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DEMONSTRATIO MATHEMATICA 

VaLXXm HM 

Maciej Sablik 

SOME REMARKS ON CAUCHY EQUATION ON A CURVE 

In recent years a still increasing number of papers have been 

dealing with so called conditional Cauchy equations. The problem can 

be briefly stated as follows. Let X and E be some nonempty sets and 

let o : X x X - — X a n d * :ExE —»-E be some binary operations. Further, 

let Z c X * X be a nonempty set. Consider the following functional equa-

tion for f : X — E (usually called Cauchy functional equation) 

The problem i s to find all functions f satisfying (1) for all x , y e Z 

or rather to compare the set of these functions with the set of functions 

satisfying (1) for all (x ,y) € XxX. As stated here, the question is 

very general and no wonder that usually some additional assumptions 

are made about X, E , o , * , Z and even the c las s of functions in which 

we are looking for solutions of ( l ) . The reader is referred to J.Dhom-

bres [ l ] and R. Ger [ 3 ] and [4-] for more details. 

One of the most studied situations is the case where X » CO, +oo), 

E » R, o and * are both usual addition. In the present paper we 

shall restrict ourselves to this case . Moreover, Z will be a curve in 

X*X . In other words we are going to deal with the equation 

(1) f ( x o y ) - f ( x ) * f ( y ) . 

(2) fCxCt) + y ( t ) ) - f l x ( O ) + f C y ( O ) 
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2 M. Sablik 

for t e ( 0 , +oo ) , where x,y: (0,+oo)—— (0, + °°) are some functions. Let 

us mention here J. Dhombres [ l ] , G . L . Forti [_2~\, W. Jarczyk \j~\, 

M. Laczkovich [j.Q] and M.C . Zdun Q.2] among those who obtained 

numerous results in this particular area. 

Typical results read as follows. Under some assumptions on func-

tions x and y every solution f of (2 ) which belongs to a pre-

scribed class ( for instance f is continuous, measurable or 

lim f ( t )/t exists) has to be additive Cor sometimes equal to an addi-
t - 0 

tive function almost everywhere in the sense of Lebesgue measure), 

i . e . f fulfils 

(3 ) f ( s + t ) = f ( s ) + f ( t ) 

for all s,t € (0,+oo). 

In what follows we shall consider functions x , y : (0, + <») — (0 

which are continuous and such that x+y maps (0, + oo) homeomorphically 

onto itself. If we adopt these assumptions then (2) may be equivalently 

written as 

U ) f i t ) - f C r ^ t ) ) + f ( r 2 ( t ) ) 

- 1 - 1 
for all t 6 (0, +oo) t where r^ = x o (x+y) and r^ = yo (x+y) and 

hence r. are continuous, 0 < r . ( t ) < t for t > 0 and r . +r„ = id. Under I I 1 2 
these assumptions one can prove (c f . for instance Dhombres [ l ] , 

Forti [ 2 ] , Zdun [12] and M. Sablik [ l l ] ) that every solution f of 

(4-) such that lim f ( t )/t exists is linear, i . e . there is a constant 
t - 0 

C6 R such that f ( t ) = ct, t > 0 . We can say that (3 ) and (4-) are 

equivalent in the class 

D = | f : ( 0 , + o o ) — ^ R : lim f ( t )/ t exists and is f inite } . 
~ 1 t - 0 > 

( it is a well known fact that any solution of (3 ) belonging to g has 

to be l inear) . Obviously this equivalence holds also in the class 
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Cauchy equation on a curve 3 

A = D + Ad, where Ad denotes the c lass of all solutions of ( 3 ) . One 

cannot expect equivalence of ( 3 ) and (4 ) in the c lass of all functions 

because if we take r^ = (1/2) id then there exist nonadditive solutions 

of (4.) (even very regular ones, c f . M. Kuczma [ 8 ] ) . 

For every f ; ( 0 , + oo) — R we call the Cauchy difference of f 

the function C f : (0 ,+oo)x(0, + °°) — R defined by 

C f ( s , t ) = f (s+t ) - f ( s ) - f ( t ) . 

