/

\

re-

You have downloaded a document from
RE-BUS
repository of the University of Silesia in Katowice

Title: Some remarks on Cauchy equation on a curve

Author: Maciej Sablik

Citation style: Sablik Maciej. (1990). Some remarks on Cauchy equation on a
curve. "Demonstratio Mathematica" (\Vol. 23, nr 2 (1990) s. 477-490), doi
10.1515/dema-1990-0220

Uznanie autorstwa - UzZyeie niekomereyjne - Bez ubworow zaleznyeh Polska - Licencia
@ @ @ @ tﬁ- zezwala 14 10ZpOWszZe clinianie, prze dst a'x-'iaﬂie_ 1 ‘-’:-"_',rkEIﬂ:,FWF!:lﬁE.' 'Llf.'-’:ﬂ:li'l.l 18 Flj,rn:i& w celach
L ﬁ mekomercyjiyel oraz pod warunkiem zachowania go w oryginalneg] postact

(e tworzetua ubworow zalezinyely).

m Biblioteka N Ministerstwo Nauki

== Uniwersytetu $laskiego i Szkolnictwa Wyzszego



https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1515%2Fdema-1989-0220

DEMONSTRATIO MATHEMATICA

Vol. 0011 No2 1990

Maciej Sablik

SOME REMARKS ON CAUCHY EQUATION ON A CURVE

1. I recent years a still increasing number of papers have been
dealing with so called conditional Cauchy equations. The problem can
be briefly stated as follows. Let X and E be some nonempty sets and
let o :XxX~—=X and # :EXE —=E be some binary operations. Further,
let ZC XxX be a nonempty set. Consider the following functional equa-

tion for f:X —= E (usually called Cauchy functional equation)
(1) f(xoy) = flx)sef(y).

The problem is to find all functions f satisfying (1) for all x,y e Z
or rather to compare the set of these functions with the set of functions
satisfying (1) for all (x,y)e XxX. As stated here, the question is
very general and no wonder that usually some additional assumptions
are made about X, E,°o , %, Z and even the class of functions in which
we are looking for solutions of (1). The reader is referred to J.Dhom-
bres [1] and R. Ger [3] and [4] for more details.

One of the most studied situations is the case where X = (0, +0d),
E = R, o and x are both usual addition. In the present paper we
shall restrict ourselves to this case. Moreover, Z will be a curve iﬁ

XxX., In other words we are going to deal with the equation

(2) fF(x(t) + y(t)) = £f(x(1)) + £(y(0))
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2 M. Sablik

for t € (0,+00), where x,y:(0,+00) —= (0,+) are some functions. Let
us mention here ]J. Dhombres [1], G.L. Forti [2], W. Jarczyk [71,
M. Laczkovich [10] and M.C. Zdun [12] among those who obtained
numerous results in this particular area.

Typical results read as follows. Under some assumptions on func-
tions x and y every solution f of (2) which belongs to a pre-
scribed class {(for instance f is continuous, measurable or

lim f(t)/t exists) has to be additive (or sometimes equal to an addi-
t=0
tive function almost everywhere in the sense of Lebesgue measure),

i.e. f fulfils
(3) fls +t) = f(s) + (1)

for all s,t € (0,+00).

In what follows we shall consider functions x,y:(0,+o0) — (0,+00)
which are continuous and such that x+y maps (0,+e) homeomorphically
onto itself. If we adopt these assumptions then (2) may be equivalently

written as

(4) f(t) = £(r;(1)) + £(r (1))

for all t € (0,+00), where r =xo (x+y)-1 and T, = yo(x+y)-1 and
hence r, are continuous, 0< ri(t)<t for t>0 and r¥r, = id. Under
these assumptions one can prove (cf. for instance Dhombres [1],
Forti [2], Zdun [12] and M. Sablik [11]) that every solution f of

