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Justyna Sikorska 

ORTHOGONAL STABILITY OF THE C A U C H Y EQUATION 
ON BALLS 

Abstract. We deal with stability of some functional equations postulated for orthog-
onal vectors in a ball centered at the origin. The maps considered are defined on a finite 
dimensional inner product space and take their values in a real sequentially complete 
linear topological space. The main result establishes the stability of the corresponding 
conditional Cauchy functional equation and as a consequence we obtain some other sta-
bility results. Results which do not involve the orthogonality relation are considered in 
more general structures. 

1. Introduction 
R. Ger and J. Sikorska [2] considered the stability of the Cauchy func-

tional equation postulated for orthogonal vectors only and defined on the 
whole space. F. Skof [7], [8] and F. Skof & S. Terracini [9] dealt with stabil-
ity of the Cauchy and quadratic equations on the interval. Z. Kominek [3] 
studied stability of the Cauchy equation on the iV-dimensional cube in the 
space R^ . 

In the present paper we unify all these investigations by considering the 
stability of the Cauchy equation postulated only for orthogonal vectors (or-
thogonal stability) from a ball centered at the origin. Because of methods 
used in proofs we restrict ourselves to the orthogonality in a finite dimen-
sional inner product space. 

In what follows let (X, (-|-)) be a real inner product space and dimX = 
N for some integer N > 2. Let Y be a real sequentially complete linear 
topological space and V be a nonempty bounded convex and symmetric 
with respect to zero subset of Y. Let, further, for some positive number r, 
the set Br := {x £ X : ||x|| < r} denote the open ball in X centered at the 
origin and having radius r, where || • || stands for a usual norm in the inner 
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product space. Unless explicitely stated we shall permanently use the just 
introduced notation. 

We shall say that two vectors x, y £ X are orthogonal (x _L y) if and 
only if (x\y) = 0. Moreover, the symbols N, N0, M, M+ and Mj will stand 
for the sets of positive integers, nonnegative integers, real numbers, positive 
and nonnegative real numbers, respectively. 

2. Auxiliary results 
To show the orthogonal stability of the Cauchy functional equation on 

a ball centered at the origin we have to prove first several lemmas. We say 
that a function / : B —• Y is additive (on a ball B) if and only if for all 
x,y £ B such that x + y £ B we have f(x + y) = f(x) + f(y), and a function 
/ : B —> Y is quadratic (on a ball B) if and only if for all x,y £ B such that 
x + y, x — y € B we have f(x + y) + f(x — y) = 2 f ( x ) + 2f(y). We say that 
a function / : B —> Y is orthogonally additive (on a ball B) if and only if for 
all x,y 6 B such that x + y 6 B and x _L y we have f(x + y) = f(x) + f(y). 

LEMMA 1 . If f : Br Y is additive (odd orthogonally additive, quadratic, 
even orthogonally additive), then there exists exactly one additive (odd ortho-
gonally additive, quadratic, even orthogonally additive) mapping F : X—>Y 
such that F\Br — f • 

P r o o f . We give the proof for an odd orthogonally additive function. In the 
remaining cases the proofs are similar. 

Assume that / : BT —> Y is odd orthogonally additive. For an arbitrary 
x € Br there exists a y € Br such that x 1. y and x + y _L x — y. Moreover, 
since x _L —y and / is odd, we have 

Hence, for an arbitrary x G Br, the following condition is satisfied 

Observe that for every m , n € Nq, if ^ x G Br then 

(!) 2U+mf = 2" * 2m/ (¿T " hX) = * 2 m 2 " 
J_ 
2 n 

Define a function F : X —» Y by the formula 
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where n is an integer such that ^ x G Br. Equality (1) guarantees that the 
function F is well defined. 

We show that F is odd orthogonally additive. Fix x,y G X such that 
x _L y. There exist ni,ri2 G No such that ¿k^x, ^y G Br. Let n := 
max{ni,n2} + 1. Then ±(x + y), £(x-y) G Br and 

F(x) + F(y) = 

To show that F is unique, assume that there exist two functions Fi, F2 : 
X —> Y such that F^\bt = F2\Br = /• Fix arbitrary x G X. Let n G No is 
such that T̂ -X G Br. Then 

= r F ^ x ) = 2nf(^x) = 2 n F ^ X ) = F 

hence F\ = F2. 

LEMMA 2. Let f : Br —> Y be odd orthogonally additive. Then f is additive. 

Proof . On account of Lemma 1 there exists an odd orthogonally additive 
extension F : X —> Y of function /. Hence, from J. Ratz's paper [6, Corol-
lary 7], F is additive, and so is / = F\sr. 

