

You have downloaded a document from RE-BUŚ
 repository of the University of Silesia in Katowice

Title: On The Solutions of The Equation $f\left(x f(y) k+y f(x)^{`}\right)=f(x) f(y)$

Author: Maciej Sablik, Paweł Urban

Citation style: Sablik Maciej, Urban Paweł. (1985). On The Solutions of The Equation $\mathrm{f}\left(\mathrm{xf}(\mathrm{y}) \mathrm{k}+\mathrm{yf}(\mathrm{x})^{‘}\right)=\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})$. "Demonstratio Mathematica" (Vol. 18, nr 3 (1985) s. 863-867), doi 10.1515/dema-1985-0317

Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych Polska-Licencja ta zezwala na rozpowsze chnianie, przedstawianie i wykonywanie utworu jedynie w celach niekomercyjnych oraz pod warunkiem zachowania go w oryginalnej postaci
(nie tworzenia utworów zależnych).

Maciej Sablik, Paweł Urban

ON THE SOLUTIONS OF THE EQUATION

$$
f\left(x f(y)^{k}+y f(x)^{l}\right)=f(x) f(y)
$$

The functional equation

$$
\begin{equation*}
f\left(x f(y)^{k}+y f(x)^{l}\right)=f(x) f(y), \tag{1}
\end{equation*}
$$

where k and l are positive integers and the unknown funotion f maps \mathbb{R} into itself, has appeared in conneotion with determining some subsemigroups of the group L_{2}^{1} (cf. [2]). Putting $k=0$ and $1=1$ we get the Gołab-Sohinzel equation as a partioular case of (1) which has been studied by many authors including N. Brillouët who in [1] has also dealt with oontinuous solutions of equation

$$
f(x f(y)+y f(x))=\alpha f(x) f(y) .
$$

Our results presented here generalize those from [4] and [1] (in the oase $\alpha=1$). They are also more general than it was announced by M. Sablik at the 21at Symposium on Functional Equations (of. [3]).

Let X be a linear space over reals. We will look for the real-valued solutions of (1) defined on X. We have the following obvious lemma.

Lemma 1. If $\mathrm{f}: \mathrm{X} \rightarrow \mathbb{R}$ is a solution of (1), then $f(0) \in\{0,1\}$.

Let us prove a very fruitful lemma.
L®mma 2. If $f: X \rightarrow \mathbb{R}$ is a solution of (1) and $0 \in(0,1)$ is such that $c^{k}+c^{1}=1$, then $f(x) \neq 0$ for all $x \in X$.

Proof. Suppose $f(z)=0$ for a $z \in X$. Put $x=\mathcal{J}=\mathbf{z}$ in (1). We derive that $a=c^{2}$ 1. θ. $0 \in\{0,1\}$ whioh is a contradiction.

Observe that $f(X)$ is a multiplicative semigroup. Hence in particular $f(X)$ contains all powers of its elemente. Thus $f(X)$ cannot contain $\sqrt[n]{c}$ for any $n \in \mathbb{N}$ and $a \in(0,1)$ such that $c^{k}+c^{l}=1$ which follows from Lamma 2.

Corollary 1. If $f: X \rightarrow \mathbb{R}$ is a solution of (1), then $f(X)$ contains no interval of the form $(a, 1)$ with $a<1$.

COTOLIary 2. If $\mathbb{X}=\mathbb{R}$ and $8: X \rightarrow \mathbb{R}$ is a solution of (1) having Darboux property, then

$$
g(x) \subset[1,+\infty) \text { if } g(0)=1 ;
$$

or

$$
g(X) \subset(-\sqrt{0}, 0) \text { if } g(0)=0
$$

where $c \in(0,1)$ and $0^{k}+0^{1}=1$.
Define functions $\varphi_{t}, \psi_{t}: \mathbb{R} \rightarrow \mathbb{R}$ writing for $s \in \mathbb{R}$

$$
\begin{equation*}
\varphi_{t}(s)=s g(t)^{k}+t g(s)^{2} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi_{t}(a)=t g(a)^{k}+g g(t)^{l} \tag{3}
\end{equation*}
$$

It is obvious that φ_{t} and ψ_{t} both have Darboux property if g has.

