF THE EQUATION
f(xf(y)k+yf(x)‘)=f(x)f(y)

The functional equation

(1) f(xf(y)k + yf(x)1) « f(x)f(y),

where k and 1 are positive integers and the unknown func
tion f maps 1R. into itself, has appeared in connection with 
determining some subsemigroups of the group Lg (of. [2]). 
Putting k » 0 and 1 = 1 we get the Gołąb-Sohinzel equation 
as a particular case of (1) which has been studied by many 
authors including N. Brillouet who in [l] has also dealt with 
continuous solutions of equation

f(xf(y) +yf(x)) «cxf(x)f(y).

Our results presented here generalize those from [4j and [1] 
(in the oase ot= 1). They are also more general than it was 
announoed by M. Sablik at the 21st Symposium on Functional 
Bquations (of. [33).

let X be a linear space over reals. We will look for the 
real-valued solutions of (1) defined on X. Ve have the follow
ing obvious lemma.

Lemma 1. Iff: X —is a solution of (1), then 
f (0) c{0,l}.

Let us prove a very fruitful lemma.
L S m m a 2. If f: X-*-R is a solution of (1) and

k 1o e (0,1) is such that o + c = 1, then f(x) / c for all x e X.
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2 M» Sablik, P. Urban

Proof. Suppose f(a) » o for a z e X. Put x » y - z 
In (1). We derive that o » o2 i.e. oe{o,l} which is a contra
diction.

Observe that f(X) is a multiplicative semigroup. Hence in 
particular f(X) contains all powers of its elements. Thus f(X) 
cannot contain Vc for any n e IN and c e (0,1) such that

k 1 c + c = 1 which follows from Lemma 2.
Corollary 1. If f: X -*R is a solution of (1), 

then f(X) contains no interval of the form (a,1) with a<1.
Corollary 2. IfX «R and gt X-*R is a solu

tion of (1) having Darboux property, then

g(X) c [ 1 ,+oo) if g(0) ■ 1>

or
g(X) c(-Vo,o) if g(0) « 0,

where c e(0,1) and ok + o^ ■ 1.
Define functions , ip^tR—-R writing for bgR

(2) <Pt(s) ■ s g(t)k + t g(s)1

and

(3) 4»t(s) » t g(s)k + s g(t)1.

It is obvious that and both have Darboux property if g 
has.

Proposition. Let X «R and let gt X-*R be 
a solution of (1) having Darboux property. Then either g = 1 
or g = 0.

Proof. First consider the case g(0) = 1. If g 1 
then, by Corollary 2, g(tQ)>1 for a tQ / 1. If g(tQ)k 
£ sf-tj,)1 >1, then

sgn (pt (0)
o

~ sgn tQ / sgn *0(g(-*0)X - 8(*0)k) “ egn ?t t’V 

so that there exists an u / 0 between 0 and -tQ such that 
(pt (a) ■ 0 which together with (1) gives

o
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Solations of the equation 3

1. » g(0) = g(<pt (u)) ■ g(u)g(t ) ^g(t ) >1.
*o

k 1Similarly we obtain a contradiction, if g(tQ) < gt—tQ) . 
Indeed, theng(-t0)>1 and (of. (3))

sgn Y_t (0) « sgn(-t0) sgn(-t0(g(t0)k - g(-t0)1)) -

» sgn ip* (t0)
o

and ip t (u) » 0 for an u / 0 lying between 0 and t which 
0 o

leads to

1 » g(0) - g(ip_t (u)) « g(u)g(-t ) > g(-t ) > 1.
o

Now let us prooeed to the oase g(0) ■ 0. It follows from 
Corollary 2 that

(4) Vg :■ sup{|g(t)| > telR} < 1.

As g(R) is a multiplicative semigroup, then it is easy to see 
that g 0 implies existence of a tcR such that g(t) >0. 
As g is bounded we have (of. (2))

11m Vxjs) « +<x>, lim cp*(s) «
8 *►+00 8-* —00

hence q>^(R) »R. Take any seR and choose ueRsuch that 
cpf(u) * s. Then we have

|g(s)| > I g(cpt(u))| « I g(t)g(u)| vg.

Therefore Vg^Vg which together with (4) gives Vg = 0 and ends 
the proof.

Now shall generalise the above Proposition.
Theorem. Let I be a linear space over reals and 

let toe its algebraic base. Further let fi X— R be
a solution of equation (1). Then
(1) if f(0) ■ 0 and for every xeX\{o} function gI:‘R-*R 

given by
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4 M. Sablik, P. Urban

(5) gx(t) = f(tx)

»»

for te 1R has Darboux property, then f = Oj
(ii) if f(0) = 1 and for every ie I function g_ defined by (5) 

has Darboux property, then f = 1.
Proof. It is Straightforward matter to oheck that 

gz defined by (5) is a solution of (1) for every xeX\{o}« 
Of course gx(0) » f(OX for every xel\{o}. Thus,in case (i), 
gx = 0, by our Proposition. Suppose now that f(0) = 1 and the 
functions g_ have Darboux property. Once more using Proposi- 

ai
tion we obtain that a = 1 for ie I. Take arbitrary 

ei
x «■ a.e, + ... + a„e4 e X. We will show by induction with1 i1 n in
regard to n that f(x) = 1. Indeed, for every ate Rand ie I 
we have f(<xe^J » ge (a) = 1. Suppose that ff0^^ +...+aneL ) ■ 1

i 1 n
for every oC|,...,«n e]R and i1,... ,iQ e I. Take y ■ f^e-j + ... 

... + » where ^,..»,^+^elR and ,..• »Jn+-| e !• By
dn+1

induction hypothesis we have ff^e^ + ... + P>n8j ) B 1 and 

f(&n.1e4 ) = 1. Thus from (1) it follows that
>>n+1

f(y) - ^Pi«jl+—+?n+1ejłM.1ł = fKPiej/‘--+?nejn,x 

xf(Pn+1*Jn+1,k + Pn+1eJn+1f{Plej1+-” + Pnejn,l)

f^n+1ejn+1^^1aj1+,,*+Pnejn^ “ 1»

which ends the proof of Theorem.
The following example shows that in the case (i) it is 

that gz has Darboux property for allnecessary to assume 
x e X\{o}.

Example. The
o

function fi R —«-R given by

0.
f(x1tx2) ■«

1,
for <x.| ,x2) elR2 satisfies

x^Ovx2 t 0, 

x1 > 0 A x2 » 0 

(1).
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Solutions of the equation
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