LEMMA 3. Let f : Br —> Y be even orthogonally additive. Then f is 
quadratic. More precisely, there exists an additive function b : M^ —• Y 
such that f(x) = 6(||a;||2) for all x G Br. 

Proof . Follows from Lemma 1 and from J. Ratz's paper [6, Corollaries 7 
and 10]. 

As an immediate consequence of Lemma 2 and Lemma 3 we obtain the 
following 

COROLLARY 1. Let f : Br —> Y be orthogonally additive. Then there exist 
additive mappings a : X —» Y and b : MQ" —> Y such that f(x) = a(x) + 
6(||a;||2) for all x G Br. 

The following lemmas establish some stability results concerning odd 
and even orthogonally additive mappings, respectively. 

LEMMA 4. Let f : Br —> Y be an odd function satisfying condition: 

(2) (x, y, x + y G Br, x _L y) implies /(x + y)~ f(x) - f(y) G V. 

Then for each two linearly dependent vectors x and y we have 

x, y, x + y G Br implies f(x + y)~ f(x) - f(y) G 3V. 



530 J. S i k o r s k a 

P r o o f . Fix an x £ Br. There exists a y £ Br such that x J_ y and ||x|| = 
Then 1 ^ and 

'(^MfMtH 
'(^MiMfH 

Consequently, we infer that 

f ( x ) - 2 f ( ^ j ew. 

Now, we are going to show that for each real A and each x £ Br such that 
Xx, (A + l)x £ Br the following relationship 

(3) f(x + Xx) - f(x) - / (Ax) G 3 F 

holds. To show this let us distinguish four cases: 
(i) A > 0, (ii) A = 0, (iii) - 1 < A < 0, (iv) A < - 1 . 

(i) Take an x € Br such that (A + l)x £ Br. There exists a vector 
y G X such that x _L y and x + y ± Xx — y. It is easy to check that 
y, x + y, Xx — y G Br. Hence 

f(x + Xx) - f(x + y)~ f(Xx - y ) £ V , 

f(x + y ) - f ( x ) - f ( y ) e V , 

f ( X x - y ) - f ( X x ) + f(y)£V, 

whence (3) immediately follows. 
(ii) Then (3) is obviously fulfilled, because / ( 0 ) G V C 3V. 

(iii) Fix an x G Br such that Ax £ Br. Then, using (i) and the oddness 
of / , we infer that 

f(x + Xx) - f(x) - / (Ax) = f(x + Xx) + / ( - A x ) - f(x) 

= / ( x + A x ) + / ( ( - Y ^ F ) ( 1 + A ) ® ) - f ( ( 1 + X ) x + ( " I T a ) ( 1 + a ) x ) e 

(iv) Fix an x G Br such that Ax G Br. Using (i) again and the oddness 
of / we obtain 

/ ( x + Ax) - / ( x ) - / (Ax) = / ( ( - 1 - A)(—x)) + / ( - x ) - /((—A)(—x)) G 3V. 

This completes the proof of the lemma. 
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LEMMA 5 . Let f : Br —• Y be an odd function satisfying ( 2 ) . Then there 
exists an additive function a : X —> Y such that 

(4) a(x) — f(x) e ki s e q c l F for all x € Br, 

where 

J 2 5 forN = 2 , 
1 ~ \ (10N + 8) for N> 3. 

P r o o f . Without loss of generality we can assume that Br is the unit ball 
(r = 1) and put B := B\. Let ui,...,un be vectors in the space X such 
that Ui _L uj for i ^ j, i,j G {1, . . . ,JV}, ||iij|| = i G { l , . . . , i V } and 
X = l i n{u i , . . . , un}. An arbitrary x € X can be written as x = YliLi aiuii 
for some (uniquely determined) A I , . . . , A AT G R . Write further A* as N, + MJ, 
where rii stands for the integral part of number c^ and m, := on — rii 
(« £ {1 , . . . , N } ) . Then 

N 

x = ^ (rijUj + miUi). 
¿=i 

Define a map F : X —> Y" by the formula 
N 

F ( x ) := + f(miUi))-
i=1 

Moreover, let Fi(x) (i € { l , . . . , iV} ) stands for the z-th summand of the 
above sum. Fix x £ B. Since 

N 

x = Y^QtHj, 
¿=1 

and vectors Uj are pairwise orthogonal, we deduce that 

IM|2 = | |aiUi| |2 + . . . + | |a iVujv||2 , 
which implies that OL{Ui € J5 for a lH £ { 1 , . . . , N}. 