Proposition. Let $X=\mathbb{R}$ and let g: $X \rightarrow \mathbb{R}$ be a solution of (1) having Darbour property. Then either g $\equiv 1$ or $\mathrm{g} \equiv 0$ 。

Proof. Pirst consider the case $g(0)=1$. If $g \not \equiv 1$ then, by Corollary $2, g\left(t_{0}\right)>1$ for $a t_{0} \neq 1$. If $g\left(t_{0}\right)^{k} \geqslant$ $\geqslant g\left(-t_{0}\right)^{1} \geqslant 1$, then

$$
\operatorname{sgn} \varphi_{t_{0}}(0)=\operatorname{sgn} t_{0} \neq \operatorname{sgn} t_{0}\left(g\left(-t_{0}\right)^{l}-g\left(t_{0}\right)^{k}\right)=\operatorname{sgn} \varphi_{t_{0}}\left(-t_{0}\right)
$$

so that there exists an $u \neq 0$ between 0 and $-t_{0}$ such that
$\varphi_{t_{0}}(u)=0$ which together with (1) gives

$$
\text { 1. }=g(0)=g\left(\varphi_{t_{0}}(u)\right)=g(u) g\left(t_{0}\right) \geqslant g\left(t_{0}\right)>1 .
$$

Similariy we obtain a contradiotion, if $g\left(t_{0}\right)^{k}<g\left(-t_{0}\right)^{l}$. Indeed, then $g\left(-t_{0}\right)>1$ and (of. (3))

$$
\begin{aligned}
\operatorname{sgn} \psi_{-t_{0}}(0) & =\operatorname{sgn}\left(-t_{0}\right) \neq \operatorname{agn}\left(-t_{0}\left(g\left(t_{0}\right)^{k}-g\left(-t_{0}\right)^{1}\right)\right)= \\
& =\operatorname{sgn} \psi_{-t_{0}}\left(t_{0}\right)
\end{aligned}
$$

and $\psi_{-t_{0}}(u)=0$ for an $u \neq 0$ lying between 0 and t_{0} which leads to

$$
1=g(0)=g\left(\psi_{-t_{0}}(u)\right)=g(u) g\left(-t_{0}\right) \geqslant g\left(-t_{0}\right)>1
$$

Now let us proosed to the case $g(0)=0$. It follows from Corollary 2 that

$$
\begin{equation*}
V_{g}:=\sup \{|g(t)|: t \in \mathbb{R}\}<1 \tag{4}
\end{equation*}
$$

As $g(\mathbb{R})$ is a multiplicative somigroup, then it is easy to see that $g \neq 0$ implies existence of a $t \in \mathbb{R}$ such that $g(t)>0$. Ae g is bounded we have (of. (2))

$$
\lim _{s \rightarrow+\infty} \varphi_{t}(s)=+\infty, \quad \lim _{s \rightarrow-\infty} \varphi_{t}(a)=-\infty,
$$

hence $\varphi_{t}(\mathbb{R})=\mathbb{R}$. Take any $B \in \mathbb{R}$ and ohoose $u \in \mathbb{R}$ such that $\varphi_{t}(u)=8$. Then we have.

$$
|g(s)|=\left|g\left(\varphi_{t}(u)\right)\right|=\left|g(t)_{g}(u)\right| \leqslant v_{g}^{2}
$$

Therefore $\nabla_{g} \leqslant V_{g}^{2}$ which together with (4) gives $V_{G}=0$ and ends the proof.

Now shall generalize the above Proposition.
Thoorem. Let X be a innear epace over reals and let $\left\{\theta_{i}\right\}_{1 \in I}$ be ita algebraio base. Further let $f_{i} X \rightarrow \mathbb{R}$ be a solution of equation (1). Then
(1) if $f(0)=0$ and for overy $x \in \mathbb{X} \backslash\{0\}$ funotion $g_{x}: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
g_{x}(t)=f(t x)
$$