(4) such that lim f(t)/t exists is linear, i.e. there is a constant
t-0
ce R such that f(t) = ct, t >0, We can say that (3) and (4) are

equivalent in the class

D= {f:(0,+oo)—-R: lim f(t)/t exists and is finite} .
t+=0

(it is a well known fact that any solution of (3) belonging to D has

to be linear). Obviously this equivalence holds also in the class

- 478 -



3

Cauchy equation on a curve

A = D + Ad, where Ad denotes the class of all solutions of (3). One
cannot expect equivalence of (3) and (4) in the class of all functions
because if we take r, = (1/2)id then there exist nonadditive solutions

of (4) (even very regular ones, cf. M. Kuczma [8]).
For every f:(0,+0) —= R we call the Cauchy difference of f

the function Cf:(O,'+oo)x(O,+°°) —= R defined by

Cf(s,t) = fs+t) - f(s) - £(t).

Consider the following class of functions

B - {100,409 =R Cfls,1) = olsst) (s,0) — (0,00} V).
Let fc A and write f = g + a, where geD and ae Ad. Denote L =
= lim g{t)/t. Then we have for s,t>0 .

t—0
Cf(s,t)/(s+t) = [(gls+t)/(s+t))-L] - (s/(s+t)) [(gls)/s)-L] -

- e/ s+t [(gle)/)-1],

whence it easily follows that lim Cf
{s,t)=(0,0)
proved therefore that AC B. The reverse inclusion does not hold as

(s,t)/(s+t) = 0, We have

is shown by the following example which we owe to Z. Gajda.
Let h:(0,+o) —~ R be given by h(t) =t - [t] and

Example.

put
£(t) = 3 h(2")/n2"

n=1
for every t>0. It can be checked that f is continuous, lim f(t)/t =
t—=0

= +ooand fe B. f we had f = g + a with ge D and an additive a then,

)

Here and in the sequel we use the Landau notation in what con-
Cerns functions with limits equal to zero.
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4 M. Sablik

in view of continuity of f, a would be linear and hence differentiable
at 0. Thus f would be in D, a contradiction.

It is still an open question whether (3) and (4) are equivalent in
the class B for any suitable pair of r{s. Below we prove a result
showing that such an equivalence actually holds if we consider some
special curves.

Theorem 1. Let C be the class of functions defined by
C= {f:(0,+°°)—~R : Cf(tcosq,tsinc()-o(t) , t—=0, for all x e (0,”/2)} .
Further, assume that

+r, = id.

(H) ri:(0,+oo) ~——(0,+%), i = 1,2, are continuous and r 2

1
Then every function fe C satisfying (4) and
(5) £(2t) = £(2r (1)) + £(2r (1))

for t>0, is additive.
Proof. Define F:(0,+ ) —= R by F(t) = Cf(t,t). By (4) and

(5) we have for every t>0
F(t) = f(2t) - 2f(t) = f(2r (1)) - 26(r (1)) + £(2r (1)) - 26(r (1)) =
= F(rl(t)) + F(rz(t)).

Moreover, we have for every s e (0,+o)

F(s)/s = Cf(s,s)/s - ﬁCf'(ﬁs/ﬁ;ﬁs/ﬁ)/ﬁs -

= Vfo(st coslr/4), V2s sin{m/4)),
whence
(6) F(s) = o(s), s —0+,

because f¢ C. Thus F fulfils (4) and (6) which means that F = O
(cf. e.g. Dhombres [1]). Fix now s,t>0. We get
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Cauchy equation on a curve 5

0 = Fls+t) = f(2s+2t) - 2f(s+t) = Cf(2s,2t) +‘Cf(s,s) + Cf(t,t) -
- 2Cf(s,t) - Cf(28,2t) - 2Cf(s,t)

whence
Cf(25 ,2t) = 2Cf(s ,t)

for every s,t>0. An easy induction yields

(7) Cpls,t) = 2an(s/2n,t/2n)

for every s,t 0 and neN . Fix s,t>0 and choose u>0 and « €(0,7/2)
so that s = u cosa and t = u sinx. From (7) and our assumptions we
infer

Cf(s\,t) = lim u[:Cf((u/Zn)coscx , (w/2sino )/ (u/2M)] = 0

N-=oo
which proves additivity of f.