Observe that 
N N 

F(x) - f ( x ) = Y^(nif(ui) + f(miUi)) - / ( 
¿=1 i=l 

N N N N 

= ( ^2(nif(ui) + f(rniUi)) - /(«¿n*)) + ( ^ / ( c w ) <*»«<)) 
i=1 ¿=1 t=l 1=1 

TV N N 

= nif(ui) + f(miui) - f(niUi + m i U i ) ) + ^ ^ f ( a i U i ) - f ( ^ 2 a i u i y ) -
¿=1 ¿=1 ¿=i 
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An easy induction argument shows that 
N N 

X ; H a w ) - / ( X 6 ( N - l ) y -
¿=1 ¿=i 

Put 

Ai := rnf(ui) + /(rriiUi) - f(riiUi + mjU;), i G { 1 , . . . , N}. 

Observe that if x G B then 

1 > IMI2 = X I N I 2 = X i a i > 
i=1 i=l 

whence Ylf= i a i < 4, and consequently |a,| < 2 for alH G { 1 , . . . , iV}. More-
over, for at least three i G { 1 , . . . ,N}, we have |aj| > 1. Let us distinguish 
four cases. 

(a) 1 < ai < 2. Then rij = 1 and, on account of Lemma 4, we state that 

Ai = f(ui) + f (rriiUi) - f(ui + rriiUi) G 3V. 

(b) 0 < ai < 1. Then m = 0 and A{ = 0. 

(c) — 1 < ai < 0. Then rii = —1 and 

Ai — -f(m) + /(rriiUi) - f(—Ui + rriiUi) G 3V. 

(d) — 2 < ai < —1. In this case n* = —2. Since (—1 + m^Ui G B, 

Ai- - 2 f(ui) + / (rriiUi) - / ( - 2 u j + rriiUi) 
= ( - f ( u i ) + /(rriiUi) - f(-Ui + rriiUi)) 

+ (f(~Ui + rriiUi) - f(ui) - f(-2ui + rriiUi)) G 6F. 
Consequently, 

vt \ x/ n i 13V for N = 2, 
(5) + for TV > 3 . 

We shall show now that for every x, y G X one has 

F(x + y) - F(x) - F(y) G 6N V. 

For this purpose fix x,y G X. Obviously x and y we can represented in the 
form 

N N 
x — ^^ aiUi = ^^ (riiUi + rriiUi), 

¿=1 i—1 
JV N 

y = X] = X] + liUi) 
i=l i=l 
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with some (uniquely determined) real numbers a*, (z G { 1 , . . . , TV}); nj, kt 

stand here for the integral parts of on and respectively, and rrii : = c*j — n*, 
li * — Pi k{ (zG { 1 , . . . , AT}). Fix iG { 1 , . . . , N}. Assume first that rrii+li < 1. 
Then 

Fi{x + y)~ Fi(x) - Fi(y) = ((n; + k i ) f ( U i ) + /((rm + U)ui)) 

- ( r i i f ( u i ) + f(miUi)) - ( k i f ( u i ) + f(liUi)) 

= f ( ( m i + l i )ui ) - /(rriiUi) - f { h u i ) G 3^. 

Let now 1 < m* + li < 2. Then (mi — l )u j £ B and 

Fi(x + y ) - F i ( x ) - F i ( y ) 

= ((rii + ki + 1 ) f ( U i ) + ¡((rm + h - l)ui)) 

- (riif(ui) + f (rriiUi)) - (kif(ui) + f{kui)) 

= f(ui) + /((mj + k - l)ui) - f (rriiUi) - f(hui) 

= ( f ( u i ) + f((rrii - l)ui) - f (rriiUi)) 

+ ( / ( K + U - l ) « i ) - f { ( m i - l ) u j ) - f ( h u i ) ) G 6 V . 

Hence 
N 

F(x + y) - F(x) - F(y) = £ (Fi(x + y) - Fi(x) - F^y)) G 6 N V . 

¿=i 

Prom J. Ratz's paper [5] we derive the existence of an additive function 
a : X —> Y such that for all x G X we have 

a(x) — F(x) G 6 i V s e q c l V and a(x) = l im ^-F(2nx). 
n—>oo 2 " 

This jointly with (5) gives (4), what ends the proof. 
A thorough inspection of the proof of the above lemma allows to observe 

that the condition x A. y in (2) and the oddness of function / were used in 
the inner product space only for estimating the Cauchy difference for vectors 
that were linearly dependent. So, the above result can be reformulated in a 
slightly different form. 

LEMMA 6. Let (X, | • §) be a real normed space, d i m X = N, let Br := {x G 

X : |||®| < r} for some positive constant r and let f : Br —> Y fulfil the 

condition 

x,y,x + y€Br implies f ( x + y) - f ( x ) - f(y) G V. 