for $t \in \mathbb{R}$ has Darboux property, then $f \equiv 0_{3}$
(ii) if $f(0)=1$ and for every i $\in I$ function $g_{\theta_{i}}$ defined by (5) has Darboux property, then $f \equiv 1$.
Proof. It is straightforward matter to chook that g_{x} defined by (5) is a solution of (1) for every $x \in X \backslash\{0\}$. Of course $g_{x}(0)=f(0)$ for every $x \in X \backslash\{0\}$. Thus, in case (i), $B_{x} \equiv 0$, by our Proposition. Suppose now that $f(0)=1$ and the functions $g_{\theta_{i}}$ have Darboux property. Once more using Proposition we obtain that $g_{\theta_{i}} \equiv 1$ for $i \in I$. Take arbitrary $x=\alpha_{1} \theta_{i_{1}}+\ldots+\alpha_{n} \theta_{i_{n}} \in X$. We will show by induction with regard to n that $f(x)=1$. Indeed, for every $\alpha \in \mathbb{R}$ and $i \in I$ we have $f\left(\alpha_{\theta_{i}}\right)=g_{e_{i}}(\alpha)=1$. Suppose that $f\left(\alpha_{1} \theta_{i_{1}}+\ldots+\alpha_{n} \theta_{i_{n}}\right)=1$ for every $\alpha_{1} \ldots, \alpha_{n} \in \mathbb{R}$ and $i_{1}, \ldots, I_{n} \in I$. Take $J=\beta_{1} \theta_{j_{1}}+\ldots$ $\ldots+\beta_{n+1}{ }^{\theta} j_{n+1}$, where $\beta_{1}, \ldots, \beta_{n+1} \in \mathbb{R}$ and $j_{1}, \ldots, j_{n+1} \in I$. By induction hypotheais we have $f\left(\beta_{1}{ }^{e} j_{1}+\ldots+\beta_{n}{ }^{e} j_{n}\right)=1$ and $f\left(\beta_{n+1}{ }^{e} j_{n+1}\right)=1$. Thus from (1) it follows that

$$
\begin{aligned}
f(y) & =f\left(\beta_{1}{ }^{\theta} j_{1}+\ldots+\beta_{n+1}{ }^{\theta} j_{n+1}\right)=f\left(\left(\beta_{1}{ }^{\theta} j_{1}+\ldots+\beta_{n}{ }_{j} j_{n}\right) \times\right. \\
& \left.\times f\left(\beta_{n+1} j_{n+1}\right)^{k}+\beta_{n+1}{ }^{\theta} j_{n+1} f\left(\beta_{1}{ }^{\theta} j_{1}+\ldots+\beta_{n}^{\theta} j_{n}\right)^{1}\right)= \\
& =f\left(\beta_{n+1}{ }^{\theta} j_{n+1}\right) f\left(\beta_{1}{ }^{\ominus} j_{1}+\ldots+\beta_{n}{ }^{\theta} j_{n}\right)=1
\end{aligned}
$$

which ends the proof of Theorem.
The following example shows that in the case (i) it is neosessary to assume that g_{x} has Darboux property for all $x \in X \backslash\{0\}$.

Fxample . The function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}0, & x_{1} \leqslant 0 \vee x_{2} \neq 0 \\ 1, & x_{1}>0 \wedge x_{2}=0\end{cases}
$$

for $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ satisfies (1).

REFERENCES

[1] N. Brilloüet: Equations fonctionnelles ot the orie des groupes. Publ. Math. Univ. Nantes (to appear).
[2] S. Midura: Sur la déteraination de certains sousgroupes du groupe I_{B}^{1} à l'aide d'équetions fonctionnelles. Dissertationes Math. 105 (1973).
[3] M. S a b 11 k : Remark at the 21st Symposium on Funotional Equations, Konolfingen, Switzerland, 1983, Aeq uationes Math. 26 (1983) 274-285.
[4] P. Urban: Continuous solutions of the functional equation $f\left(x f^{\frac{1}{2}}(y)+y f^{l}(x)\right)=f(x) f(y)$. Demonstratio Math. 16 (1983) 1019-1025.

DEPARTMBNT OF MATHEMATICS, SILBSIAN U\&IVERSITY, 40-007 KATOWICE, POLAND;
INSTITUTE OF MATHEMATICS, PEDAGOGICAL UNIVERSITY, 35-310 RZESZÓm, POLAND
Received March 19, 1984.