Corollary 1. Let T i = 1,2, satisfy (H) and assume moreover
that r1(2t) = 2r1(t) for t>0. Then every solution of (4) which belongs
to B is additive.

Proof. We get immediately r2(2t) - 2r2(t) for t>0, This means
that every solution of (4) satisfies (5) as well. Since obviously BCC
we get our assertion from Theorem 1.

Observe that assumptions of Corollary 1 are satisfied in particular

when rl(t) = ct for a ce(0,1).

2. M. Laczkovich in [9] introduced the notion of double difference
property which in present circumstances can be formulated as follows.
Let Ml and sz be classes of real functions defined in (0,+0) and
(0,+00)x(0,+0), respectively. We say that (Ml’MZ) has the double
difference property (which we abbreviate to d.d.p. in the sequel) if
for every function f:(0.+x) —= R we have

Cfe M, implies f = a + g where a is additive and ge M,-
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6 M. Sablik

Laczkovich proved that (Ll,]’:z) where Ll denotes Lebesgue measurable

functions of i wvariables, i = 1,2, has the d.d.p. On the other hand,
if M;, i =1,2, is the class of bounded functions then (MI’MZ) has
the d.d.p. This last sentence is known under the name of Hyers theo-
rem on the stability of Cauchy functional equation (cf. [5]).

Let us introduce the following classes of functions for every p>1:

D> ={ 00,40 —R: £1) = olP), t—=0},

and

Qs = {G:(0,+°°)X(O,+w)—— R: G(s,t) = o((s+1)P) ,(s,t)——(0,0)}.

Gajda’s example quoted in §1 shows that (D ,D ) has not the d.d.p.
We will show below that (D D ) has the d.d.p. for every p > 1,

We start with a result Wthh could be called d.d.p. on a curve.

Lemma 1. Let T, i= 1,2, satisfy (H). Further, let
£f:(0,+00) —= R be a function and define functions F : (0,+0) =R,

ne N, by

Fl(t) = Cf(rl(t),rz(t)) and le(t) = Fn(rl(t)) + Fn(rz(t)).

Assume that for some p>1 and to> 0

oo

1 P . . :

F,e lgp and E Fn(t)/t is uniformly convergent in (O,to].
n=1

Then f = a + g where a fulfils (4) and ge Pll)

Proof. An easy induction shows that for every neN and t>0

n
(8) CENDN oy o cor, 0) s ) r .
i,...ie{1,2} k=1

Let h(t) = Z, F (t)/tp for t €(0,t ] where p>1 and t >0 are as
n=1
in our assumptions. Put go(t) = tPh(t) for te (O,to]. From (8) we

infer - 482 -



Cauchy equation on a curve 7

ao(t) = lim E f(rilo oo, (t)) = £(t) - go(t)
i, ie{1,2) n

exists for every te (0,t°] . Moreover, since

E f(ri° PRER A (1)) =

1 n
i

i)yl e{1,2}

2
-ZZ f(rio "'°ri°ri(t))
1

il ig,...,1ef1,2} "

for neN and t>0 we obtain

(9) ao(t) - ao(rl(t)) + ao(rz(t))

for t € (O,to].
Now, let neN be such that r,o ...or e (0,t°] for all

il,...,ine {1,2} and put 1 n

(10) alt) = ao(rio ceeoT (1)),
il,...,ine{l,z} 1 n

We show first that the definition (10) is not depending on n.