Then there exist an additive function a : X —* Y and a real constant k-z — 

k2(N, I • I ) such that 

a(x) — f(x) G foseqcl V for all x G Br. 
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Proof . Let || • || be any norm in X coming from an inner product. Then, as in 
the previous lemma, we get the existence of an additive mapping a : X —> y 
such that for all x G Br := {x G X : ||x|| < r } one has 

(6) a(x) — f(x) G fc'seqclF, 

where 
, _ I (5N - 1) for N < 3, 

~ \ (AN + 2) for N > 3. 

Since X is finite dimensional, the norms || • || and ||| • ||| are equivalent; there 
exist then positive constants a and ¡3 such that 

(7 ) Q IN III < M < /3IMII 

for all x € X. Without loss of generality we^may assume that the balls Br 

and Br are unit balls (r = 1) and put B := Bi and Ba := aB\. From (7) we 
have Ba C B. We continue as Z. Kominek in [3]. There exists a p € N such 
that B C 2 p B a . If x G B then ^x G Ba. Take now an arbitrary x G B. 
Then also ^x G B for I G { 1 , . . . ,p} and 

I G { 1 , . . . ,p} . 

It is easy to check that 

(8) f{x)-2?f(±x^e(2r-l)V. 

Finally, from (6) and (8), for an arbitrary x G B, we have 

a(x) - f{x) = - / ( ¿ * ) ) + ( ^ / ( ¿ ^ " /(*)) 

G 2pk' seqcW + (2p - \)V C {2p(k' + 1) - l)seqclV, 

and we get the assertion of the lemma with = 2 p (k' + 1 ) — 1, where p G N 
depends on ||| • ||| only. 

Next results concern even mappings. 

LEMMA 7. Let f : Br —» Y be an even function satisfying ( 2 ) . Then for all 
x,y G Br such that x + y,x — y G Br one has 

(9) f{x + y) + fix -y)- 2 f ( x ) - 2 f ( y ) G 34V. 
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P r o o f . Fix x,y € Br such that ||x|| = ||y||. Then J_ and 

Hence for all x,y G Br such that ||x|| = ||y|| 

(10) f { x ) - f { y ) G 2V. 

Since dimX > 2, for an arbitrary x 6 Br there exists a vector y E Br 

such that x _L y and ||x|| = ||y||. Using (2), (10) and the eveness of / we get 

' ( ^ M i M - i H 
V ( f ) - V ( f ) E 4 V , 

whence 

(11) f ( x ) - 4 f ( ^ j € IV for all s € Br. 

Fix now an x € Br and a real number A > 0 such that Ax, (A + l)x, 
(A — l)x € Br. Then there exists a vector y £ Br such that i l l / and 
x + y JL Xx — y. It is easy to check that also x + y, Xx — y, 2y G Br. From 
of (2), (11) and eveness of function / , we obtain 

f ( x + Xx) + f { x - Xx) - 2 f i x ) - 2 f i X x ) 

= { f i x + y + Xx - y) - f { x + y) - /(Ax - y)) 

+ 2 i f i x + y)~ f{x) - fiy)) + 2(/(Ax - y) - /(Ax) - / ( - y ) ) 

+ { - f { x + y - Ax + y) + / ( x - Ax) + /(2y)) 

+ { f { x + y - Ax + y) - f { x + y) - / ( - A x + y)) 

+ (4/(y) - / (2y)) £V + 2V + 2V + V + V + 7V = IAV. 

Therefore 

(12) f { x + Ax) + f i x - Xx) - 2 f i x ) - 2/(Ax) G 14V 
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for all x G Br and A G M+ such that Ax, (A + l )x, (A — l )x G Br. Observe 
further that for an arbitrary xE X and a , /?eM such that ax,/3x, (a+f3)x, 
(a — /3)x G Br we have 

(13) f{ax + f3x) + f(ax - (3x) - 2 f(ax) - 2f(f3x) G 14V. 

In fact, when a = 0 or ¡3 = 0, then condition (13) obviously holds. When 
£ > 0, then we apply (12) for A : = § . If § < 0 then (12) applied for 
A : = — ̂  and the eveness of / give the required relationship. 