Consider the following c lass of functions 

B = { f : ( 0 , + o o ) - ~ R : C f ( s , t ) = o(s+t) , ( s , t ) — ( 0 , 0 ) } 

Let f e A and write f = g + a, where g e D and a e Ad. Denote L = 

= lim g( t )/t . Then we have for s , t > 0 
t—0 

C f ( s , t ) / ( s + t ) - C ( g ( s + t ) / ( s + t ) ) - L ] - ( s / ( s + t ) ) Q g ( s ) / s ) - L ] -

- (t/ ( s+t ) ) Q(g(t)/t) - L ] , 

whence it easi ly follows that lim C f ( s , t )/(s+t ) = 0 . We have 
( s , t ) ~ ( 0 , 0 ) 1 

proved therefore that A c B . The r e v e r s e inclusion does not hold as 

is shown by the following example which we owe to Z. Cajda. 

E x a m p l e . Let h : ( 0 , + w ) — - R be given by h( t ) •= t - [ t ] and 

put 
PO 

f ( t ) = ] T h(2 n t )/n2 n 

n=l 

for every t > 0 . It can be checked that f is continuous, lim f( t )/t = 
t—0 

= +oo and f t B . If we had f = g + a with g e D and an additive a then, 

^ Here and in the sequel we use the Landau notation in what con-
cerns functions with limits equal to zero. 
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in view of continuity of f , a would be linear and hence d i f f e r e n t i a t e 

at 0 . Thus f would be in D, a contradiction. 

It is stil l an open question whether ( 3 ) and (4-) a re equivalent in 

the c lass B for any suitable pair of r ! s . Below we prove a result 

showing that such an equivalence actually holds if we consider some 

special curves . 

T h e o r e m 1. Let C be the c lass of functions defined by 

C = j f : ( 0 , + o o ) — - R : C f ( tCosc<,ts ina)-o(t) , t — 0 , for all cx e t0 , J r /2) } . 

Fur ther , assume that 

(H) r^: (0 ,+oo) —»-(0 ,+«>) , i « 1 , 2 , are continuous and " 

Then every function f 6 C satisfying (4 ) and 

(5) f ( 2 t ) - f ( 2 r ^ ( t ) ) + f ( 2 r 2 ( t ) ) 

for t > 0 , is additive. 

P r o o f . Define F : ( 0 , + ) — R by F ( t ) - C f ( t , t ) . By U ) and 

( 5 ) we have for every t > 0 

F i t ) - f ( 2 t ) - 2 f ( 0 = f U r ^ O ) - 2 f ( r j ( t ) ) + f ( 2 r 2 ( t ) ) - 2 f l r 2 ( t ) ) -

= F C r ^ O ) + F ( r 2 U ) ) . 

Moreover, we have for every s 6 C0,+<*>) 

F ( s ) / s - C f ( s , s ) / s - V2 C f(V2s/V2-,V2s/V2)/V2s -

- V2CfCV2"s cos(-w/4), V2s s i n ( W A ) ) , 

whence 

(6) FCs) = o í s ) , s —'~0+, 

because f 6 C. Thus F fulfils (4) and (6 ) which means that F - 0 

( c f . e . g . Dhombres [ l l ) . Fix now s , t > 0 . We get 
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Cauchy equation on a curve 5 

0 - F t s + t ) - f (2s+2t) - 2 fU+t ) - C f ( 2 s , 2 t ) + C f ( s , s ) + C f ( t , t ) -

- 2 C f ( s , 0 - C f ( 2 s , 2 t ) - 2 C f ( s , t ) 

whence 

C f ( 2 s , 2 t ) - 2 C f ( s , t ) 

fo r eve ry s , t > 0 . An easy induction yields 

(7) C f ( s , t ) - 2 n C f ( s / 2 n , t / 2 n ) 

fo r every s , t 0 and n e N . Fix s , t > 0 and choose u > 0 and a e (0 , J r /2 ) 

so that s - u cos a and t « u sin a . From (7) and our assumptions we 

infer 

C f ( s , t ) - lim u [ C f ( ( u / 2 n ) c o s a , (u /2 n )s inoc ) / ( u / 2 n ) ] - 0 
1 n-«-oo 

which proves additivity of f . 