Indeed, let n and m be such that T,e ...oT (t)e (O’toJ for
q
every il,. .. ,iqe {1,2} and qe {n,m}. Suppose that n<m. Since
O<ri<id and r, are continuous, i = 1,2, we have T,e .01, (t)e
1 n+k
€ (O,to] for .every ke N and i i € {1,2}. In particular we get

1’°°" ""n+k
by (9)
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8 M. Sablik

Z ao(ri; orim(t)) =

i1 €{1,2]

.Z ao(rio SRLR A (t)) =
2 m

.1 e{1,2)

- Z ao(ri1° ces orim-l(t)).

oot je{1,2}

An easy induction leads to

Z ao(ri; vl 0 rim(t)) -

i e{1,2)

=

(=%

et

- ao(rio'...ori (¢))
T ief1,2) 1 n
which proves that the definition is correct. A very similar argument
shows that the function a defined by (10) for t >t  and equal to a_
in (0,t_] fulfils (4).
Define g:(0,+c0) — R by g(t) = f(t) - a(t). 1t remains to prove
that g(t) = o(tP), t — 0. We have gI(O,tOJ = 8,- Moreover,

(11) F_(t) = o(tP), t —e0,

for every ne N. Indeed, we assumed it for n = 1 and if (11) holds

for an ne N then from the equality

2
Frg /2 = ) (/PR (e ()P,

i=1
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Cauchy equation on a curve 9

which is derived from the definition of Fn+1’ we easily get the validity
of (11) for n+l as well. Combining (11) with the uniform convergence
of Z Fn(t)/tp we see that ge Q; which ends the proof.

n=1
Taking into account Corollary 1 we get from the above Lemma

Corollary 2. Under the assumptions of Lemma 1, if moreover
Ce Qf and r1(2t)1 = 2r,(t) for every t>0 then f = a + g where a is
additive and ge Pl’

Proof. By Lemma 1 the function a fulfils (4). Moreover,
geQiCQCQCQ. We also have f€ B and hence obviously a=f - geB.
Thus a is additive by Corollary 1.

Let us prove now that (Q;,Qﬁ) has the d.d.p. for p>1.

Theorem 2. Let f:(0,+%) —=Rbe a function such that Cpe Q§

for some p>1. Then f = a + g where a is additive and gte.
Proof. Define ri:(0,+oo)—>R by ri(t) a t/2 for i = 1,2. Using

the notation of Lemma 1 we get by an easy induction
n n
(12) Fl(t) = Cf(t/z,t/Z) and Fm_l(t) - 2 Fl(t/2 ) for n»1.

Obviously we have Fl(t) = o(tP), t —=0+, because Cfe D§ 1t follows
from (12) that

(13) F_ 0/ = (M PR (2 /(/29P], as1,
Thus Fn+1(t) = o(tP), t—=0, for every n>1. Choose t >0 so that

lFl(t)/tplsM

for a constant M>0 and all te (O,to] . Then in view of (13) we have

P l-p\n
IFn+1(t)/t |sM(277F)

L]
for every te (0,t°] and n>»1. This proves that the seriesZ Fn(t)/tp
nel
is uniformly convergent in (0,_t°]. By Lemma 1 we get the decomposi-
tion f = a + g, where g(t) = o(tP), t —=0, and
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10 M. Sablik

alt) = 2a(t/2)

for every t>0. Now, if 'Cf

feB. Now the assertion follows from Corollary 2.

€ Qs for a p>1 then C € _]Qf and hence

3. Theory of stability of functional equations was born in 1940s
with papers of D.H. Hyers and S. Ulam (cf. [5] and [ 6] for instance).
It has much developed since and even a short presentation of its achie-
vements would go far beyond the frame of the present paper. As we
have mentioned in the previous section, the stability of Cauchy equa-
tion in the sense of Hyers can be looked at as d.d.p. problem. On
the other hand those who prefer stability language would rather say
that d.d.p problems belong in fact to stability theory - one just repla-
ces boundedness of Cauchy difference by some other regularity proper-
ty. From this point of view the results of the previous section are
also of "stability type" and Lemma 1 cound be called a result on sta-
bility on a curve. _

In Theorem 2, to prove additivity of a we have used its additi-
vity on the diagonal and the fact that a has some regularity at O.