Fix arbitrary x,y G Br such that x + y,x — y G Br. If x and y are linearly 
dependent, then from (13) it follows that condition (9) holds. Assume that 
x and y are linearly independent. Let u and v be vectors from the subspace 
lin{x, y} such that u,v G Br and u _L v. Therefore x = cm + f3v, y — yu + Sv 
for some a,P,-y,5 € M. Using conditions (2) and (13) we get 

f(x + y) + f(x-y)-2f(x)-2f(y) 

= /((a + 7)u +((3 + S)v) + f((a - 7)u + {¡3 - S)v) 

- 2/(cm + ¡3v) - 2 f ( j u + Sv) 

= ( / ( ( a + 7 )« + ( /3 + S)v) - f(ocu + yu) - f{0v + Sv)) 

+ (f((a - 7 )u +(0- S)v) - f(au - 7u) - f{(5v - Sv)) 

+ (/(cm + 7 u) + f(au — 7 u) — 2/(cm) — 2/(711)) 

+ (/(/ft; + + - 5«) - 2f((3v) - 2f(Sv)) 

+ 2(f(au) + f(j3v) - f(au + f3v)) + 2(/(7u) + f(Sv) - fi^u + fo)) 

6 V + V + 14V + 14V + 2V + 2V = 34V, 

which ends the proof. 

LEMMA 8. Let (X, ||| • |||) be a real normed space, d i m X = N, let 
Br := {x G X : |||:z;||| < r } for some positive constant r and let ip : Brx Br^>Y 
be a symmetric function such that 

<p(x 1 + X2,y) - <p(xi,y) - (p(x2,y) 6 V whenever xi,x2,x 1 + x2,y € Br. 

Then there exist a symmetric and biadditive mapping ip : Br x Br —> Y and 
a constant = kz(N, ||| • |||) such that 

ip(x,y) — (p(x,y) G ^ s e q c l V for all x,y G Br. 

P r o o f . Like in the proof of Lemma 6, assume first additionally, that || • ¡j is a. 
norm in X coming from an inner product. Fix a y G Br : = { 1 £ I : ||x|| < r } 
and define a mapping ipy : Br —> Y as follows 

ipy(x) := f(x,y) for all x G Br. 
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From the assumption we get 

(py(:ei + x2) - <py(xi) - <py(x2) G V 

for all vectors xi,x2 G Br such that x\ + X2 € Br. Writing, as previously, 
an arbitrary x G X in the form x = YliLi(niui + miui)> define : X —> Y 
by the formula 

N 

i=1 

where /¿j = rriiUi, i G { l , . . . , i V } . Similar arguments as in the proof of 
Lemma 5 (cf. also the first part of the proof of Lemma 6) show that there 
exists an additive function Gy : X —> Y such that 

r ( l\ J ( 5 W - l ) s e q c l V for N < 3, 
W ) e | (4iV + 2 ) s e q c i y for N > 3 

for all x G Br. 

Let a mapping G : X x Br —> Y be defined by the formula 

G(x, y) := Gy(x) for all x G X, y E Br. 

Then for all x, y G Br we have 

,IA\ NT \ ( ^ / ( 5 i V - l ) s e q c l V for N < 3, (14) G(x, y) - <p(x, y) G j ^ + 2 j ^ d y for N > 3 

In view of the additivity of Gy, the function G is additive with respect to 
the first variable. 

Now, we shall show that for every x,y,z G Br such that y + z G Br we 
have 

G(x, y + z) - G{x, y) - G(x, z) G 2N s e q c l V. 

Fix an x G Br. Using previous notations, for every k G N, we represent the 
vector 2kx in the form 

N 

2kx = ^2(ni>kUi +/ii,fc). 
¿=1 

Then 

whence 

2lni»fcl _ H -̂fcl < \\ni,kUi + m,k\\ < \\2kx\\ < 2k, 

gKfcl - IKfcll < 

l\nitk\<2k + \\iiitk\\<2k + ^, 
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implying that 

Kfcl < 2 fc+1 + i , ie {l, . . . ,AT}, keK 

Using the above estimation and the fact that Gy(x) = limfc^oo jz$y(2kx) 
(cf. J. Ratz [5]), we may write 

G{x, y + z ) - G(x, y) - G(x, z) = Gy+Z(x) - Gy{x) - Gz{x) 
= - *y(2kx) - *z(2kx)) 

N N 
= \k ( ^(ni,k<fy+z(ui) + <py+z(mik)) - J2(nitk<py{Ui) + <py(m,k)) 

~>°° ¿=1 ¿=i 
N 

- nitkipz(ui) + (pz(jii,k)j) 
i=1 

1 N 

= g* ^2(rli,k{tPy + z(Ui) - ipy(Ui) - <p2{Ui)) 
_ > O C 1 = 1 

+ (Vy+ziVi.k) ~ Vy{Vi,k) ~ Vz(Vi,k))) 

G f l ( j k ( 2 k + 1 + 1 ) N V + ^ k
N V ) =2iVseqclF . 

Prom Lemma 6 (more precisely, from the part of the proof concerning the 
inner product space) we state that there exists a function 'J/ : Br x X —> Y 
additive with respect to the second variable and such that for all x,y € Br 

one has 

(15) mx v) - G(x v) € 12N{5N ~1} s e q c l F f o r N < 3 ' V[x,y) U{x,y) 6 j 2iV(4iV + 2) seqcl F for N > 3. 