C o r o l l a r y 1. Let r^ , i - 1 , 2 , s a t i s fy (H) and assume moreover 

that r ^ ( 2 t ) = ( t ) fo r t > o . Then every solution of (4-) which belongs 

to B is addit ive. «w 

P r o o f . We get immediately i"2(2t) - 2 r 2 ( t ) fo r t > 0 . This means 

that eve ry solution of (4-) sa t i s f ies (5) a s we l l . S ince obviously B C C 

we get our a s se r t ion f rom Theorem 1. 

Observe that assumptions of Coro l la ry 1 a r e sa t is f ied in par t icu la r 

when r^Ct) = ct fo r a c i ( 0 , 1 ) , 

2. M. Laczkovich in E9] introduced the notion of double d i f ference 

p r o p e r t y which in p resen t c i rcumstances can be formulated a s fol lows. 

Let M j and M^ be c l a s s e s of r e a l functions defined in (0 , + eo) and 

(0,+oo)x(0,+oo), r e spec t ive ly . We say that ( M ^ , ! ^ ) has the double 

d i f fe rence p roper ty (which we abbreviate to d . d . p . in the sequel) if 

fo r eve ry function f : (0 . +oo) —»- R we have 

C , i m p l i e s f » a + g whe re a i s additive and g e M . . 
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6 M. Sablik 

2 . 2 i 
Laczkovich proved that IL ,L ) where L denotes Lebesgue measurable 

functions of i var iables , i = 1 . 2 , has the d . d . p . On the other hand, 

if M^, i = 1 , 2 , i s the c lass of bounded functions then (M^, Iv^) has 

the d . d . p . This last sentence is known under the name of Hyers theo-

rem on the stability of Cauchy functional equation I c f . [ .51). 

Let us introduce the following c lasses of functions for every p > l : 

d J = | f : (0 ,+oo) — R . f U ) = o l t p ) , t — 0 j , 

and 

D^ = |g:C0,+OO)*(0,+OO)— R : G l s , t ) - o ( ( s + t ) p ) , ( s , t ) — 1 0 , 0 ) } . 

1 2 
Ga jda ' s example quoted in § 1 shows that (D , D 1 ) has not the d . d . p . 

1 2 ~ I ~ i 
We will show below that ( D ^ D ^ ) has the d . d . p . for every p > 1. 

We start with a result which could be called d . d . p . on a curve. 

L e m m a 1. Let r^, i = 1 , 2 , satisfy IH) . Fur ther , let 

f : 10, + °°) — R be a function and define functions F^: (0 , +oo) —»- R , 

n 6 N , by 

F 1 I t ) = C . l r ^ O . r J t ) ) and F 1 Ct) = F C r . l t ) ) + F ( r 0 l t ) ) . 1 f 1 2 n+1 n 1 n 2 

Assume that for some p > 1 and t > 0 

oo 

F^e Dp and ^ F^Ct) /tP is uniformly convergent in (0 . 

n=l 

Then f = a + g where a fulfils 14-) and g t D^. 