We could not expect that a similar method would work if we assumed

only the boundedness of a. In fact the equation
a(t) = 2a(t/2)

has many solutions which are bounded and continuous in (0,+o0), still
not additive. Thus one cannot hope that the assertion of Hyers theorem
will hold if we assume that Cf is bounded on curve only. To get such an
assertion one has to impose some other conditions on f. Below we
present a possible approach to this problem.

Let us prove first

Theorem 3. Let f:(0,+0) —s[0,+2) be Lebesgue measurable

and such that
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Cauchy equation on a curve 11

(14) [£(t) - 2f(¢t/2)]se, t>0
and
(15) function t—=£(t) - flct) - f(dt) is bounded in (0,o0)

where &£ 20 is a constant, ce (0,1), d = 1 -¢ and Inc/Ind¢ Q. Then
f=a+ g where a is equal to an additive function almost everywhere,
g 1is measurable and |gj<¢.

Proof. Observe that (14) is equivalent to |f(2t) - 2f(t)|<¢
which we write as
(16) le(t,t)I <é¢

for every t>0. An easy induction shows that

(17) £f{t) = (1/2)f(2t) - (1/2)Cf(t,t) = ...

n
= (1/2M8(2%) - Z (1/2k)Cf(2kt,2kt).
k=1

(-]
From (16) we infer that the series Z (1/2n)Cf(2nt,2nt) is conver-

n=1
gent. Define g:(0,+e) —=R by
o0
glt) = - Z (1/2“)cf(2“t,2“t)
n=1

Then g is measurable because so is t r—»Cf(t,t), and (cf. (16))

|g(t)]<é for every t>0. From (15) we infer that

alt) = lim (1/2M)£(2%)

n—=oo
exists for every t>0. Tt is easy to observe that a is nonnegative,
measurable and af{2t) = 2a(t). Furthermore we have by (15) for every

neN and t>0 and some K>0
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12 M. Sablik

(1/2M[£(2%) - £(2%1t) - f(2%ae] e (1/2Y[-K, «]
whence, letting n — oo we obtain
alt) = alct) + alatr).

Taking into account Laczkovich’s result from [10] we see that a is
a.e. equal to an additive function, which ends the proof.

The last result of the paper reads as follows.

Theorem 4. Let f:(0,+0)—= R be a function fulfilling (14)

with an € >0 and suppose that an n e N exists such that function

(18) t—e £(2) - fe/2N) - e 2N
or
(19) t—=f(t) - f(t/(2N+1)) - f(2Nt/(2N+1))

is bounded in (0,+od). f f 1is measurable then the assertion of Theo-
rem 3 is valid.
Proof. Similarly as in the proof of Theorem 3 we get f=a +g

where a and g are measurable, |g|<&, alt) = 2a(t/2) for t>0

and

(20) alt) = ale/2Y) + al(2N-1)/2Y)

or

(21) alt) = alt/(2N41)) + oMt/ (2Ne1))

depending on whether (18) or (19) is assumed. We easily check that
(22) al2¥) = 2Xalt) for all keZ and t>0

and hence also

(23) al(2N-1)™) = (2N-1)Ma(t) for all meZ and t>0,

if (20) holds, or
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(24) a((2N+1)mt) - (2N+1)ma(t) for allmeZ and t>0,
if (21) is valid. Tn both cases we obtain
(25) alrt) = ra(t)

k, N m .
for every t>0 and re G where G = {2 (27-1) "t n,meZ| in the
case (22), (23), and G = {2k(2N+1)m: n,meZ} in the case (22),
(24). Since neither 1n2/1n(2N-1) nor 1112/1n(2N+1_) is a rational num-

ber, the set G is dense in (0,+o). This implies that InG is dense

in R whence we infer that the function b: R—+=R given by
blv) = alexpv)/expv

is microperiodic. Since b is measurable, it has to be constant

almost everywhere. Thus there is a ce R such that
alexpv) = cexpv

for almost all ve R . Absolute continuity of exp implies that a(t) = ct

a.e. in (0,+0) which ends the proof.
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