Prom the form of (defined as the limit of a suitable Cauchy sequence, cf. 
J. Ratz [5]) it follows that it is additive with respect to the first variable as 
well. Moreover, from (14) and (15), we get that if x,y € Br then 

(16) ^Ca; y\ — m(x y) (£ i (2-W + 1)(5AT — 1)seqcl V for N < 3, 
nX,y)^\{2N + l){AN + 2)seqc\V for N > 3. 

Define a mapping ip : Br x Br —• Y by the formula 

for all x,y E Br. 

Obviously rp is symmetric. Moreover, using the symmetry of ip and (16), and 
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equalities 

i / \ / \ *{x,y) + * ( y , x ) , . 
ip{x,y) - <p(x,y) = <p(x,V) 

_ V(x,y) - <p(x,y) V(y,x) - <p(y, x) 

2 2 
for all £ B r , we have 

(17) Mx V) - v(x v) G ( { 2 N + 1 ) ( 5 i V - 1 } s e q c l V f o r N < 3 ' u g n x , y ) n x , y ) £ \ ( 2 N + l)(4N + 2)seqclV f o r N > 3 . 

In the finite dimensional space X the norms || • || and ||| • ||| are equivalent. 
Now we proceed in the same way as in the proof of Lemma 6. This completes 
the proof. 

LEMMA 9. Let ( X , ||| • |||) be a real normed, space, d i m X = N, let Br := 
{ i £ l : | | | x | < r } for some positive constant r and let f : Br —» Y satisfy 
the condition 

x, y, x + y, x - y G Br implies f ( x + y) + f ( x - y) - 2 f ( x ) - 2 f ( y ) € V. 

Then there exist a quadratic function q : X —• Y and a constant k4 = 
k4(N, I • I f ) such that 

(18) q(x) — f(x) 6 A)4seqclV for all x G Br. 

P r o o f . Functions f0,fe:B—>Y, given by the formulas 

/ . W - M z i f c f ) , / . w - M M z i ) , x e 4 i 

are the odd and even parts of / , respectively. For all x,y G Br we have 

fo(x + y) + fo{x - y) - 2 f Q ( x ) - 2/0(y) G V 

and 
fe(x + y) + fe(x - y ) - 2 f e { x ) - 2 f e ( y ) G V. 

Since f0 is odd we also have 

fo(x - y ) + f0(x + y)~ 2 f 0 { x ) + 2 / 0 ( y ) G V. 

Hence 
4/o (y) G 2V for all y € Br, 

and so 

(19 ) f o { y ) t \ v f o r a l l y e Br. 

It is easy to check that 

(20) fe(0) G 
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and 

(21) fe(2x) - 4 f e ( x ) G ^V for all s € X-Br. 

Let BRJI := \BR. Define IP : BR/2 x BR/2 —> Y by the formula 

<p(x,y) := i [ f e ( x + y) - fe(x-y)] for all x,y G Br/2. 

Obviously, ip is also symmetric. Moreover, for all x\,x2, y G BT/2 such that 

x\ + x2 G Br/2, we have 

4(<p{xi + x2, y) - <p(xuy) - <p{x2, j/)) 

= /e(a;i + + y) - fe{xx + x2-y) - fe(xi + y) + fe(x! - y) 

~ fe(x2 +y) + fe(x2 - y) 

= (/e(®l + 2:2 + y) + /e(®l -X2 - y) - 2fe{x\) - 2fe(x2 + y) ) 

+ (/e(®2 + y) + fe(x2 - y) - 2/e(a2) - 2/e(y)) 

+ (~fe{x 1 +X2-y)~ fe{x 1 - Z2 - y) + 2/e(zi - y) + 2fe(x2)) 

+ {-fe{x 1 - y) - /e(®i + y) + 2/e(®i) + 2/e(y)) G 4V, 

whence 

^ ( x i +x 2 , y ) - ¥ ' ( x i , y ) - ¥ ' ( a : 2 , y ) G V whenever x i , z 2 , z i + x2 ,y G #r/2. 

From Lemma 8 we obtain the existence of a symmetric and biadditive func-
tion ip : Br/2 x Br/2 —> V such that 

(22) ip(x,y) - ip(x,y) E k3seqc\V for all x, y G Br/2. 

Using (19), (20) and (21) we may write 

l{<p{x,x) - f{x)) = (/e(2x) - /e(0)) - 4 ( f 0 ( x ) + fe(x)) 

= ( / e ( 2 x ) - 4 / e ( x ) ) - / e ( 0 ) - 4 / o ( x ) 

for all x G Sr/2, so that 

(23) ip(x, x) - f{x) G V for all x G Br/2. 