P r o o f . An easy induction shows that for every ne N and t > 0 

n 

(8 ) f i t ) = V " f ( r , o . . . o r 4 I t ) ) + y F f c ( t ) . y " f i r . o . . . o r . I t ) ) + y 

i l f . . . f i n e { l , 2 } h l n k - 1 

Let h i t ) = /_. F l t )/t P for t e l 0 , t ] where pSs-1 and t > 0 are as —i n o o n=l 
in our assumptions. Put g I t ) = t P h l t ) for t s l 0 , t ] . From 18) we 
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C a u c h y e q u a t i o n o n a c u r v e 7 

a ( t ) - l i m ^ ' f ( r . o . . . o r . ( t ) ) « f ( t ) - g ( t ) 
o ( i i ° o 

n-»oo r i l n 
l r . . . , l n € { l , 2 } 

e x i s t s f o r e v e r y t € ( 0 , t ] . M o r e o v e r , s i n c e 
o 

f ( r . 0 . . . o r . C t ) ) = 

4 1 n + l € i 1 , 2 J 1 1 

2 
y y f ( r t O . . . o r t O r . ( t ) ) 

1 - 1 * 1 i n e { l . 2 } l l 

f o r n e N a n d t > 0 w e o b t a i n 

( 9 ) a I t ) - a ( r . ( t ) ) + a ( r . ( t ) ) 
o o 1 o 2 

f o r t € ( 0 , t ] . 
o 

N o w , l e t n e N b e s u c h that r . o . . . o r . ( t ) e ( 0 , t 3 f o r a l l 
l l 1 

i j , . . . , i e 1 1 , 2 1 a n d put 

( 1 0 ) a ( t ) - a ( r . o . . . o r . ( t ) ) . 
^ f 1 ° l l 1 H tfM 

n 

W e s h o w f i r s t t h a t t h e d e f i n i t i o n ( 1 0 ) i s not d e p e n d i n g o n n . 

I n d e e d , l e t n a n d m b e s u c h t h a t r . o . . . o r . ( t ) S ( 0 , t ] f o r 
1 1 X q 

e v e r y i ^ , . . . , i e { 1 , 2 } a n d q e | n , m } . S u p p o s e t h a t n < m . S i n c e 

0 < r . < i d a n d r . a r e c o n t i n u o u s , i - 1 , 2 , w e h a v e r . 0 . . . o r . ( t ) e 
1 1 1 . 

1 n + k 

6 ( 0 , t ] f o r e v e r y k e N a n d i ^ , . . . 6 ( l , 2 j . I n p a r t i c u l a r w e get 

b y ( 9 ) 
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8" M. Sablik 

Ea (r.o . . . or . ( t ) ) . o 1, 1 

' i ' „ M i - 2 ) 1 

- E 
l 2 " m 

a (r. o 
o i 2 

o r. i 
(0) -

Ea Cr. o . . . o r , ( t ) ) . . o 1, 1 
• ol 1 m-1 
h V i M 1 ' 2 ! 

An easy induction leads to 

^ ' a (r. o . . . o r , ( t ) ) / . o 1, 1 

fc-vM 1 

/ • O 1, 1_ 
( r . o ' . . . or . ( t ) ) 

z ~ l 
i r . . . , i n e { l , 2 } 

which proves that the definition is correct. A ve ry similar argument 

shows that the function a defined by (10) for t >tQ and equal to a^ 

in ( 0 , t o ] fulfils U ) . 

Define g : (0 , + oo) — R by g(t) - f ( t ) - a (t ) . It remains to prove 

that g(t) - o(tP ) , t -—0 . We have g|(0,tQ ] - gQ. Moreover, 

(11) F n ( t ) - o ( t p ) , t — 0 , 

for every n e N • Indeed, we assumed it for n •» 1 and if (11) holds 

for an n e N then from the equality 

2 

F .(0/1? - y V l t ) / t ) P ( F ( r . ( t ) ) / t P ) , n+i / i n l 
i -1 
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Caucihy equation on a curve 9 

which i s der ived from the definition of , we eas i ly get the validity 

of (11) for n+1 as wel l . Combining (11) with the uniform convergence 

of y . F ( t ) / t P we see that g e D^ which ends the proof . 
n=l n ~ P 

Taking into account Corol lary 1 we get f rom the above Lemma 

C o r o l l a r y 2. Under the assumptions of Lemma 1, if moreover 
2 

C^e D^ and r ^ ( 2 t ) = 2 r^ ( t ) fo r every t > 0 then f = a + g where a i s 

additive and g € d | . 

