

You have downloaded a document from RE-BUŚ
 repository of the University of Silesia in Katowice

Title: The generalized Fourier transforms of slowly increasing functions

Author: Władysław Kierat, Urszula Sztaba

Citation style: Kierat Władysław, Sztaba Urszula. (1997). The generalized Fourier transforms of slowly increasing functions. "Demonstratio
Mathematica" (Vol. 30, nr 2 (1997) s. 425-428), doi 10.1515/dema-1997-0220

Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych Polska - Licencja ta zezwala na rozpowszechnianie, przedstawianie i wykonywanie utworu jedynie w celach niekomercyjnych oraz pod warunkiem zachowania go w oryginalnej postaci (nie tworzenia utworów zaleznych).

Władysław Kierat, Urszula Sztaba

THE GENERALIZED FOURIER TRANSFORMS OF SLOWLY INCREASING FUNCTIONS

In the paper we show that

$$
\widehat{\mathcal{F}} f=(\mathcal{C} \circ \mathcal{F}) f
$$

for slowly increasing function f, where the symbols $\widehat{\mathcal{F}} f, \mathcal{C} f$ and $\mathcal{F} f$ denote the generalized Fourier, Cauchy and Fourier transforms of f, respectively.

1. The Cauchy transform of Λ in $D_{L^{p}}^{\prime}$

Let $D_{L^{q}}$ denote the set of all smooth functions φ such that $\varphi^{(k)} \in L^{q}(\mathbf{R})$ for $k=0,1, \ldots$, where $1<q \leq \infty$ and $\frac{1}{p}+\frac{1}{q}=1,1 \leq p<\infty$. The space $D_{L}{ }^{q}$ is equipped with a topology defined by the sequence ($\|\cdot\|_{k}$) of the norms

$$
\|\varphi\|_{k}:=\max _{i=0, \ldots k}\left\|\varphi^{(i)}\right\|_{L^{a}} .
$$

We shall denote by $D_{L^{p}}^{\prime}$ the space of all linear continuous forms on $D_{L^{q}}$.
Let $\Lambda \in D_{L^{p}}^{\prime}$. We take

$$
\begin{equation*}
\mathcal{C} \Lambda(z):=\frac{1}{2 \pi i} \Lambda\left(\frac{1}{\cdot-z}\right) \quad \text { for } \quad z \in \mathbb{C}-\mathbb{R} \tag{1}
\end{equation*}
$$

where $\mathcal{C} \Lambda$ is called the Cauchy transform of Λ.
The Cauchy transforms of the distributions belonging to $D_{L^{p}}^{\prime}$ have important properties. Namely, the following theorems hold.

Theorem 1 ([3]). If $\Lambda \in D_{L^{p}}^{\prime}$, then the Cauchy transform $\mathcal{C} \Lambda$ is a holomorphic function in $\mathbb{C}-\mathbf{R}$ and

$$
\frac{d^{k}}{d z^{k}} \mathcal{C} \Lambda(z)=\frac{k!}{2 \pi i} \Lambda\left(\frac{1}{(\cdot-z)^{k+1}}\right)=\mathcal{C} \Lambda^{(k)}(z) .
$$

[^0]Theorem 2 ([3]). If $\Lambda \in D_{L^{p}}^{\prime}, 1<p<\infty$, then

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \int_{-\infty}^{\infty}[\mathcal{C} \Lambda(x+i \varepsilon)-\mathcal{C} \Lambda(x-i \varepsilon)] \varphi(x) d x=\Lambda(\varphi) \tag{2}
\end{equation*}
$$

for $\varphi \in D_{L^{q}}, \frac{1}{p}+\frac{1}{q}=1$.
2. The Fourier transform of Λ in $D_{L^{2}}^{\prime}$

By Schwartz representation theorem ([4],p.201) we have

$$
\begin{equation*}
\Lambda(\varphi)=\sum_{\nu=0}^{k}(-1)^{\nu} \int_{-\infty}^{\infty} f_{\nu}(x) \varphi^{(\nu)}(x) d x \tag{3}
\end{equation*}
$$

where $f_{\nu} \in L^{2}(\mathbf{R})$ and $\varphi \in \mathcal{S}$ with \mathcal{S} denoting the space of rapidly decreasing functions.