Let h{x) := ip(x, x) for x G BR/2. Obviously h is quadratic on the ball 

BT/2. There exists (cf. Lemma 1) a quadratic mapping q : X Y such that 

q\s = h• •Dr/2 
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. Fix x G Br. If x G Brj2 then, on account of (22) and (23), we have 

q(x) - f ( x ) = tp(x, x) - f(x) = (tp(x, x) - ip(x, x)) + (<p(x, x) - f(x)) 

G k3 seqcl V + V C (k3 + 1) seqcl V. 

If x G Br \ Br/2 then ^x G Br/2 and from the previous case we obtain 

q(x) - f(x) = - f { k X ) ) + ( 4 / ( ^ ) ~ f { x ) ) 

G 4(A;3 + 1) seqcl V + | V C + y ^ seqcl V, 

which gives the assertion of the lemma with k4 = ( 4 + ^y). 

REMARK 1. If in Lemma 9 we assume additionally that / is even and X is 
an inner product space, then 

k = i 4 ( 2 N + ! ) ( 5 A r " !) + 5 for AT < 3, 
^ ' 4 \4(2AT + l)(4iV + 2) + | for N > 3 . 
LEMMA 10. Let f : Br —> Y be an even mapping satisfying ( 2 ) . Then there 
exist an additive function b : RQ" —> Y and a constant k§ — ks(N) such that 

^(ll^ll2) - f ( x ) € seqcl V for all x G Br. 
P r o o f . A consequence of Lemma 7, Lemma 9, Remark 1 and Lemma 3. 
The existence of the constant k5 results from (9), (18) and (24). 

3. Main result 
The main result of the paper reads as follows. 

THEOREM 1. Let (X, (-|-)) be a real inner product space, d imX = iV (N>2), 
Y be a real sequentially complete linear topological space and V let be a 
nonempty bounded convex and symmetric with respect to zero subset of Y. 
Let, further, Br (r > Q) denote an open ball in X centered at the origin and 
with radius r. If a function f : Br —> Y fulfils the condition (2) 

(x, y, x + y G Br, x _L y) implies f(x + y) - f ( x ) - f ( y ) G V, 

then there exist additive functions a : X —> Y, b : —> Y and a constant 
k = k(N) such that 

a(x) + 6(||a;||2) - f ( x ) G k seqcl V for all x G Br. 

P r o o f . Let functions f a , f e : B r ^ Y denote the odd and even part of func-
tion / , respectively. Then, if f fulfils the condition (2), so do the functions 
fo and / e . From Lemma 5 we infer that there exist an additive function 
a : X —> Y and a constant k\ such that 

a(x) — f0(x) G ki seqcl V for all x G Br, 
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and from Lemma 10 we get the existence of an additive function b : ffi^ —> Y 
and a constant such that 

^CMI2) — fe{%) € A^seqclF for all x E Br. 

Consequently, 

a{x) + 6(||x||2) - f ( x ) E (h + k5) s eqc iy for all x E Br, 

which gives the assertion of the lemma with k = k\ + k^. 
R E M A R K 2. It is easy to show that, in general, g in the assertion of Theorem 1 
is not uniquely determined. 

4. Applications 
Besides the Cauchy functional equation we can also study the stabil-

ity problem for other functional equations. Now we will give three results, 
concerning the stability of the Jensen, Pexider and exponential functional 
equations on balls, as an application of the theorem just established (cf. 
Z. Kominek [3], K. Nikodem [4], R. Ger [1]). 

T H E O R E M 2. Under the assumptions of Theorem 1, if a function f : Br —> Y 
fulfils the condition 

(25) (x,y E Br, x A. y) implies - / ( x ) + / ( y ) E V, 

then there exist a function g : Br —* Y fulfilling for orthogonal vectors the 
Jensen functional equation on the ball Br: 

(x,yEBr,x±y) implies g = 9 ^ g 9 ^ » 

and a constant k = k(N) such that 

g(x) — f ( x ) E 4fcseqclF for all x E Br. 

P r o o f . Define fi:Br—>Yby the formula 

/ i : = / " / ( 0 ) . 
Prom (25) we have 

<na\ t r- D | \ r f x + y\ fi(x) + h(y) (26) (x,y E Br, _L y) =• / i I —— ) ^ e V, 

and / i(0) = 0. Moreover, since for an arbitrary x E X, we have 1 1 0 and 
0 JL x, so 

(27) f l ^ j - i M e V t XEBr. 
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Take x, y G Br such that x + y £ Br and x A. y. From (27) 

fi(x + y) e 

2 

which together with (26) and symmetry of V gives 

/i (x + y) — /i (x) - fi (y) G 4V. 