P r o o f . By Lemma 1 the function a fu l f i l s (4-). Moreover , 

g e j o j c D c A c B . We also have f e B and hence obviously a - f - g f e B . 

Thus a is additive by Corol la ry 1. 1 2 Let us prove now that (D ,D ) has the d . d . p . fo r p > l . 
~ P ~ P 2 

T h e o r e m 2. Let f : (0 ,+ «>)-•-R be a function such that C. e D f ~p 
for some p > l . Then f = a + g where a i s additive and g i d J . 

P r o o f . Define r : (0 , +«>) — - R by r . ( t ) = t / 2 for i = 1 ,2 . Using 

the notation of Lemma 1 we get by an easy induction 

(12) F x ( t ) - C f ( t / 2 , t / 2 ) and F ^ t ) - 2 n F 1 ( t / 2 n ) f o r n > l . 

Obviously we have F ^ t ) - o ( t p ) , t—»-0+, because It follows 

from (12) that 

(13) F
n + i ( t ) / t P ' C 2 n ) U - p ) [ F 1 ( t / 2 I ^ ) / ( t / 2 n ) p ] , n > l . 

Thus F n + 1 ( t ) - o ( t p ) , t — 0 , fo r every n > l . Choose t Q > 0 so that 

i F j C O / t ^ l ^ M 

fo r a constant M^ .0 and al l t e ( 0 , t Q ] . Then in view of (13) we have 

| F n + 1 ( t ) / t P | < M ( 2 1 - P ) n 

for every t e ( 0 , t ] and n > l . This proves that the s e r i e s J"*. F ( t ) / t P 

n - 1 
i s uniformly convergent in ( 0 , t Q ] . By Lemma 1 we get the decomposi-

tion f » a + g , where g ( t ) « o ( t p ) , t—*•(), and 
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a ( t ) - 2a(t/2) 

2 2 for every t > 0 . Now, if D^ for a p > l then D j and hence 

f e B . Now the assert ion follows from Corollary 2 . 

Theory of stability of functional equations was born in 1940s 

with papers of D.H. Hyers and S . Ulam (c f . [ 5 ] and [ 6 ] for ins tance) . 

It has much developed since and even a short presentation of i ts achie-

vements would go far beyond the frame of the present paper. As we 

have mentioned in the previous section, the stability of Cauchy equa-

tion in the sense of Hyers can be looked at as d . d . p . problem. On 

the other hand those who prefer stability language would rather say 

that d . d . p problems belong in fact to stability theory - one just repla-

ces boundedness of Cauchy difference by some other regularity proper-

ty. From this point of view the resul ts of the previous section are 

also of "stabil i ty type" and Lemma 1 cound be called a result on sta-

bility on a curve. 

In Theorem 2 , to prove additivity of a we have used its additi-

vity on the diagonal and the fact that a has some regularity at 0 . 

We could not expect that a similar method would work if we assumed 

only the boundedness of a . In fact the equation 

a ( t ) - 2a(t/2) 

has many solutions which are bounded and continuous in (0,+oo), st i l l 

not additive. Thus one cannot hope that the assert ion of Hyers theorem 

will hold i f we assume that C^ is bounded on curve only. To get such an 

assert ion one has to impose some other conditions on f . Below we 

present a possible approach to this problem. 

Let us prove f i r s t 

T h e o r e m 3 . Let f : ( 0 , + «o) — HO, +o») be Lebesgue measurable 

and such that 
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Cauchy equation on a curve 11 

(14) |f( t ) - 2 f ( t /2 )|< £ , t > 0 

and 

(15) function t — f (t) - f ( c t ) - f (dt) i s bounded in (0,00) 

where 6 ^ 0 is a constant, c € ( 0 , 1 ) , d = 1 - c and lnc / lnd^Q. Then 

f = a + g where a is equal to an additive function almost everywhere, 

g i s measurable and | g| ^ £ . 