Let $\mathcal{F} \Lambda$ and $\mathcal{F} \varphi$ denote the Fourier transforms of Λ and φ, respectively. Since $\mathcal{F} \Lambda(\varphi)=\Lambda(\mathcal{F} \varphi)$, by Parseval-Plancherel's formula, we obtain

$$
\mathcal{F} \Lambda(\varphi)=\sum_{\nu=0}^{k} \int_{-\infty}^{\infty}(i x)^{\nu} \mathcal{F} f_{\nu}(x) \varphi(x) d x \quad \text { for } \varphi \in \mathcal{S}
$$

This equality can be written as follows

$$
\begin{equation*}
\mathcal{F} \Lambda(x)=\sum_{\nu=0}^{k}(i x)^{\nu} g_{\nu}(x), \quad \text { where } g_{\nu}=\mathcal{F} f_{\nu} \tag{4}
\end{equation*}
$$

Of course g_{ν} is in $L^{2}(\mathbb{R})$.
Denote by \mathcal{S}_{0}^{\prime} the vector space spanned by the set of all functions $x^{\nu} \varphi$, where φ is in $L^{2}(\mathbb{R})$. These functions are called slowly increasing. Clearly, if f is in \mathcal{S}_{0}^{\prime}, then $\mathcal{F} f$ is in $D_{L^{2}}^{\prime}$ (see [4]). In general, there is no any Fourier transform of $f \in \mathcal{S}_{0}^{\prime}$ in the classical sense.

3. The generalized Fourier transform

T. Carleman defined in [2] the generalized Fourier transforms of slowly increasing functions as follows.

Definition 1. For $f \in \mathcal{S}_{0}^{\prime}$ we have

$$
\widehat{\mathcal{F}} f(z)= \begin{cases}\int_{0}^{\infty} f(t) e^{i t z} d t & \text { for } \operatorname{Im} z>0 \\ -\int_{-\infty}^{0} f(t) e^{i t z} d t & \text { for } \operatorname{Im} z<0\end{cases}
$$

and

$$
\widehat{\mathcal{F}}^{-1} f(z)= \begin{cases}\frac{1}{2 \pi} \int_{-\infty}^{0} f(t) e^{-i t z} d t & \text { for } \operatorname{Im} z>0 \\ -\frac{1}{2 \pi} \int_{0}^{\infty} f(t) e^{-i t z} d t & \text { for } \operatorname{Im} z<0\end{cases}
$$

Now we prove the following theorem.
Theorem 3. If f is in \mathcal{S}_{0}^{\prime}, then

$$
\begin{equation*}
\widehat{\mathcal{F}} f(z)=(\mathcal{C} \circ \mathcal{F}) f(z) \quad \text { for } \quad z \in \mathbb{C}-\mathbb{R} \tag{5}
\end{equation*}
$$

where $\mathcal{F} f$ is the Fourier transform of f in the distributional sense.
Proof. We first prove a reduced form of the theorem. Namely, we assume that f is in $L^{2}(\mathbb{R})$. Determine $(\mathcal{C} \circ \mathcal{F}) f(z)$ for $z \in \mathbb{C}-\mathbb{R}$. According to the definitions of \mathcal{F} and \mathcal{C}, we have

$$
\begin{equation*}
(\mathcal{C} \circ \mathcal{F}) f(z)=\frac{1}{2 \pi i} \int_{-\infty}^{\infty} \mathcal{F} f(t) \frac{1}{t-z} d t \tag{6}
\end{equation*}
$$

Applying Parseval-Plancherel's formula, we get

$$
(\mathcal{C} \circ \mathcal{F}) f(z)=\frac{1}{2 \pi i} \int_{-\infty}^{\infty} f(t) \mathcal{F} \frac{1}{(\cdot-z)}(t) d t
$$

It is known ([1], p.174) that

$$
\frac{1}{2 \pi i} \mathcal{F} \frac{1}{(\cdot-z)}(t)= \begin{cases}H(t) e^{i t z} & \text { for } \operatorname{Im} z>0 \\ -H(-t) e^{i t z} & \text { for } \operatorname{Im} z<0\end{cases}
$$

where H denotes the Heaviside step function. From this we obtain

$$
(\mathcal{C} \circ \mathcal{F}) f(z)= \begin{cases}\int_{0}^{\infty} e^{i t z} f(t) d t & \text { for } \operatorname{lm} z>0 \\ -\int_{-\infty}^{0} e^{i t z} f(t) d t & \text { for } \operatorname{Im} z<0\end{cases}
$$