Now, using Theorem 1, we obtain the existence of additive functions a : 
X -+Y, b : 1RQ~ —» Y and a constant k — k(N) such that 

Let g(x) := a(x) + 6(||x||2) + /(0), x £ X. Such g satisfies both conditions 
from the assertion of the theorem. 

T H E O R E M 3 . Under the assumptions of Theorem 1 , if functions f,g,h : 
Br —> Y fulfil the condition 

(28) (x,y,x + y € Br, x _L y) implies f (x + y) - g{x) - h(y) € V, 

then there exist functions fi, gi, hi : Br —.• Y fulfilling for orthogonal vectors 
the Pexider functional equation on the ball Br: 

(x,y,x + y G Br, x ± y) implies fi(x + y) = gi(x) + hi(y), 

and a constant k = k(N) such that for all x € Br one has 

a(x) + 6(||a;||2) - fi(x) E 4JtseqclF, x G Br. 

fi{x) — f{x) G 3/cseqcl V, 
gi(x) — g (x) G 4fcseqclF, 
hi(x) — h(x) G 4fcseqclF. 

Proof . Since i l O and 0 i . x for all x G X, from (28) we have 

f{x)-g(x)-h(0) eV, xeBr, 

and 
f(x) — g(0) — h(x) G V, x€Br. 

Define functions /o, go, ho : Br —^• Y by the formulas 

fo := f ~ g(0) - h(0), 
9o -=9-9(0), 
h0:=h- h(0). 

It is easy to see that 

/o(z) - 9o(x) G V, x € Br, 
and 

fo(x) - h0(x) £ V, xGBr. 
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We show that the following condition is satisfied 

(x,y,x + y e Br, x ± y) ==> f0(x + y) - f0(x) - f0(y) € 3F. 

Indeed, take x,y € Br such that x + y € Br and x _L y. We have 

fo(x + y)~ f0(x) - f0(y) = f(x + y ) - f ( x ) - f ( y ) + g{ 0 ) + h{ 0 ) 

= (/(* + y)~ g(x) - h(y)) - ( f ( x ) - g ( x ) - h(0)) 
- ( / ( y ) - s ( o ) - % ) ) e 3 V . 

Applying Theorem 1 we get that there exist additive functions a : X —• Y, 
b : MQ" —• Y and a constant k = k(N) such that 

a(x) + b(\\x II ) ~fo(x) € 3fcseqclV, x £ Br. 

Define mappings fi,gi,hi : X —» Y as follows 

Such functions satisfy all conditions in the assertion of Theorem 3. 

THEOREM 4. Let (X, (-|-)) be a real inner product space, d imX — N (N > 2) 
and let Br (r > 0) denote an open ball in X centered at the origin and with 
radius r. Given an e 6 (0 ,1) and a mapping f : Br —> C \ {0} such that 

there exist an orthogonally exponential mapping g : Br —> R \ {0}: 

(x, y, x + y G Br, x ± y) implies g(x + y) = g(x)g{y) 

and a constant k — k(N) such that 

P r o o f . Define (p : Br —> MQ" as tp := \f\. Then for all x,y G Br such that 
x + y € Br and x ± y, from (29), we have 

/ i :=a(x) + b(\\x\\2) + g(0) + h(0), 

:= a(x) + 6(||x||2) + g(0), 

hi := a(x) + b(\\x\\2) + h(0). 

— 1 < ô and 

for all x € Br, where 5 — (jz^)*1 + 1. 

1 - e < 
< <p(x + y) < 

- tp(x)<p(y) ~ 
< 1 + e. 
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Hence we get 

{x,y,x + y G Br, x ± y) I ln</?(x + y) — ln</?(x) — ln<£>(y)| < In 
1 - e 

Applying now Theorem 1 for Y := R, V := {x € R : |z| < In jr^} and 
function In otp we obtain the existence of additive functions a : X —> R, 
b : MQ —> R and a constant A; = k(N) such that 

| \mp{x) — a(x) — 6(||a;||2)| < fc In • 1 

Define g : X 

Then 

whence 

by 

1 — e' 

g(x) := exp(a(a;) + 6(||x||2)), x G X. 

<p(x) 

x E .Br-

in < kin 

g{x) 

As a consequence we have 

' W - 1 < 
9[x) 9(x) 

1 - e ' 

1 - £ 

+ 1 < 

X € Br, 

1 

x £ Br. 

+ 1, 

for all x € Br. Similarly we get the second inequality. This ends the proof 
of the theorem. 
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