P r o o f . Observe that (14) i s equivalent to |f(2t) - 2 f ( t ) | s S e 

which we write as 

(16) | C f ( t , t ) | « £ 

for every t > 0 . An easy induction shows that 

(17) f ( t ) - ( l / 2 ) f ( 2 t ) - ( l / 2 ) C f ( t , t ) - . . . 

n 

- ( l / 2 n ) f ( 2 n t ) ( l / 2 k ) C f ( 2 k t , 2 k t ) . 

k=l 
oo 

From (16) we infer that the s e r i e s X L ( l / 2 n ) C f ( 2 n t , 2 n t ) is conver-
n = l 

gent. Define g : ( 0 , + « * > ) — R by 

oo 

g ( t ) = - £ ( l / 2 n ) C f ( 2 n t , 2 n t ) . 

n = l 

Then g is measurable because so is t i—^C^(t , t ) , and (c f . ( 1 6 ) ) 

| g ( t ) | < £ for every t > 0 . From (15) we infer that 

a ( t ) = 11m ( l / 2 n ) f ( 2 n t ) 
n—oo 

exists for every t > 0 . It is easy to observe that a i s nonnegative, 

measurable and a(2t ) - 2 a ( t ) . Furthermore we have by (15) for every 

n € N and t > 0 and some K > 0 
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12 M. Sablik 

U/2 n ) [ f (2 n t ) - f (2nct ) - f (2 n dt ) ] e Cl/2n ) [ -K,K] 

whence, letting n —— oo we obtain 

a ( t ) = a(ct ) + a(dt ) . 

Taking into account Laczkovich's result from ClOl we see that a is 

a.e. equal to an additive function, which ends the proof. 

The last result of the paper reads as follows. 

T h e o r e m 4-. Let f : ( 0 , + oo)-»- R be a function fulfilling (14) 

with an 6 ^ 0 and suppose that an n e N exists such that function 

(18) t - ~ f ( t ) - f ( t/2N ) - f ( ( 2 N - l ) t /2 N ) | 

or 

(19) t — f ( t ) - f ( t / ( 2 N + l ) ) - f ( 2 N t / (2 N + l ) ) 

is bounded in (0,+oo). If f is measurable then the assertion of Theo-

rem 3 is valid. 

P r o o f . Similarly as in the proof of Theorem 3 we get f «• a + g 

where a and g are measurable, |g|^6, a ( t ) - 2a(t/2) for t > 0 

and 

(20) a ( t ) - a(t/2N ) + a( ( 2 N - l ) t /2 N ) 

or 

(21) a ( t ) - a ( t / (2 N + l ) ) + a (2 N t/ (2 N + l ) ) 

depending on whether (18) or (19) is assumed. We easily check that 

(22) a(2kt ) - 2ka(t ) for all k eZ and t > 0 

and hence also 

(23) a ( ( 2 N - l ) m t ) - (2 N - l ) m a ( t ) for all me Z and t >0, 

if (20) holds, or 
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Cauchy equation on a curve 13 

(24) a ( ( 2 N + l ) m t ) - ( 2 N + l ) m a ( t ) for all m e Z and t > 0 , 

if (21) is valid. Tn both cases we obtain 

(25) a ( r t ) - r a ( t ) 

for every t > 0 and r e G where £ » •|2 k (2 N - l ) m j n,m e Z } in the 

case ( 2 2 ) , (23 ) , and G - { 2 k ( 2 N + l ) m ; n , m e Z | in the case ( 2 2 ) , 

(24 ) . Since neither ln2/ln(2 - 1 ) nor ln2/ln(2 +l) is a rational num-

ber , the set G is dense in (0 , + oo). This implies that InG is dense 

in R whence we infer that the function b : R -»• R given by 

b(v) - a(expv)/expv 

is microperiodic. Since b is measurable, it has to be constant 

almost everywhere. Thus there is a c e R such that 

a(expv) « cexpv 

for almost all v e R . Absolute continuity of exp implies that a( t ) - ct 

a . e . in (0,+oo) which ends the proof. 
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