Finally we have

$$
(\mathcal{C} \circ \mathcal{F}) f(z)=\widehat{\mathcal{F}} f(z) \quad \text { for } f \in L^{2}(\mathbb{R})
$$

We are now in a position to show that the theorem is true in general case. It remains to prove that the equality (5) holds for $f(x)=(i x)^{k} f_{0}(x)$, where $f_{0} \in L^{2}(\mathbb{R})$ and $k \in N$. In fact, we have

$$
\begin{gathered}
(\mathcal{C} \circ \mathcal{F})\left[(i(\cdot))^{k} f_{0}(\cdot)\right](z)=\mathcal{C}\left(\mathcal{F} f_{0}\right)^{(k)}(z)=\left[(\mathcal{C} \circ \mathcal{F}) f_{0}\right]^{(k)}(z)=\frac{d^{k}}{d z^{k}} \widehat{\mathcal{F}} f_{0}(z)= \\
=\frac{d^{k}}{d z^{k}}\left\{\begin{array}{c}
\int_{0}^{\infty} e^{i t z} f_{0}(t) d t \text { for } \operatorname{Im} z>0 \\
-\int_{-\infty}^{0} e^{i t z} f_{0}(t) d t \text { for } \operatorname{Im} z<0
\end{array}\right\}=
\end{gathered}
$$

$$
=\left\{\begin{array}{cc}
\int_{0}^{\infty} e^{i t z}(i t)^{k} f_{0}(t) d t & \text { for } \operatorname{Im} z>0 \\
-\int_{-\infty}^{0} e^{i t z}(i t)^{k} f_{0}(t) d t & \text { for } \operatorname{Im} z<0
\end{array}\right\}=\hat{\mathcal{F}} f(z)
$$

Hence, by the definition of S_{0}^{\prime} we have

$$
(\mathcal{C} \circ \mathcal{F}) f(z)=\widehat{\mathcal{F}} f(z) \quad \text { for all } \quad f \in \mathcal{S}_{0}^{\prime}
$$

As a corollary from the previous theorems, we obtain the following one (see [1],§8.16,p.87).

Theorem 4. If $f \in S_{0}^{\prime}$, then $\widehat{\mathcal{F}} f$ is a holomorphic function in $\mathbb{C}-\mathbb{R}$ and for $\varphi \in D_{L^{2}}$ we have

$$
\lim _{\varepsilon \rightarrow 0} \int_{-\infty}^{\infty}[\widehat{\mathcal{F}} f(x+i \varepsilon)-\widehat{\mathcal{F}} f(x-i \varepsilon)] \varphi(x) d x=(\mathcal{F} f)(\varphi)
$$

In the same way one can prove the following equality

$$
\widehat{\mathcal{F}}^{-1} f(z)=\left(\mathcal{C} \circ \mathcal{F}^{-1}\right) f(z) \quad \text { for } \quad f \in \mathcal{S}_{0}^{\prime}
$$

References

[1] H. Bremermann, Distributions, Complex Variables and Fourier Transforms, Addi-son-Wesley Publishing Company Inc., 1965.
[2] T. Carlemann, L'intégrale de Fourier et questions qui s'y rattachent, Almqvist and Wiksell, Uppsala, 1944.
[3] W. Kierat and U. Skórnik, On some relations between the Cauchy and the Fourier transforms of distributions, Integral Transforms and Special Functions, 3 (4) (1995), 269-278.
[4] L. Schwartz, Théorie des distributions, Hermann, Paris, 1966.

```
INSTITUTE OF MATHEMATICS
SILESIAN UNIVERSITY
ul. Bankowa 14
40-007 KATOWICE, POLAND
```

Received March 31st, 1996.

[^0]: 1991 Mathematics Subject Classification: 44A35.
 Key words and phrases: Fourier transform, generalized Fourier transform, Cauchy transform, slowly increasing function

